首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 723 毫秒
1.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   

2.
A combination of micro-meteorological, soil physical and groundwater chemical methods enabled the water balance of a tropical eucalypt savanna ecosystem in Northern Australia to be estimated. Heat pulse and eddy correlation were used to determine overstory and total evapotranspiration, respectively. Measurements of soil water content, matric suction and water table variations were used to determine changes in soil moisture storage throughout the year. Groundwater dating with chlorofluorocarbons was used to estimate net groundwater recharge rates, and stream gauging was used to determine surface runoff. The wet season rainfall of 1585 mm is distributed as: evapotranspiration 810 mm, surface runoff (and shallow subsurface flow) into the river 410 mm, groundwater recharge 200 mm and increase in soil store 165 mm. Of the groundwater recharge, 160 mm enters the stream as baseflow in the wet season, 20 mm enters as baseflow in the dry season, and the balance (20 mm) is distributed to and used by minor vegetation types within the catchment or discharges to the sea. In the dry season, an evapotranspiration of 300 mm comprises 135 mm rainfall and 165 mm from the soil store. Because of the inherent errors of the different techniques, the water balance surplus (estimated at 20 mm) cannot be clearly distinguished from zero. It may also be as much as 140 mm. To our knowledge, this is the first time that such diverse methods have been combined to estimate all components of a catchment's water balance.  相似文献   

3.
This study aimed to investigate the seasonal variability of runoff generation processes, the sources of stream water, and the controls on the contribution of event water to streamflow for a small forested catchment in the Italian pre‐Alps. Hydrometric, isotopic, and electrical conductivity data collected between August 2012 and August 2013 revealed a marked seasonal variability in runoff responses. Noticeable differences in runoff coefficients and hydrological dynamics between summer and fall/spring rainfall events were related to antecedent moisture conditions and event size. Two‐component and three‐component hydrograph separation and end‐member mixing analysis showed an increase in event water contributions to streamflow with event size and average rainfall intensity. Event water fractions were larger during dry conditions in the summer, suggesting that stormflow generation in the summer consisted predominantly of direct channel precipitation and some saturated overland flow from the riparian zone. On the contrary, groundwater and hillslope soil water contributions dominated the streamflow response during wet conditions in fall. Seasonal differences were also noted between event water fractions computed based on isotopic and electrical conductivity data, likely because of the dilution effect during the wetter months. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The spatial and temporal characterization of geochemical tracers over Alpine glacierized catchments is particularly difficult, but fundamental to quantify groundwater, glacier melt, and rain water contribution to stream runoff. In this study, we analysed the spatial and temporal variability of δ2H and electrical conductivity (EC) in various water sources during three ablation seasons in an 8.4‐km2 glacierized catchment in the Italian Alps, in relation to snow cover and hydro‐meteorological conditions. Variations in the daily streamflow range due to melt‐induced runoff events were controlled by maximum daily air temperature and snow covered area in the catchment. Maximum daily streamflow decreased with increasing snow cover, and a threshold relation was found between maximum daily temperature and daily streamflow range. During melt‐induced runoff events, stream water EC decreased due to the contribution of glacier melt water to stream runoff. In this catchment, EC could be used to distinguish the contribution of subglacial flow (identified as an end member, enriched in EC) from glacier melt water to stream runoff, whereas spring water in the study area could not be considered as an end member. The isotopic composition of snow, glacier ice, and melt water was not significantly correlated with the sampling point elevation, and the spatial variability was more likely affected by postdepositional processes. The high spatial and temporal variability in the tracer signature of the end members (subglacial flow, rain water, glacier melt water, and residual winter snow), together with small daily variability in stream water δ2H dynamics, are problematic for the quantification of the contribution of the identified end members to stream runoff, and call for further research, possibly integrated with other natural or artificial tracers.  相似文献   

5.
The water budget in clay shale terrain is controlled by a complex interaction between the vertisol soil layer, the underlying fractured rock, land use, topography, and seasonal trends in rainfall and evapotranspiration. Rainfall, runoff, lateral flow, soil moisture, and groundwater levels were monitored over an annual recharge cycle. Four phases of soil–aquifer response were noted over the study period: (1) dry‐season cracking of soils; (2) runoff initiation, lateral flow and aquifer recharge; (3) crack closure and down‐slope movement of subsurface water, with surface seepage; (4) a drying phase. Surface flow predominated within the watershed (25% of rainfall), but lateral flow through the soil zone continued for most of the year and contributed 11% of stream flow through surface seepage. Actual flow through the fractured shale makes up a small fraction of the water budget but does appear to influence surface seepage by its effect on valley‐bottom storage. When the valley soil storage is full, lateral flow exits onto the valley‐bottom surface as seasonal seeps. Well response varied with depth and hillslope position. FLOWTUBE model results and regional recharge estimates are consistent with an aquifer recharge of 1·6% of annual precipitation calculated from well heights and specific yield of the shale aquifer. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Rapidly transforming headwater catchments in the humid tropics provide important resources for drinking water, irrigation, hydropower, and ecosystem connectivity. However, such resources for downstream use remain unstudied. To improve understanding of the behaviour and influence of pristine rainforests on water and tracer fluxes, we adapted the relatively parsimonious, spatially distributed tracer‐aided rainfall–runoff (STARR) model using event‐based stable isotope data for the 3.2‐km2 San Lorencito catchment in Costa Rica. STARR was used to simulate rainforest interception of water and stable isotopes, which showed a significant isotopic enrichment in throughfall compared with gross rainfall. Acceptable concurrent simulations of discharge (Kling–Gupta efficiency [KGE] ~0.8) and stable isotopes in stream water (KGE ~0.6) at high spatial (10 m) and temporal (hourly) resolution indicated a rapidly responding system. Around 90% of average annual streamflow (2,099 mm) was composed of quick, near‐surface runoff components, whereas only ~10% originated from groundwater in deeper layers. Simulated actual evapotranspiration (ET) from interception and soil storage were low (~420 mm/year) due to high relative humidity (average 96%) and cloud cover limiting radiation inputs. Modelling suggested a highly variable groundwater storage (~10 to 500 mm) in this steep, fractured volcanic catchment that sustains dry season baseflows. This groundwater is concentrated in riparian areas as an alluvial–colluvial aquifer connected to the stream. This was supported by rainfall–runoff isotope simulations, showing a “flashy” stream response to rainfall with only a moderate damping effect and a constant isotope signature from deeper groundwater (~400‐mm additional mixing volume) during baseflow. The work serves as a first attempt to apply a spatially distributed tracer‐aided model to a tropical rainforest environment exploring the hydrological functioning of a steep, fractured‐volcanic catchment. We also highlight limitations and propose a roadmap for future data collection and spatially distributed tracer‐aided model development in tropical headwater catchments.  相似文献   

7.
Hydrological processes of lowland watersheds of the southern USA are not well understood compared to a hilly landscape due to their unique topography, soil compositions, and climate. This study describes the seasonal relationships between rainfall patterns and runoff (sum of storm flow and base flow) using 13 years (1964–1976) of rainfall and stream flow data for a low‐gradient, third‐order forested watershed. It was hypothesized that runoff–rainfall ratios (R/P) are smaller during the dry periods (summer and fall) and greater during the wet periods (winter and spring). We found a large seasonal variability in event R/P potentially due to differences in forest evapotranspiration that affected seasonal soil moisture conditions. Linear regression analysis results revealed a significant relationship between rainfall and runoff for wet (r2 = 0·68; p < 0·01) and dry (r2 = 0·19; p = 0·02) periods. Rainfall‐runoff relationships based on a 5‐day antecedent precipitation index (API) showed significant (r2 = 0·39; p < 0·01) correspondence for wet but not (r2 = 0·02; p = 0·56) for dry conditions. The same was true for rainfall‐runoff relationships based on 30‐day API (r2 = 0·39; p < 0·01 for wet and r2 = 0·00; p = 0·79 for dry). Stepwise regression analyses suggested that runoff was controlled mainly by rainfall amount and initial soil moisture conditions as represented by the initial flow rate of a storm event. Mean event R/P were higher for the wet period (R/P = 0·33), and the wet antecedent soil moisture condition based on 5‐day (R/P = 0·25) and 30‐day (R/P = 0·26) prior API than those for the dry period conditions. This study suggests that soil water status, i.e. antecedent soil moisture and groundwater table level, is important besides the rainfall to seasonal runoff generation in the coastal plain region with shallow soil argillic horizons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Polar Bear Pass is a large High Arctic low‐gradient wetland (100 km2) bordered by low‐lying hills which are notched by a series of v‐shaped valleys. The spring and summer hydrology of two High Arctic hillslope‐wetland catchments, a first‐order stream, 0·2 km2 Landing Strip Creek (LSC) and a larger second‐order basin, 4·2 km2 Windy Creek (WC), is described here. A water balance framework was employed in 2008 to examine the movement of water from upland reaches into the low‐lying wetland. Snowcover was low in both basins (<50 mm in water equivalent units), but they both exhibited nival‐type regimes. After the main snowmelt season ended, runoff ceased in the smaller catchment (LSC), but not at the larger basin (WC) which continued to flow throughout the summer. Both basins responded to summer rains in different ways. At LSC, late‐summer continuous streamflow occurred only when rainfall satisfied the large soil moisture deficit in the upper bowl‐shaped zone of the basin. At WC, the presence of thinly thawed, ice‐rich polygonal terrain within the stream channel and in the upper reaches of the catchment likely limited infiltration in these near‐stream zones and enhanced runoff in response to both moderate and high rainfall. Subsequently, seasonal runoff ratios differed between the two sites (0·19 vs 0·68) as did the seasonal storage + residual (+16 vs ?50 mm). This suggests that the post‐snowmelt season runoff response to summer precipitation is very much modified by the unique basin characteristics (soil‐type, vegetation, ground ice) and their location within each stream order type. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
We examined the contributions of bedrock groundwater to the upscaling of storm‐runoff generation processes in weathered granitic headwater catchments by conducting detailed hydrochemical observations in five catchments that ranged from zero to second order. End‐member mixing analysis (EMMA) was performed to identify the geographical sources of stream water. Throughfall, hillslope groundwater, shallow bedrock groundwater, and deep bedrock groundwater were identified as end members. The contribution of each end member to storm runoff differed among the catchments because of the differing quantities of riparian groundwater, which was recharged by the bedrock groundwater prior to rainfall events. Among the five catchments, the contribution of throughfall was highest during both baseflow and storm flow in a zero‐order catchment with little contribution from the bedrock groundwater to the riparian reservoir. In zero‐order catchments with some contribution from bedrock groundwater, stream water was dominated by shallow bedrock groundwater during baseflow, but it was significantly influenced by hillslope groundwater during storms. In the first‐order catchment, stream water was dominated by shallow bedrock groundwater during storms as well as baseflow periods. In the second‐order catchment, deeper bedrock groundwater than that found in the zero‐order and first‐order catchments contributed to stream water in all periods, except during large storm events. These results suggest that bedrock groundwater influences the upscaling of storm‐runoff generation processes by affecting the linkages of geomorphic units such as hillslopes, riparian zones, and stream channels. Our results highlight the need for a three‐dimensional approach that considers bedrock groundwater flow when studying the upscaling of storm‐runoff generation processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The response of intermittent catchments to rainfall is complex and difficult to model. This study uses the spatially distributed CATchment HYdrology (CATHY) model to explore how the frequency of daily rainfall (λ) can affect the hydrologic regime of intermittent catchments. After a multi-objective calibration and validation of CATHY against experimental measurements of streamflow and groundwater levels in a catchment used as a pasture, the role of λ in affecting streamflow characteristics was explored using different scenarios. With different values of λ for the dry and wet periods of the year, CATHY showed that a series of frequent rainfall events was often associated with incipient streamflow, independent of the season. Activation of streamflow during the wet season was related to multiple factors and was not often associated with the shallow groundwater levels near the outlet of the catchment. The interplay between rainfall depth and intensity acted as the most important factor for the generation of streamflow. Using the difference between accumulated rainfall and evapotranspiration as a measure of wetness, saturated subsurface flow mechanism generated streamflow in simulations with wetness at least three times larger than mean wetness of other simulations. Although groundwater uprise near the outlet did not effectively contribute to streamflow in the initial days of flow, it strongly correlated with the magnitude of the runoff coefficient. Values of λ close or equal to the maximum value in the wet season can sustain the connectivity between groundwater and streamflow in the riparian zone. This connectivity increases the catchment wetness, which consequently results in an increase of the generated streamflow. Our study showed that rainfall regimes characterized by different λ were able to identify distinct flow regimes typical of either intermittent, ephemeral, or nonflowing catchments. Decrease of λ in the wet season is likely associated with a reduction of streamflow, with a shift of flow regime from intermittent to ephemeral or no-flow.  相似文献   

11.
The objective of this study was to analyse changes in stream flow patterns with reference to dynamics in land cover/use in a typical watershed, the Chemoga, in northwestern highland Ethiopia. The results show that, between 1960 and 1999, total annual stream flow decreased at a rate of 1 · 7 mm year−1, whereas the annual rainfall decreased only at a rate of 0 · 29 mm year−1. The decrease in the stream flow was more pronounced during the dry season (October to May), for which a statistically significant decline (0 · 6 mm year−1) was observed while the corresponding rainfall showed no discernible trend. The wet season (June to September) rainfall and stream flow did not show any trends. Extreme low flows analysed at monthly and daily time steps reconfirmed that low flows declined with time, the changes being highly significant statistically. Between 1960 and 1999, the monthly rainfall and stream flow amounts of February (month of lowest long‐term mean flow) declined by 55% and 94% respectively. Similarly, minimum daily flows recorded during the three driest months (December to February) showed statistically highly significant declines over the same period. It declined from 0 · 6 m3 s−1 to 0 · 2 m3 s−1 in December, from 0 · 4 m3 s−1 to 0 · 1 m3 s−1 in January and from 0 · 4 m3 s−1 to 0 · 02 m3 s−1 in February (1 · 0 m3 s−1 = 0 · 24 mm day−1 in the Chemoga watershed). In contrast, extreme high flows analysed at monthly (for August) and daily (July to September) time steps did not reveal discernible trends. The observed adverse changes in the stream flow have partly resulted from changes in land cover/use and/or degradation of the watershed that involved destruction of natural vegetative covers, expansion of croplands, overgrazing and increased area under eucalypt plantations. The other contributory factor has been the increased dry‐season water abstraction to be expected from the increased human and livestock populations in the area. Given the significance of the stream flow as the only source of water to the local people, a set of measures aimed at reducing magnitudes of surface runoff generation and increasing groundwater recharge are required to sustain the water resource and maintain a balanced dry‐season flow in the watershed. Generally, an integrated watershed management approach, whereby the whole of the watershed can be holistically viewed and managed, would be desirable. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Continuous wavelet analyses of hourly time series of air temperature, stream discharge, and precipitation are used to compare the seasonal and inter‐annual variability in hydrological regimes of the two principal streams feeding Bow Lake, Banff National Park, Alberta: the glacial stream draining the Wapta Icefields, and the snowmelt‐fed Bow River. The goal is to understand how water sources and flow routing differ between the two catchments. Wavelet spectra and cross‐wavelet spectra were determined for air temperature and discharge from the two streams for summers (June–September) 1997–2000, and for rainfall and discharge for the summers of 1999 and 2000. The diurnal signal of the glacial runoff was orders of magnitude higher in 1998 than in other years, indicating that significant ice exposure and the development of channelized glacial drainage occurred as a result of the 1997–98 El Niño conditions. Early retreat of the snowpack in 1997 and 1998 led to a significant summer‐long input of melt runoff from a small area of ice cover in the Bow River catchment; but such inputs were not apparent in 1999 and 2000, when snow cover was more extensive. Rainfall had a stronger influence on runoff and followed quicker flow paths in the Bow River catchment than in the glacial catchment. Snowpack thickness and catchment size were the primary controls on the phase relationship between temperature and discharge at diurnal time scales. Wavelet analysis is a fast and effective means to characterize runoff, temperature, and precipitation regimes and their interrelationships and inter‐annual variability. The technique is effective at identifying inter‐annual and seasonal changes in the relative contributions of different water sources to runoff, and changes in the time required for routing of diurnal meltwater pulses through a catchment. However, it is less effective at identifying changes/differences in the type of the flow routing (e.g. overland flow versus through flow) between or within catchments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Numerous socio-economic activities depend on the seasonal rainfall and groundwater recharge cycle across the Central American Isthmus. Population growth and unregulated land use changes resulted in extensive surface water pollution and a large dependency on groundwater resources. This work combines stable isotope variations in rainfall, surface water, and groundwater of Costa Rica, Nicaragua, El Salvador, and Honduras to develop a regionalized rainfall isoscape, isotopic lapse rates, spatial–temporal isotopic variations, and air mass back trajectories determining potential mean recharge elevations, moisture circulation patterns, and surface water–groundwater interactions. Intra-seasonal rainfall modes resulted in two isotopically depleted incursions (W-shaped isotopic pattern) during the wet season and two enriched pulses during the mid-summer drought and the months of the strongest trade winds. Notable isotopic sub-cloud fractionation and near-surface secondary evaporation were identified as common denominators within the Central American Dry Corridor. Groundwater and surface water isotope ratios depicted the strong orographic separation into the Caribbean and Pacific domains, mainly induced by the governing moisture transport from the Caribbean Sea, complex rainfall producing systems across the N-S mountain range, and the subsequent mixing with local evapotranspiration, and, to a lesser degree, the eastern Pacific Ocean fluxes. Groundwater recharge was characterized by (a) depleted recharge in highland areas (72.3%), (b) rapid recharge via preferential flow paths (13.1%), and enriched recharge due to near-surface secondary fractionation (14.6%). Median recharge elevation ranged from 1,104 to 1,979 m a.s.l. These results are intended to enhance forest conservation practices, inform water protection regulations, and facilitate water security and sustainability planning in the Central American Isthmus.  相似文献   

14.
In the semi‐arid Mediterranean environment, the rainfall–runoff relationships are complex because of the markedly irregular patterns in rainfall, the seasonal mismatch between evaporation and rainfall, and the spatial heterogeneity in landscape properties. Watersheds often display considerable non‐linear threshold behavior, which still make runoff generation an open research question. Our objectives in this context were: to identify the primary processes of runoff generation in a small natural catchment; to test whether a physically based model, which takes into consideration only the primary processes, is able to predict spatially distributed water‐table and stream discharge dynamics; and to use the hydrological model to increase our understanding of runoff generation mechanisms. The observed seasonal dynamics of soil moisture, water‐table depth, and stream discharge indicated that Hortonian overland‐flow was negligible and the main mechanism of runoff generation was saturated subsurface‐flow. This gives rise to base‐flow, controls the formation of the saturated areas, and contributes to storm‐flow together with saturation overland‐flow. The distributed model, with a 1D scheme for the kinematic surface‐flow, a 2D sub‐horizontal scheme for the saturated subsurface‐flow, and ignoring the unsaturated flow, performed efficiently in years when runoff volume was high and medium, although there was a smoothing effect on the observed water‐table. In dry years, small errors greatly reduced the efficiency of the model. The hydrological model has allowed to relate the runoff generation mechanisms with the land‐use. The forested hillslopes, where the calibrated soil conductivity was high, were never saturated, except at the foot of the slopes, where exfiltration of saturated subsurface‐flow contributed to storm‐flow. Saturation overland‐flow was only found near the streams, except when there were storm‐flow peaks, when it also occurred on hillslopes used for pasture, where soil conductivity was low. The bedrock–soil percolation, simulated by a threshold mechanism, further increased the non‐linearity of the rainfall–runoff processes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The lower coastal plain of the Southeast USA is undergoing rapid urbanisation as a result of population growth. Land use change has been shown to affect watershed hydrology by altering stream flow and, ultimately, impairing water quality and ecologic health. However, because few long‐term studies have focused on groundwater–surface water interactions in lowland watersheds, it is difficult to establish what the effect of development might be in the coastal plain region. The objective of this study was to use an innovative improvement to end‐member mixing analysis (EMMA) to identify time sequences of hydrologic processes affecting storm flow. Hydrologic and major ion chemical data from groundwater, soil water, precipitation and stream sites were collected over a 2‐year period at a watershed located in USDA Forest Service's Santee Experimental Forest near Charleston, South Carolina, USA. Stream flow was ephemeral and highly dependent on evapotranspiration rates and rainfall amount and intensity. Hydrograph separation for a series of storm events using EMMA allowed us to identify precipitation, riparian groundwater and streambed groundwater as main sources to stream flow, although source contribution varied as a function of antecedent soil moisture condition. Precipitation, as runoff, dominated stream flow during all storm events while riparian and streambed groundwater contributions varied and were mainly dependent on antecedent soil moisture condition. Sensitivity analyses examined the influence of 10% and 50% increases in analyte concentration on EMMA calculations and found that contribution estimates were very sensitive to changes in chemistry. This study has implications on the type of methodology used in traditional forms of EMMA research, particularly in the recognition and use of median end‐member water chemistry in hydrograph separation techniques. Potential effects of urban development on important hydrologic processes (groundwater recharge, interflow, runoff, etc.) that influence stream flow in these lowland watersheds were qualitatively examined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
High‐elevation mountain catchments are often subject to large climatic and topographic gradients. Therefore, high‐density hydrogeochemical observations are needed to understand water sources to streamflow and the temporal and spatial behaviour of flow paths. These sources and flow paths vary seasonally, which dictates short‐term storage and the flux of water in the critical zone (CZ) and affect long‐term CZ evolution. This study utilizes multiyear observations of chemical compositions and water residence times from the Santa Catalina Mountains Critical Zone Observatory, Tucson, Arizona to develop and evaluate competing conceptual models of seasonal streamflow generation. These models were tested using endmember mixing analysis, baseflow recession analysis, and tritium model “ages” of various catchment water sources. A conceptual model involving four endmembers (precipitation, soil water, shallow, and deep groundwater) provided the best match to observations. On average, precipitation contributes 39–69% (55 ± 16%), soil water contributes 25–56% (41 ± 16%), shallow groundwater contributes 1–5% (3 ± 2%), and deep groundwater contributes ~0–3% (1 ± 1%) towards annual streamflow. The mixing space comprised two principal planes formed by (a) precipitation‐soil water‐deep groundwater (dry and summer monsoon season samples) and (b) precipitation‐soil water‐shallow groundwater (winter season samples). Groundwater contribution was most important during the wet winter season. During periods of high dynamic groundwater storage and increased hydrologic connectivity (i.e., spring snowmelt), stream water was more geochemically heterogeneous, that is, geochemical heterogeneity of stream water is storage‐dependent. Endmember mixing analysis and 3H model age results indicate that only 1.4 ± 0.3% of the long‐term annual precipitation becomes deep CZ groundwater flux that influences long‐term deep CZ development through both intercatchment and intracatchment deep groundwater flows.  相似文献   

17.
Residence times and flow paths of pipe and stream flow were studied during low flow in the Nant Gerig and Gwy experimental catchments at Plynlimon in mid-Wales, UK, using a two-month time series of natural deuterium and electrical conductivity data from perennial and ephemeral pipe flow, stream flow, groundwater and rainfall. Low flow in both the perennial pipe and the stream was maintained by ‘old’ groundwater discharge. This groundwater was at least 40 days old. Flow in the ephemeral pipe was dominated by old groundwater and was only slightly affected by direct inputs of new water. Although direct rainfall inputs contributed minimally to runoff in the perennial pipe and the stream, rainfall influenced the isotopic and chemical character of the groundwater. Rainfall also affected the water-table elevation, which determined the flashiness of the perennial pipe flow and whether the ephemeral pipe flowed. The isotope and electrical conductivity data suggest that storm runoff in both the main pipe and the stream is overwhelmingly old water. A sensitivity analysis suggests that the old water is supplied both from near-stream groundwater and upslope groundwater delivered by the ephemeral pipes.  相似文献   

18.
The need to identify groundwater seepage locations is of great importance for managing both stream water quality and groundwater sourced ecosystems due to their dependency on groundwater‐borne nutrients and temperatures. Although several reconnaissance methods using temperature as tracer exist, these are subjected to limitations related to mainly the spatial and temporal resolution and/or mixing of groundwater and surface water leading to dilution of the temperature differences. Further, some methods, for example, thermal imagery and fiber optic distributed temperature sensing, although relative efficient in detecting temperature differences over larger distances, these are labor‐intensive and costly. Therefore, there is a need for additional cost‐effective methods identifying substantial groundwater seepage locations. We present a method expanding the linear regression of air and stream temperatures by measuring the temperatures in dual‐depth; in the stream column and at the streambed‐water interface (SWI). By doing so, we apply metrics from linear regression analysis of temperatures between air/stream and air/SWI (linear regression slope, intercept, and coefficient of determination), and the daily water temperature cycle (daily mean temperatures, temperature variance, and the mean diel temperature fluctuation). We show that using metrics from only single‐depth stream temperature measurements are insufficient to identify substantial groundwater seepage locations in a head‐water stream. Conversely, comparing the metrics from dual‐depth temperatures show significant differences; at groundwater seepage locations, temperatures at the SWI merely explain 43–75% of the variation opposed to ? 91% at the corresponding stream column temperatures. In general, at these locations at the SWI, the slopes ( < 0.25) and intercepts ( > 6.5 °C) are substantially lower and higher, respectively, while the mean diel temperature fluctuations ( < 0.98 °C) are decreased compared to remaining locations. The dual‐depth approach was applied in a post‐glacial fluvial setting, where metrics analyses overall corroborated with field measurements of groundwater fluxes and stream flow accretions. Thus, we propose a method reliably identifying groundwater seepage locations along streambeds in such settings.  相似文献   

19.
Glaciers are of crucial importance for the livelihood of the local populations, which depend on their meltwater for water and energy supplies. For this reason, seasonal variations of oxygen‐18 of glacial stream water and their sources within a small glacial catchment in south western China were investigated during the wet season. The results showed significant difference of oxygen‐18 existed among meltwater, rainwater, ground water and stream water, and significantly seasonal variation of precipitation occurred during the observed period. The streamflow of Baishui catchment was separated into components of ice‐snowmelt and precipitation using oxygen‐18. As shown by the result of the two‐component mixing model, on average, 53.4% of the runoff came from ice‐snowmelt during the wet season, whereas the remaining 46.6% were contributed by precipitation in the catchment. According to monthly hydrograph, the contribution of snow and glacier meltwater varied from 40.7% to 62.2%, and that of precipitation varied from 37.8% to 59.3% in wet season. Uncertainties for this separation were mainly caused by the variation of tracer concentrations. The roles of glacier and snow meltwater should be noticed in water resource management in those glacial regions in south western China. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The spatial and temporal distribution of sulphate (SO4) concentrations in peat pore water and the outlet streams of two forested swamps was related to variations in the magnitude of upland runoff, wetland water levels and flow path. The swamps were located in headwater catchments with contrasting till depths typical of the southern Canadian Shield. Inputs of SO4 from shallow hillslope tills and streams showed little seasonal variation in either source or concentration in both swamps. Sulphate dynamics at the outlet stream reflected hydrological and biogeochemical processes within the valley wetlands, which in turn were partly controlled by catchment hydrogeology. During high runoff, maximum water table elevations and peak surface flow in the swamps resulted in upland inputs largely bypassing anoxic peat. Consequently, SO4 concentrations of 8–10 mg/l at the swamp outlets were similar to stream and groundwater inputs. During periods of low flow, concentrations of SO4 at the swamp outlets declined to less than 3 mg/l. At this time lower water table elevations resulted in increased interaction of input water with anoxic peats, and therefore, SO4 reduction. Contrasts in till depth and the nature of groundwater flow between catchments resulted in differences in SO4 dynamics between years and swamps. In dry summers the absence of groundwater inputs to the swamp in the catchment with thin till resulted in a large water table drawdown and re-oxidation of accumulated S, which contributed to maximum SO4 concentrations (up to 35 mg/l) during storm runoff. Continuous groundwater input to the swamp in the catchment with deeper till was critical to maintaining saturated surfaces and efficient SO4 retention during both dry and wet summers. A conceptual model of wetland SO4 retention and export, based on catchment hydrogeology, is developed to generalize the SO4 dynamics of valley bottom wetlands at the landscape scale. © 1997 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号