首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We describe a partial filament eruption on 11 December 2011 that demonstrates that the inclusion of mass is an important next step for understanding solar eruptions. Observations from the Solar Terrestrial Relations Observatory-Behind (STEREO-B) and the Solar Dynamics Observatory (SDO) spacecraft were used to remove line-of-sight projection effects in filament motion and correlate the effect of plasma dynamics with the evolution of the filament height. Flux cancellation and nearby flux emergence are shown to have played a role in increasing the height of the filament prior to eruption. The two viewpoints allow the quantitative estimation of a large mass-unloading, the subsequent radial expansion, and the eruption of the filament to be investigated. A 1.8 to 4.1 lower-limit ratio between gravitational and magnetic-tension forces was found. We therefore conclude that following the loss-of-equilibrium of the flux-rope, the radial expansion of the flux-rope was restrained by the filamentary material until 70% of the mass had evacuated the structure through mass-unloading.  相似文献   

2.
On 2012 July 11, two solar filaments were observed in the northeast of the solar disk and their eruptions due to the interaction between them are studied by using the data from the Solar Dynamics Observatory (SDO), Solar TErrestrial RElations Observatory (STEREO) and Global Oscillation Network Group (GONG). The eastern filament (F1) first erupted toward the northeast. During the eruption of F1, some plasma from F1 fell down and was injected to the North-East part of another filament (F2), and some plasma of F1 fell down to the northern region close to F2 and caused the plasma to brighten. Meanwhile, the North-East part of F2 first started to be active and rise, but did not erupt finally. Then the South-West part of F2 erupted successfully. Therefore, the F2’s eruption is a partial filament eruption. Two associated CMEs related to the eruptions were observed by STEREO/COR1. We find two possible reasons that lead to the instability and the eruption of F2. One main reason is that the magnetic loops overlying the two filaments were partially opened by the eruptive F1 and resulted in the instability of F2. The other is that the downflows from F1 might break the stability of F2.  相似文献   

3.
C. Zhu  D. Alexander  X. Sun  A. Daou 《Solar physics》2014,289(12):4533-4543
We study the interaction between an erupting solar filament and a nearby coronal hole, based on multi-viewpoint observations from the Solar Dynamics Observatory and STEREO. During the early evolution of the filament eruption, it exhibits a clockwise rotation that brings its easternmost leg in contact with the oppositely aligned field at the coronal hole boundary. The interaction between the two magnetic-field systems is manifested as the development of a narrow contact layer in which we see enhanced EUV brightening and bi-directional flows, suggesting that the contact layer is a region of strong and ongoing magnetic reconnection. The coronal mass ejection (CME) resulting from this eruption is highly asymmetric, with its southern portion opening up to the upper corona, while the northern portion remains closed and connected to the Sun. We suggest that the erupting flux rope that made up the filament reconnected with both the open and closed fields at the coronal hole boundary via interchange reconnection and closed-field disconnection, respectively, which led to the observed CME configuration.  相似文献   

4.
We present here an interesting two-step filament eruption during 14?–?15 March 2015. The filament was located in NOAA AR 12297 and associated with a halo Coronal Mass Ejection (CME). We use observations from the Atmospheric Imaging Assembly (AIA) and Heliospheric Magnetic Imager (HMI) instruments onboard the Solar Dynamics Observatory (SDO), and from the Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph (LASCO). We also use \(\mbox{H}\upalpha\) data from the Global Oscillation Network Group (GONG) telescope and the Kanzelhoehe Solar Observatory. The filament shows a first step eruption on 14 March 2015 and it stops its rise at a projected altitude \({\approx}\,125~\mbox{Mm}\) on the solar disk. It remains at this height for \({\approx}\,12~\mbox{hrs}\). Finally it erupts on 15 March 2015 and produces a halo CME. We also find jet activity in the active region during both days, which could help the filament de-stabilization and eruption. The decay index is calculated to understand this two-step eruption. The eruption could be due to the presence of successive instability–stability–instability zones as the filament is rising.  相似文献   

5.
Using multiwavelength observations from the Solar Dynamics Observatory (SDO) and the Solar Terrestrial Relations Observatory (STEREO), we investigate the mechanism of two successive eruptions (F1 and F2) of a filament in active region NOAA 11444 on 27 March 2012. The filament was inverse J-shaped and lay along a quasi-circular polarity inversion line (PIL). The first part of the filament erupted at \(\sim2{:}30\) UT on 27 March 2012 (F1), the second part at around 4:20 UT on the same day (F2). A precursor or preflare brightening was observed below the filament main axis about 30 min before F1. The brightening was followed by a jet-like ejection below the filament, which triggered its eruption. Before the eruption of F2, the filament seemed to be trapped within the overlying arcade loops for almost 1.5 h before it successfully erupted. Interestingly, we observe simultaneously contraction (\(\sim12~\mbox{km}\,\mbox{s}^{-1}\)) and expansion (\(\sim20~\mbox{km}\,\mbox{s}^{-1}\)) of arcade loops in the active region before F2. Magnetograms obtained with the Helioseismic and Magnetic Imager (HMI) show converging motion of the opposite polarities, which result in flux cancellation near the PIL. We suggest that flux cancellation at the PIL resulted in a jet-like ejection below the filament main axis, which triggered F1, similar to the tether-cutting process. F2 was triggered by removal of the overlying arcade loops via reconnection. Both filament eruptions produced high-speed (\(\sim1000~\mbox{km}\,\mbox{s}^{-1}\)) coronal mass ejections.  相似文献   

6.
Solar filaments/prominences exhibit rotational motion during different phases of their evolution from their formation to eruption. We have observed the rotational/vortical motion in the photosphere near the ends of ten filaments during their initial phase of eruption, at the onset of the fast rise phase. All the filaments were associated with active regions. The photospheric vortical motions we observed lasted for 4?–?20 minutes. In the vicinity of the conjugate ends of the filament the direction of rotation was opposite, except for two cases, where rotational motion was observed at only one end point. The sudden onset of a large photospheric vortex motion could have played a role in destabilizing the filament by transporting axial flux into the activated filament thereby increasing the outward magnetic pressure in it. The outward magnetic pressure may have pushed the filament/flux rope to the height where the torus instability criterion was satisfied, and hence it could have caused the filament instability and eruption.  相似文献   

7.
Using data from the Transition Region and Coronal Explorer (TRACE), Solar and Heliospheric Observatory (SOHO), Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and Hida Observatory (HO), we present a detailed study of an EUV jet and the associated Hα filament eruption in a major flare in the active region NOAA 10044 on 29 July 2002. In the Hα line wings, a small filament was found to erupt out from the magnetic neutral line of the active region during the flare. Two bright EUV loops were observed rising and expanding with the filament eruption, and both hot and cool EUV plasma ejections were observed to form the EUV jet. The two thermal components spatially separated from each other and lasted for about 25 minutes. In the white-light corona data, a narrow coronal mass ejection (CME) was found to respond to this EUV jet. We cannot find obvious emerging flux in the photosphere accounting for the filament eruption and the EUV jet. However, significant sunspot decay and magnetic-flux cancelation owing to collision of opposite flux before the events were noticed. Based on the hard X-ray data from RHESSI, which showed evidence of magnetic reconnection along the main magnetic neutral line, we think that all of the observed dynamical phenomena, including the EUV jet, filament eruption, flare, and CME, should have a close relation to the flux cancelation in the low atmosphere.  相似文献   

8.
A filament eruption, accompanied by a B9.5 flare, coronal dimming, and an EUV wave, was observed by the Solar TERrestrial Relations Observatory (STEREO) on 19 May 2007, beginning at about 13:00 UT. Here, we use observations from the SECCHI/EUVI telescopes and other solar observations to analyze the behavior and geometry of the filament before and during the eruption. At this time, STEREO A and B were separated by about 8.5°, sufficient to determine the three-dimensional structure of the filament using stereoscopy. The filament could be followed in SECCHI/EUVI 304 Å stereoscopic data from about 12 hours before to about 2 hours after the eruption, allowing us to determine the 3D trajectory of the erupting filament. From the 3D reconstructions of the filament and the chromospheric ribbons in the early stage of the eruption, simultaneous heating of both the rising filamentary material and the chromosphere directly below is observed, consistent with an eruption resulting from magnetic reconnection below the filament. Comparisons of the filament during eruption in 304 Å and Hα? show that when it becomes emissive in He II, it tends to disappear in Hα?, indicating that the disappearance probably results from heating or motion, not loss, of filamentary material.  相似文献   

9.
We report observations of the formation of two filaments?–?one active and one quiescent, and their subsequent interactions prior to eruption. The active region filament appeared on 17 May 2007, followed by the quiescent filament about 24 hours later. In the 26 hour interval preceding the eruption, which occurred at around 12:50 UT on 19 May 2007, we see the two filaments attempting to merge and filament material is repeatedly heated suggesting magnetic reconnection. The filament structure is observed to become increasingly dynamic preceding the eruption with two small hard X-ray sources seen close to the active part of the filament at around 01:38 UT on 19 May 2007 during one of the activity episodes. The final eruption on 19 May at about 12:51 UT involves a complex CME structure, a flare and a coronal wave. A magnetic cloud is observed near Earth by the STEREO-B and WIND spacecraft about 2.7 days later. Here we describe the behaviour of the two filaments in the period prior to the eruption and assess the nature of their dynamic interactions.  相似文献   

10.
Recent magnetic modeling efforts have shown substantial misalignment between theoretical models and observed coronal loop morphology as observed by STEREO/EUVI, regardless of the type of model used. Both potential field and non-linear force-free field (NLFFF) models yielded overall misalignment angles of 20??C?40 degrees, depending on the complexity of the active region (Sandman et al., Solar Phys. 259, 1, 2009; DeRosa et al., Astrophys. J. 696, 1780, 2009) We demonstrate that with new, alternative forward-fitting techniques, we can achieve a significant reduction in the misalignment angles compared with potential field source surface (PFSS) models and NLFFF models. Fitting a series of submerged dipoles to the field directions of stereoscopically triangulated loops in four active regions (30 April, 9 May, 19 May, and 11 December 2007), we find that 3??C?5 dipoles per active region yield misalignment angles of ???11°??C?18°, a factor of two smaller than those given by previously established extrapolation methods. We investigate the spatial and temporal variation of misalignment angles with subsets of loops for each active region, as well as loops observed prior to and following a flare and filament eruption, and find that the spatial variation of median misalignment angles within an active region (up to 75%) exceeds the temporal variation associated with the flare (up to 40%). We also examine estimates of the stereoscopic error of our analysis. The corrected values yield a residual misalignment of 7°??C?13°, which is attributed to the non-potentiality due to currents in the active regions.  相似文献   

11.
From observations of two-ribbon solar flares, we present a new line of evidence that magnetic reconnection is of key importance in magnetospheric substorms. We infer that in substorms reconnection of closed field lines in the near-Earth thinned plasma sheet both initiates and is driven by the overall MHD instability that drives the tailward expulsion of the reconnected closed field (0 loops). The general basis for this inference is the longstanding notion that two-ribbon flares and substorms are essentially similar phenomena, driven by similar processes. We give an array of observed similarities that substantiate this view. More specifically, our inference for substorms is drawn from observations of filament eruptions in two-ribbon flares, from which we conclude that the heart of the overall instability consists of reconnection and eruption of the closed magnetic field in and around the filament. We propose that essentially the same overall instability operates in substorms. Our point is not that the magnetic field configuration or the microphysics in substorms is identical to that in two-ribbon flares, but that the overall instability results from essentially the same combination of reconnection and eruption of closed magnetic field.  相似文献   

12.
Using in situ observations from the Advanced Composition Explorer (ACE), we have identified 70 Earth-affecting interplanetary coronal mass ejections (ICMEs) in Solar Cycle 24. Because of the unprecedented extent of heliospheric observations in Cycle 24 that has been achieved thanks to the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) instruments onboard the Solar Terrestrial Relations Observatory (STEREO), we observe these events throughout the heliosphere from the Sun to the Earth, and we can relate these in situ signatures to remote sensing data. This allows us to completely track the event back to the source of the eruption in the low corona. We present a summary of the Earth-affecting CMEs in Solar Cycle 24 and a statistical study of the properties of these events including the source region. We examine the characteristics of CMEs that are more likely to be strongly geoeffective and examine the effect of the flare strength on in situ properties. We find that Earth-affecting CMEs in the first half of Cycle 24 are more likely to come from the northern hemisphere, but after April 2012, this reverses, and these events are more likely to originate in the southern hemisphere, following the observed magnetic asymmetry in the two hemispheres. We also find that as in past solar cycles, CMEs from the western hemisphere are more likely to reach Earth. We find that Cycle 24 lacks in events driving extreme geomagnetic storms compared to past solar cycles.  相似文献   

13.
By means of Hα, EUV, soft X-ray, hard X-ray, and photospheric magnetic field observations, we report the surge-like eruption of a small-scale filament, called “blowout surge” according to recent observations, occurring on a plage region around AR 10876 on 1 May 2006. Along magnetic polarity reversal boundaries with obvious magnetic cancelations, the filament was located underneath a compact coronal arcade and close to one end of large coronal loops around the AR’s periphery. The filament started to erupt about 8 min before the main impulsive phase of a small two-ribbon flare, which had two Hα blue-wing kernels connected by hard X-ray loop-top sources on the both sides of the filament. After the flare end, the filament further underwent a distant eruption following a path nearly along the preexisting large loops, and thus looked like an Hα surge and an EUV jet. During the eruption, a small coronal dimming was formed near the flare, while weak brightenings appeared around the remote end of the large loops. We interpret these joint observations as the filament eruption being confined and guided by the large loops. The filament eruption, initially embedded in one footpoint region of the large loops, can break away from the magnetic restraint of the overlying compact arcade, but might be still limited inside the large loops. As a result, the eruption took a surge form that can only expand laterally along the large loops rather than erupt radially.  相似文献   

14.
W. T. Thompson 《Solar physics》2013,283(2):489-504
Triangulation measurements using observations from the two Solar Terrestrial Relations Observatory (STEREO) spacecraft, combined with observations from the Solar Dynamics Observatory (SDO), are used to characterize the behavior of a prominence involved in two successive coronal mass ejections 6?–?7 December 2010. The STEREO separation at the time was 171.6°, which was functionally equivalent to a separation of 8.4°, and thus very favorable for feature co-identification above the limb. The first eruption at ≈?14:16 UT on 6 December of the middle branch of the prominence starts off a series of magnetic reconfigurations in the right branch, which itself erupts at ≈?2:06 UT the next day, about 12 hours after the first eruption. The cool prominence material seen at 304?Å drains back down to the surface, but a flux-rope-like magnetic structure is seen to erupt in both 195?Å by the STEREO/Extreme Ultraviolet Imager (EUVI), and in white light by the STEREO/COR1 inner coronagraph. In between the two eruptions, two different signs of helicity are seen in the measured twist of the right branch. This is interpreted to be caused by the overall prominence channel being composed of different segments with alternating helicity signs. The erupting parts on 6 and 7 December both show positive twist, but negative twist is seen in between these positive sections. Negative twist is consistent with the dextral chirality signs seen in the He ii line at 304?Å prior to both eruptions. However, during the period between the eruptions, a region of positive twist grows and replaces the region of negative twist, and finally erupts. We interpret these observations in the light of models that predict that helicity cancellation can be an important factor in the triggering of flares and coronal mass ejections.  相似文献   

15.
The spectacular prominence eruption and CME of 31 August 2007 are analyzed stereoscopically using data from NASA??s twin Solar Terrestrial Relations Observatory (STEREO) spacecraft. The technique of tie pointing and triangulation (T&T) is used to reconstruct the prominence (or filament when seen on the disk) before and during the eruption. For the first time, a filament barb is reconstructed in three-dimensions, confirming that the barb connects the filament spine to the solar surface. The chirality of the filament system is determined from the barb and magnetogram and confirmed by the skew of the loops of the post-eruptive arcade relative to the polarity reversal boundary below. The T&T analysis shows that the filament rotates as it erupts in the direction expected for a filament system of the given chirality. While the prominence begins to rotate in the slow-rise phase, most of the rotation occurs during the fast-rise phase, after formation of the CME begins. The stereoscopic analysis also allows us to analyze the spatial relationships among various features of the eruption including the pre-eruptive filament, the flare ribbons, the erupting prominence, and the cavity of the coronal mass ejection (CME). We find that erupting prominence strands and the CME have different (non-radial) trajectories; we relate the trajectories to the structure of the coronal magnetic fields. The possible cause of the eruption is also discussed.  相似文献   

16.
Contarino  L.  Romano  P.  Yurchyshyn  V.B.  Zuccarello  F. 《Solar physics》2003,216(1-2):173-188
We describe a filament destabilization which occurred on 5 May 2001 in NOAA AR 9445, before a flare event. The analysis is based on Hα data acquired by THEMIS operating in IPM mode, Hα data and magnetograms obtained at the Big Bear Solar Observatory, MDI magnetograms and 171 Å images taken by TRACE. Observations at 171 Å show that ~ 2.5 hours before the flare peak, the western part of the EUV filament channel seems to split into two parts. The bifurcation of the filament in the Hα line is observed to take place ~ 1.5 hours before the flare peak, while one thread of the filament erupts ~10 min before the peak of the flare. Our analysis of longitudinal magnetograms shows the presence of a knot of positive flux inside a region of negative polarity, which coincides with the site of filament bifurcation. We interpret this event as occurring in two steps: the first step, characterized by the appearance of a new magnetic feature and the successive reconnection in the lower atmosphere between its field lines and the field lines of the old arcade sustaining the filament, leads to a new filament channel and to the observed filament bifurcation; the second step, characterized by the eruption of part of the filament lying on the old PIL, leads to a second reconnection, occurring higher in the corona.  相似文献   

17.
We report the results of a multi-instrument, multi-technique, coordinated study of the solar eruptive event of 13 May 2005. We discuss the resultant Earth-directed (halo) coronal mass ejection (CME), and the effects on the terrestrial space environment and upper Earth atmosphere. The interplanetary CME (ICME) impacted the Earth’s magnetosphere and caused the most-intense geomagnetic storm of 2005 with a Disturbed Storm Time (Dst) index reaching ?263 nT at its peak. The terrestrial environment responded to the storm on a global scale. We have combined observations and measurements from coronal and interplanetary remote-sensing instruments, interplanetary and near-Earth in-situ measurements, remote-sensing observations and in-situ measurements of the terrestrial magnetosphere and ionosphere, along with coronal and heliospheric modelling. These analyses are used to trace the origin, development, propagation, terrestrial impact, and subsequent consequences of this event to obtain the most comprehensive view of a geo-effective solar eruption to date. This particular event is also part of a NASA-sponsored Living With a Star (LWS) study and an on-going US NSF-sponsored Solar, Heliospheric, and INterplanetary Environment (SHINE) community investigation.  相似文献   

18.
1 INTRODUCTIONCoronal majss ejections (CMEs) are often seen as spectacular eruptions of matter fromthe Sun which propagate outward through the heliosphere and often interact with the Earth'smagnetosphere (Hundhausen, 1997; Gosling, 1997; and references herein). It is well known thatthese interactions can have substalltial consequences on the geomagnetic environment of theEarth, sometimes resulting in damage to satellites (e.g., McAllister et al., 1996; Berdichevskyet al., 1998). CMEs…  相似文献   

19.
A?filament and its channel close to the solar disk were observed in the complete hydrogen Lyman spectrum, and in several EUV lines by the SUMER (Solar Ultraviolet Measurement of Emitted Radiation) and CDS (Coronal Diagnostic Spectrometer) spectrographs on the SoHO satellite, and in H?? by ground-based telescopes during a multi-instrument campaign in May 2005. It was a good opportunity to get an overview of the volume and the density of the cold plasma in the filament channel; these are essential parameters for coronal mass ejections. We found that the width of the filament depends on the wavelength in which the filament is observed (around 15?arcsec in H??, 30?arcsec in L??, and 60?arcsec in EUV). In L?? the filament is wider than in H?? because cool plasma, not visible in H??, is optically thick at the L?? line center, and its presence blocks the coronal emission. We have derived physical plasma properties of this filament fitting the Lyman spectra and H?? profiles by using a 1D isobaric NLTE model. The vertical temperature profile of the filament slab is flat (T??7000?K) with an increase to ???20?000?K at the top and the bottom of the slab. From an analysis of the L?? and H?? source functions we have concluded that these lines are formed over the whole filament slab. We have estimated the geometrical filling factor in the filament channel. Its low value indicates the presence of multi-threads.  相似文献   

20.
By using Hα, He I 10830, EUV and soft X-ray (SXR) data, we examined a filament eruption that occurred on a quiet-sun region near the center of the solar disk on 2006 January 12, which disturbed a sigmoid overlying the filament channel observed by the GOES-12 SXR Imager (SXI), and led to the eruption of the sigmoid. The event was associated with a partial halo coronal mass ejection (CME) observed by the Large Angle and Spectrometric Coronagraphs (LASCO) on board the Solar and Heliospheric Observatory (SOHO), and resulted in the formation of two flare-like ribbons, post-eruption coronal loops, and two transient coronal holes (TCHs), but there were no significantly recorded GOES or Hα flares corresponding to the eruption. The two TCHs were dominated by opposite magnetic polarities and were located on the two ends of the eruptive sigmoid. They showed similar locations and shapes in He Ⅰ 10830, EUV and SXR observations. During the early eruption phase, brightenings first appeared on the locations of the two subsequent TCHs, which could be clearly identified on He Ⅰ 10830, EUV and SXR images. This eruption could be explained by the magnetic flux rope model, and the two TCHs were likely to be the feet of the flux rope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号