首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical technique of time-longitude analysis has been developed by studying the fine structure of temporal variations in total solar irradiance (TSI). This analysis produces maps of large-scale thermal inhomogeneities on the Sun and reveals corresponding patterns of radiative excess and deficit relative to the unperturbed solar photosphere. These patterns are organized in two-and four-sector structures and exhibit the effects of both activity complexes and the active longitudes. Large-scale patterns with radiative excess show a facular macrostructure caused by the relaxation of large-scale thermo-magnetic perturbations and/or energy output due to very large-scale solar convection. These thermal patterns are related to long-lived magnetic fields that are characterized by rigid rotation. The patterns with radiative excess tend to concentrate around the active longitudes and are centered at 103° and 277° in the Carrington system when averaged over the time-longitude distribution of thermal inhomogeneities during activity cycles 21–23.  相似文献   

2.
Based on the monthly sunspot numbers (SSNs), the solar-flare index (SFI), grouped solar flares (GSFs), the tilt angle of heliospheric current sheet (HCS), and cosmic-ray intensity (CRI) for Solar Cycles 21?–?24, a detailed correlation study has been performed using the cycle-wise average correlation (with and without time lag) method as well as by the “running cross-correlation” method. It is found that the slope of regression lines between SSN and SFI, as well as between SSN and GSF, is continuously decreasing from Solar Cycle 21 to 24. The length of regression lines has significantly decreased during Cycles 23 and 24 in comparison to Cycles 21 and 22. The cross-correlation coefficient (without time lag) between SSN–CRI, SFI–CRI, and GSF–CRI has been found to be almost the same during Cycles 21 and 22, while during Cycles 23 and 24 it is significantly higher between SSN–CRI and HCS–CRI than for SFI–CRI and GSF–CRI. Considering time lags of 1 to 20 months, the maximum correlation coefficient (negative) amongst all of the sets of solar parameters is observed with almost the same time lags during Cycles 21?–?23, whereas exceptional behaviour of the time lag has been observed during Cycle 24, as the correlation coefficient attains its maximum value with two time lags (four and ten months) in the case of the SSN–CRI relationship. A remarkably large time lag (22 months) between HCS and CRI has been observed during the odd-numbered Cycle 21, whereas during another odd cycle, Cycle 23, the lag is small (nine months) in comparison to that for other solar/flare parameters (13?–?15 months). On the other hand, the time lag between SSN–CRI and HCS–CRI has been found to be almost the same during even-numbered Solar Cycles 22 and 24. A similar analysis has been performed between SFI and CRI, and it is found that the correlation coefficient is maximum at zero time lag during the present solar cycle. The GSFs have shown better maximum correlation with CRI as compared to SFI during Cycles 21 to 23, indicating that GSF could also be used as a significant solar parameter to study the cosmic-ray modulation. Furthermore, the running cross-correlation coefficient between SSN–CRI and HCS–CRI, as well as between solar-flare activity parameters (SFI and GSF) and CRI is observed to be strong during the ascending and descending phases of solar cycles. The level of cosmic-ray modulation during the period of investigation shows the appropriateness of different parameters in different cycles, and even during the different phases of a particular solar cycle. We have also studied the galactic cosmic-ray modulation in relation to combined solar and heliospheric parameters using the empirical model suggested by Paouris et al. (Solar Phys.280, 255, 2012). The proposed model for the calculation of the modulated cosmic-ray intensity obtained from the combination of solar and heliospheric parameter gives a very satisfactory value of standard deviation as well as \(R^{2}\) (the coefficient of determination) for Solar Cycles 21?–?24.  相似文献   

3.
Bipolar active regions in both hemispheres tend to be tilted with respect to the East–West Equator of the Sun in accordance with Joy’s law, which describes the average tilt angle as a function of latitude. Mt. Wilson Observatory data from 1917?–?1985 are used to analyze the active-region tilt angle as a function of solar cycle, hemisphere, and longitude, in addition to the more common dependence on latitude. Our main results are as follows: i) We recommend a revision of Joy’s law towards a weaker dependence on latitude (slope of 0.13?–?0.26) and without forcing the tilt to zero at the Equator. ii) We determine that the hemispheric mean tilt value of active regions varies with each solar cycle, although the noise from a stochastic process dominates and does not allow for a determination of the slope of Joy’s law on an 11-year time scale. iii) The hemispheric difference in mean tilt angles, 1.1°±0.27, over Cycles 16 to 21 was significant to a three-σ level, with average tilt angles in the Northern and Southern hemispheres of 4.7°±0.26 and 3.6°±0.27, respectively. iv) Area-weighted mean tilt angles normalized by latitude for Cycles 15 to 21 anticorrelate with cycle strength for the southern hemisphere and whole-Sun data, confirming previous results by Dasi-Espuig et al. (Astron. Astrophys. 518, A7, 2010). The Northern Hemispheric mean tilt angles do not show a dependence on cycle strength. v) Mean tilt angles do not show a dependence on longitude for any hemisphere or cycle. In addition, the standard deviation of the mean tilt is 29?–?31° for all cycles and hemispheres, indicating that the scatter is due to the same consistent process even if the mean tilt angles vary.  相似文献   

4.
We investigate the statistical distribution of X-class flares and their relationship with super active regions (SARs) during solar cycles 21–23. Analysis results show that X1.0–X1.9 flares accounted for 52.71 % of all X-class flares, with X2.0–X2.9 flares at 20.59 %, X3.0–X4.9 at 13.57 %, X5–X9.9 at 8.37 % and ≥X10 at 4.75 %. All X-class flares occurred around the solar maximum during solar cycle 22, while in solar cycle 23, X-class flares were scattered in distribution. In solar cycle 21, X-class flares were distributed neither in a concentrated manner like cycle 22 nor in a scattered manner as cycle 23. During solar cycles 21–23, 32.2 % of the X1.0–X1.9 flares, 31.9 % of the X2.0–X2.9 flares, 43.3 % of the X3.0–X4.9 flares, 81.08 % of the X5.0–X9.9 flares, and 95.2 % of the ≥X10 flares were produced by SARs.  相似文献   

5.
This paper presents the study of normalized north–south asymmetry, cumulative normalized north–south asymmetry and cumulative difference indices of sunspot areas, solar active prominences (at total, low (?40°) and high (?50°) latitudes) and Hα solar flares from 1964 to 2008 spanning the solar cycles 20–23. Three different statistical methods are used to obtain the asymmetric behavior of different solar activity features. Hemispherical distribution of activity features shows the dominance of activities in northern hemisphere for solar cycle 20 and in southern hemisphere for solar cycles 21–23 excluding solar active prominences at high latitudes. Cumulative difference index of solar activity features in each solar cycle is observed at the maximum of the respective solar cycle suggesting a cyclic behavior of approximately one solar cycle length. Asymmetric behavior of all activity features except solar active prominences at high latitudes hints at the long term periodic trend of eight solar cycles. North–south asymmetries of SAP (H) express the specific behavior of solar activity at high solar latitudes and its behavior in long-time scale is distinctly opposite to those of other activity features. Our results show that in most cases the asymmetry is statistically highly significant meaning thereby that the asymmetries are real features in the N–S distribution of solar activity features.  相似文献   

6.
Wauters  L.  Dominique  M.  Milligan  R.  Dammasch  I. E.  Kretzschmar  M.  Machol  J. 《Solar physics》2022,297(3):1-22

In most of the solar cycles, activity in the northern and southern hemispheres peaks at different times. One hemisphere peaks well before the other, and at least one of the hemispheric maxima frequently does not coincide with the whole sphere maximum. Prediction of the maximum of a hemisphere and the corresponding north–south asymmetry of a solar cycle may help to understand the mechanisms of the solar cycle, the solar-terrestrial relationship, and solar-activity influences on space weather. Here we analysed the sunspot-group data from the Greenwich Photoheliographic Results (GPR) during 1874?–?1976 and Debrecen Photoheliographic Data (DPD) during 1977?–?2017 and studied the cycle-to-cycle variations in the values of 13-month smoothed monthly mean sunspot-group area in the whole sphere (WSGA), northern hemisphere (NSGA), and southern hemisphere (SSGA) at the epochs of maxima of Sunspot Cycles 12?–?24 and at the epochs of maxima of WSGA, NSGA, and SSGA Cycles 12?–?24 (note that solar-cycle variation of a parameter is expressed as a cycle of that parameter). The cosine fits to the values of WSGA, NSGA, and SSGA at the maxima of sunspot, WSGA, NSGA, and SSGA Cycles 12?–?24, and to the values of the corresponding north–south asymmetry, suggest the existence of a ≈132-year periodicity in the activity of the northern hemisphere, a 54?–?66-year periodicity in the activity of the southern hemisphere, and a 50?–?66 year periodicity in the north–south asymmetry in activity at all the aforementioned epochs. By extrapolating the best-fit cosine curves we predicted the amplitudes and the corresponding north–south asymmetry of the 25th WSGA, NSGA, and SSGA cycles. We find that on average Solar Cycle 25 in sunspot-group area would be to some extent smaller than Solar Cycle 24 in sunspot-group area. However, by inputting the predicted amplitudes of the 25th WSGA, NSGA, and SSGA cycles relationship between sunspot-group area and sunspot number we find that the amplitude (\(130\pm 12\)) of Sunspot Cycle 25 would be slightly larger than that of reasonably small Sunspot Cycle 24. Still it confirms that the beginning of the upcoming Gleissberg cycle would take place around Solar Cycle 25. We also find that except at the maximum of NSGA Cycle 25 where the strength of activity in the northern hemisphere would be dominant, the strength of activity in the southern hemisphere would be dominant at the maximum epochs of the 25th sunspot, WSGA, and SSGA cycles.

  相似文献   

7.
We present a reconstruction of the solar spectrum in the near and mid-ultraviolet spectral range during the Maunder Minimum, a period of strongly suppressed magnetic activity spanning the second half of the 17th century. This spectral reconstruction is based on an extension of the Monte Carlo Solar Spectral Irradiance Model (MOCASSIM). The new version of the model, documented in this paper, extends its spectral range down to 150 nm, its temporal range back to 1610, includes a secular modulation of the quiet-Sun emissivity based on a total solar irradiance reconstruction, and uses the Atmospheric Laboratory for Applications and Science-3 (ATLAS-3) spectrum as a reconstruction baseline. The model is validated against the ATLAS-1 spectrum for 29 March 1992, showing a general agreement varying from ~?1 % in the 300?–?400 nm range, up to 3?–?5 % below 200 nm, the largest discrepancies occurring in emission lines formed in the chromosphere and transition region. We also reconstruct ultraviolet spectra for May 2008 and March 2009, spanning the extended phase of low activity separating Cycles 23 and 24. Our results suggest that despite the unusually long temporal extent of this activity minimum, the ultraviolet emission still remained slightly higher than during the Maunder Minimum, due to the lingering presence of decay products from active regions having emerged in the late descending phase of Cycle 23.  相似文献   

8.
Using observations from the High Energy Telescopes (HETs) on the STEREO A and B spacecraft and similar observations from near-Earth spacecraft, we summarize the properties of more than 200 individual >?25 MeV solar proton events, some detected by multiple spacecraft, that occurred from the beginning of the STEREO mission in October 2006 to December 2013, and provide a catalog of these events and their solar sources and associations. Longitudinal dependencies of the electron and proton peak intensities and delays to onset and peak intensity relative to the solar event have been examined for 25 three-spacecraft particle events. Expressed as Gaussians, peak intensities fall off with longitude with σ=47±14° for 0.7?–?4 MeV electrons, and σ=43±13° for 14?–?24 MeV protons. Several particle events are discussed in more detail, including one on 3 November 2011, in which ~?25 MeV protons filled the inner heliosphere within 90 minutes of the solar event, and another on 7 March 2012, in which we demonstrate that the first of two coronal mass ejections that erupted from an active region within ~?1 hour was associated with particle acceleration. Comparing the current Solar Cycle 24 with the previous cycle, the first >?25 MeV proton event was detected at Earth in the current solar cycle around one year after smoothed sunspot minimum, compared with a delay of only two months in Cycle 23. Otherwise, solar energetic particle event occurrence rates were reasonably similar during the rising phases of Cycles 23 and 24. However, the rate declined in 2013, reflecting the decline in sunspot number since the peak in the northern-hemisphere sunspot number in November 2011. Observations in late 2013 suggest that the rate may be rising again in association with an increase in the southern sunspot number.  相似文献   

9.
The NOAA listings of solar flares in cycles 21?–?24, including the GOES soft X-ray magnitudes, enable a simple determination of the number of flares each flaring active region produces over its lifetime. We have studied this measure of flare productivity over the interval 1975?–?2012. The annual averages of flare productivity remained approximately constant during cycles 21 and 22, at about two reported M- or X-flares per region, but then increased significantly in the declining phase of cycle 23 (the years 2004?–?2005). We have confirmed this by using the independent RHESSI flare catalog to check the NOAA events listings where possible. We note that this measure of solar activity does not correlate with the solar cycle. The anomalous peak in flare productivity immediately preceded the long solar minimum between cycles 23 and 24.  相似文献   

10.
Possible precursor signatures in the quasi-periodic variations of solar photospheric fields were investigated in the build-up to one of the deepest solar minima experienced in the past 100 years. This unusual and deep solar minimum occurred between Solar Cycles 23 and 24. We used both wavelet and Fourier analysis to study the changes in the quasi-periodic variations of solar photospheric fields. Photospheric fields were derived using ground-based synoptic magnetograms spanning the period 1975.14 to 2009.86 and covering Solar Cycles 21, 22, and 23. A hemispheric asymmetry in the periodicities of the photospheric fields was seen only at latitudes above ±?45° when the data were divided into two parts based on a wavelet analysis: one prior to 1996 and the other after 1996. Furthermore, the hemispheric asymmetry was observed to be confined to the latitude range of 45° to 60°. This can be attributed to the variations in polar surges that primarily depend on both the emergence of surface magnetic flux and varying solar-surface flows. The observed asymmetry along with the fact that both solar fields above ±?45° and micro-turbulence levels in the inner-heliosphere have been decreasing since the early- to mid-nineties (Janardhan et al. in Geophys. Res. Lett. 382, 20108, 2011) suggest that around this time active changes occurred in the solar dynamo that governs the underlying basic processes in the Sun. These changes in turn probably initiated the build-up to the very deep solar minimum at the end of Cycle 23. The decline in fields above ±?45°, for well over a solar cycle, would imply that weak polar fields have been generated in the past two successive solar cycles, viz. Cycles 22 and 23. A continuation of this declining trend beyond 22 years, if it occurs, will have serious implications for our current understanding of the solar dynamo.  相似文献   

11.
《New Astronomy》2003,8(6):529-536
Peculiarities in the characteristics of the solar differential rotation are investigated using hydrogen filaments as tracers. The existence of North–South (N–S) asymmetry in hydrogen filaments rotation is confirmed statistically. The connection of asymmetry with the solar activity cycles is established. It is found that the northern hemisphere rotates faster during the even cycles (Cycles 20 and 22) while the rotation of southern hemisphere dominates in odd one (Cycle 21). The mechanism of the solar activity should be responsible for the N–S asymmetry of the solar differential rotation.  相似文献   

12.
Solar activity during 2007?–?2009 was very low, causing anomalously low thermospheric density. A comparison of solar extreme ultraviolet (EUV) irradiance in the He?ii spectral band (26 to 34 nm) from the Solar Extreme ultraviolet Monitor (SEM), one of instruments on the Charge Element and Isotope Analysis System (CELIAS) on board the Solar and Heliospheric Observatory (SOHO) for the two latest solar minima showed a decrease of the absolute irradiance of about 15±6 % during the solar minimum between Cycles 23 and 24 compared with the Cycle 22/23 minimum when a yearly running-mean filter was used. We found that some local, shorter-term minima including those with the same absolute EUV flux in the SEM spectral band show a higher concentration of spatial power in the global network structure from the 30.4 nm SOHO/Extreme ultraviolet Imaging Telescope (EIT) images for the local minimum of 1996 compared with the minima of 2008?–?2011. We interpret this higher concentration of spatial power in the transition region’s global network structure as a larger number of larger-area features on the solar disk. These changes in the global network structure during solar minima may characterize, in part, the geo-effectiveness of the solar He?ii EUV irradiance in addition to the estimations based on its absolute levels.  相似文献   

13.
S. Zięba  Z. Nieckarz 《Solar physics》2014,289(7):2705-2726
Solar activity slowly and irregularly decreases from the first spotless day (FSD) in the declining phase of the old sunspot cycle and systematically, but also in an irregular way, increases to the new cycle maximum after the last spotless day (LSD). The time interval between the first and the last spotless day can be called the passive interval (PI), while the time interval from the last spotless day to the first one after the new cycle maximum is the related active interval (AI). Minima of solar cycles are inside PIs, while maxima are inside AIs. In this article, we study the properties of passive and active intervals to determine the relation between them. We have found that some properties of PIs, and related AIs, differ significantly between two group of solar cycles; this has allowed us to classify Cycles 8?–?15 as passive cycles, and Cycles 17?–?23 as active ones. We conclude that the solar activity in the PI declining phase (a descending phase of the previous cycle) determines the strength of the approaching maximum in the case of active cycles, while the activity of the PI rising phase (a phase of the ongoing cycle early growth) determines the strength of passive cycles. This can have implications for solar dynamo models. Our approach indicates the important role of solar activity during the declining and the rising phases of the solar-cycle minimum.  相似文献   

14.
Photospheric magnetic fields were studied using the Kitt Peak synoptic maps for 1976?–?2003. Only strong magnetic fields (B>100 G) of the equatorial region were taken into account. The north–south asymmetry of the magnetic fluxes was considered as well as the imbalance between positive and negative fluxes. The north–south asymmetry displays a regular alternation of the dominant hemisphere during the solar cycle: the northern hemisphere dominated in the ascending phase, the southern one in the descending phase during Solar Cycles 21?–?23. The sign of the imbalance did not change during the 11 years from one polar-field reversal to the next and always coincided with the sign of the Sun’s polar magnetic field in the northern hemisphere. The dominant sign of leading sunspots in one of the hemispheres determines the sign of the magnetic-flux imbalance. The sign of the north–south asymmetry of the magnetic fluxes and the sign of the imbalance of the positive and the negative fluxes are related to the quarter of the 22-year magnetic cycle where the magnetic configuration of the Sun remains constant (from the minimum where the sunspot sign changes according to Hale’s law to the magnetic-field reversal and from the reversal to the minimum). The sign of the north–south asymmetry for the time interval considered was determined by the phase of the 11-year cycle (before or after the reversal); the sign of the imbalance of the positive and the negative fluxes depends on both the phase of the 11-year cycle and on the parity of the solar cycle. The results obtained demonstrate the connection of the magnetic fields in active regions with the Sun’s polar magnetic field in the northern hemisphere.  相似文献   

15.
Vernova  E.S.  Mursula  K.  Tyasto  M.I.  Baranov  D.G. 《Solar physics》2004,221(1):151-165
We study the longitudinal distribution of sunspot activity in 1917–1995 using vector sums of sunspot areas. The vector sum of sunspots of one solar rotation gives a total vector whose amplitude characterizes the size of longitudinal asymmetry and whose phase describes the location of the momentarily dominating longitude. We find that when the phase distributions are calculated separately for the ascending phase and maximum (AM) on the one hand and for the declining phase and minimum (DM) on the other hand, they behave differently and depict broad maxima around roughly opposite longitudes. While the maximum of the phase distribution for the AM period is found around the Carrington longitude of 180°, the maximum for the DM period is at the longitude of about 0°. This difference can be seen in both solar hemispheres, but it is more pronounced in the southern hemisphere where the phase distribution has a particularly clear pattern. No other division of data into two intervals leads to similar systematic differences.  相似文献   

16.
The solar-cycle oscillations of the toroidal and poloidal components of the solar magnetic field in the northern solar hemisphere have a persistent phase difference of about \(\pi \). We propose a symmetrical Kuramoto model with three coupled oscillators as a simple way to understand this anti-synchronization. We solve an inverse problem and reconstruct natural frequencies of the top and bottom oscillators under the conditions of a constant coupling strength and a non-delayed coupling. These natural frequencies are associated with angular velocities of the meridional flow circulation near the solar surface and in the deep layer of the solar convection zone. A relationship between our reconstructions of the shallow and the deep meridional flow speed during recent Solar Cycles 21?–?23 is in agreement with estimates obtained in helioseismology and flux-transport dynamo modeling. The reconstructed top oscillator speed presents significant solar-cycle like variations that agree with recent helioseismical reconstructions. The evolution of reconstructed natural frequencies strongly depends on the coupling strength. We find two stable regimes in the case of strong coupling with a change of regime during anomalous solar cycles. We see the onset of a new transition in Solar Cycle 24. We estimate the admitted range of coupling values and find evidence of cross-equatorial coupling between solar hemispheres not accounted for by the model.  相似文献   

17.
Attempt to look into the nature of solar activity and variability have increased importance in recent days because of their terrestrial relationships. In the present work we have attempted to compare the solar activity events during first six years (2008–2013) of the ongoing solar cycle 24 with first six years (1996–2001) of solar cycle 23. To that end, we have considered sunspot numbers, F10.7 cm solar flux, halo CMEs and geomagnetic storms as comparison parameters. Sunspot number during the year 2008–2013 varied from 0 to 96.7 while during the year 1996 to 2001 it was observed from 0.9 to 170.1. Solar radio flux (F10.7 cm index) varied from 65 to 190 during the years 2008–2013 while it was observed from 65 to 283 during the years 1996–2001. 197 cases of halo CMEs (width=360°) in solar cycle 23 (1996–2001) and 177 cases of halo CMEs (width=360°) in solar cycle 24 (2008–2013) are investigated. 287 and 104 geomagnetic storm cases (Dst varies between ?50 and ?350 nT) are analysed during the half period of solar cycle 23 and 24 respectively. Comparative results indicate that solar cycle 23 was more pronounced in comparison of solar cycle 24.  相似文献   

18.
The active longitudes of indices for sunspot activity and solar flares were detected and investigated by the method of isoline for the period July 1, 1957 to December 31, 1962. In the most active hemisphere of the sun the active longitudes of sunspot and flares appear to coincide. It is shown that the rate of concentration in the active longitudes is the highest for more important formations. Arguments for the reality of the active longitudes of sunspot areas are advanced. In conclusion the question of the influence of the uncertainty of the solar rotation period on the detection of active longitudes of flares is considered.  相似文献   

19.
We analyze in situ measurements of the solar wind velocity obtained by the Advanced Composition Explorer (ACE) and the Helios spacecraft during the years 1998?–?2012 and 1975?–?1983, respectively. The data mainly belong to solar cycles 23 (1996?–?2008) and 21 (1976?–?1986). We used the directed horizontal-visibility-graph (DHVg) algorithm and estimated a graph functional, namely, the degree distance (D), which is defined using the Kullback–Leibler divergence (KLD) to understand the time irreversibility of solar wind time-series. We estimated this degree-distance irreversibility parameter for these time-series at different phases of the solar activity cycle. The irreversibility parameter was first established for known dynamical data and was then applied to solar wind velocity time-series. It is observed that irreversibility in solar wind velocity fluctuations show a similar behavior at 0.3 AU (Helios data) and 1 AU (ACE data). Moreover, the fluctuations change over the phases of the activity cycle.  相似文献   

20.
Lewis  D.J.  Simnett  G.M. 《Solar physics》2000,191(1):185-200
We have developed a non-subjective technique for recording the occurrences of coronal mass ejection (CME) in data recorded by the Large Angle Spectrometric Coronagraph experiment (LASCO) aboard the Solar and Heliospheric Observatory spacecraft (SOHO). We have found evidence for, and quantified, an asymmetry in the apparent longitudes at which mass ejections occurred during the first year of LASCO synoptic observations and coinciding with the 1996–1997 solar minimum. Throughout this period the solar surface could loosely be characterized as having both an active and a quiet hemisphere and the observed mass ejection asymmetry is seen to relate closely with the longitudes of most persistent disc activity. However, our best estimate for the centroid of the CME distribution is 45 deg to the west of the brightest regions visible in Fe 195 Å emission on the disc and in an area of reduced coronal emission. This corresponds to the location of a trans-equatorial extension of the northern coronal hole which persisted to some degree throughout the year and was directly associated with the most active region on the disc. We suggest that this indicates magnetic reconnection, which is necessary at the boundaries of coronal holes to maintain their quasi-rigid rotation above the differentially rotating photosphere, could play an important role in triggering the destabilization of nearby structures and result in the observed prevalence of mass ejections. We estimate that the events included in the study could contribute around 8% to the total solar mass loss through the solar wind (which is around 1014 kg day–1) and find a scale of asymmetry indicating that close to 70% of this mass is ejected from within a single hemisphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号