首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Summary. The Lleyn Peninsular earthquake which occurred at 0656 on 1984 July 19 was recorded at three medium aperture seismological array stations located at teleseismic distances. From these recordings an estimate is made of the hypocentre, origin time, magnitude and fault-plane solution of the earthquake. The fault-plane solution was determined using the Pearce algorithm and indicates that the focal mechanism is predominantly strike-slip. The fault-plane solution was used to generate synthetic seismograms for comparison with the observed to confirm the nature of the source and in particular the depth of focus which was estimated to be 20.5 km. It is concluded that the determination of the earthquake parameters using only three teleseismic seismograms is in good agreement with the results obtained from an analysis of 45 local and regional seismological stations.  相似文献   

2.
Summary. In this study a locally recorded aftershock sequence of the 1978 Tabas-e-Golshan earthquake ( Ms = 7.4) was accurately located. Out of 1560 located events, 329 best-located aftershocks passed a strict quality criterion. These well-located aftershocks, which have uncertainties in epicentre and in focal depth of about 1 and 2 km respectively, together with the well-constrained focal mechanisms, provided a detailed picture of active continental deformation during an aftershock sequence.
Almost all aftershocks follow very closely the pattern of the earthquake faults at the surface and lie in the hanging-wall block of the active fault. The hypocentres occurred mainly at depths less than 23 km with a high concentration of seismic activity between 8–14 km depth. The aftershocks clearly demonstrate an active imbricate listric thrust system with fault planes flattening into a basement decollement zone, and the reactivation of different basement reverse faults in response to a considerable amount of shortening of the top sedimentary cover. The sense of motion was almost universally thrusting and the aftershocks shared the same tectonic causes as the main shock.
The study indicates that the development of the young fold-thrust mountain belts necessarily involves basement shortening (thin-and thick-skinned tectonics) and that the 'frontal reverse faults' in young active fold-thrust mountain belts are the most seismically active faults. Geological and seismic data propose that the active frontal reverse fault systems are possibly reactivated old normal faults and may add support to the contention of reversal of fault motion during re thickening of continental crust. The active 'thin-and thick-skinned tectonics' documented in this study may prevail in other young and active fold-thrust mountain belts which are characterized by a thick sequence of telescoped top sedimentary cover over a decollement detachment zone.  相似文献   

3.
This paper documents the importance of three‐dimensional (3D) seismic data for integrated stratigraphic–morphological analysis of slope systems. Furthermore, it contributes to the general understanding of the evolutionary mechanisms of slope‐confined submarine canyons on continental margins and their significance in a sequence stratigraphic framework. Recently acquired 3D seismic data from the Ebro Continental Margin (Western Mediterranean) have been used to study a series of remarkably well‐imaged submarine canyons in the Plio‐Pleistocene succession. Detailed mapping shows that these canyons are restricted to the slope, and thus can be compared with slope‐confined canyons observed on the present day seabed of many continental margins. The slope‐confined canyons are typically 0.5–2 km wide, 10–15 km long, and incise more than 50 m into the slope units. Their most striking characteristic is an upslope branching geometry in the head region involving up to three orders of bifurcation, with downslope development of a single incisional axis. The submarine canyons are characterized by a nested stacking pattern, undergoing alternating phases of cutting and filling. Limited parts of the upper and middle slope remain outside the canyon system, confined in sharp depositional ridges. The canyons are observed on closely spaced surfaces and exhibit a geometry that allowed the construction and discussion of a local sequence stratigraphic model for their evolution. In general, active incision of the canyons is observed at times throughout almost the entire cycle of base‐level change. However, erosional activity is more significant during the later stages of the relative sea level rise and the entire falling stage, with the timing of maximum erosion observed at the end of the cycle. The minimum erosional activity of the canyons is linked instead to the earliest part of the relative sea level rise.  相似文献   

4.
强震群活动构造环境比较研究   总被引:1,自引:1,他引:0  
将1997-1998年新疆伽师6.0~6.6级强震群与国内外14例5.1~8.7级强震群的活动构造环境比较研究后发现,强震群持时25min~3a,强震群区的地震活动多具重复性,发震构造多为刚性地块共轭隐伏破裂。强震群为板内浅源地震。  相似文献   

5.
This paper uses three‐dimensional (3D) seismic data from the continental margin of Israel (Eastern Mediterranean) to describe a series of slump deposits within the Pliocene and Holocene succession. These slumps are linked to the dynamics of subsidence and deformation of the transform margin of the eastern Mediterranean. Repeated slope failure occurred during the post‐Messinian, when a clay‐dominated progradational succession was forming. This resulted in large‐scale slump deposits accumulating in the mid‐lower slope region of the basin at different stratigraphic levels. It is probable that the slumps were triggered by a combination of slope oversteepening, seismic activity and gas migration. The high spatial resolution provided by the 3D seismic data has been used to define a spectrum of internal and external geometries within slump deposits. Importantly, we recognise two main zones for many of the slumps on this margin: a depletion zone and an accumulation zone. The former is characterised by extension and translation, and the latter by complex imbricate thrusts and fold systems. Volume‐based seismic attribute analysis reveals transport directions within the slump deposits, which are predominately downslope, but with subtle variations particularly at the lateral margins. Basal shear surfaces are observed to ramp both up and down stratigraphy. Slump evolution occurs both by retrogressive upslope failure, and by downslope propagation (out‐of‐sequence) failure. Slump anatomy and the combination of factors responsible for slump failure and transport are relatively poorly understood, mainly because of the limited 3D of outcrop control; hence, this subsurface study is an example of how improved understanding of the mechanisms and products can be obtained using this 3D seismic methodology in unstable margin areas.  相似文献   

6.
The ability of seismological criteria to identify earthquakes from underground explosions depends partly on the orientation of the earthquake source. Well-determined double-couple moment tensor solutions for a large number of earthquakes have been published in the Harvard centroid moment tensor (CMT) and United Slates Geological Survey (USGS) catalogues. Statistical analyses of these catalogues indicate that the distribution of the orientation of earthquake mechanisms is not random. The distribution of the T axes shows significant clustering around the downward vertical, indicating that a larger number of earthquake mechanisms radiate compressional P -wave energy to teleseismic distances from near the maximum of the radiation pattern than is predicted if earthquake sources are randomly oriented double couples. The clustered T axes correspond to compressional dip-slip mechanisms, and it is this type of mechanism which is believed to cause both the m b: M s (the ratio of body-wave to surface-wave magnitude) and first-motion criteria to misidentify an earthquake as an explosion.  相似文献   

7.
Summary. Attention has recently been focused on the structure and composition of the lower crust in continental areas. It is generally believed that, except in special circumstances, ductile behaviour below mid-crustal depths precludes the brittle processes that cause earthquakes. The 1984 July 19 earthquake in North Wales occurred at the unexpected depth of 23 km. We report here the location of the larger aftershocks and the relocation of the main shock with respect to one of them. The lower crustal depths of the events are confirmed by tests with a wide range of models. The occurrence of earthquakes at these depths may be related to low heat flow in the region.  相似文献   

8.
A subsurface evacuation model for submarine slope failure   总被引:1,自引:0,他引:1  
Analysis of three-dimensional (3D) seismic reflection data from the Norwegian continental margin provides an insight into an unusual, buried submarine slope failure, which occurred adjacent to the later Holocene-age Storegga Slide. The identified failure, informally named the 'South Vøring Slide' (SVS), occurs in fine-grained hemipelagic and contourite sediments on a slope of 0.5°, and is characterised by a deformed seismic facies unit consisting of closely spaced pyramidal blocks and ridges bound by small normal faults striking perpendicular to the slope. The SVS contrasts with other previously described submarine slope failures in that it cannot be explained by a retrogressive model. The defining characteristic is the high relative volume loss. The area affected by sliding has thinned by some 40%, seen in combination with very modest extension in the translation direction, with line length balancing yielding an extension value of only 4.5%. The volume loss is explained by the mobilisation of an approximately 40 m thick interval at the lower part of the unit and its removal from beneath a thin overburden, which subsequently underwent extensional fragmentation. Evidence for the mobilisation of a thick fine-grained interval in the development of a submarine slope failure from a continental margin setting may have implications for the origins of other large-scale slope failures on the Norwegian margin and other glacially influenced margins worldwide.  相似文献   

9.
Summary. The Turkish Dilatancy Projects (TDP1 in 1979 and TDP2 in 1980) recorded small earthquakes near the North Anatolian Fault with closely-spaced networks of three-component seismometers in order to investigate the possibility of diagnosing dilatancy from its effects of shear-wave propagation. This paper examines the polarizations of shear wavetrains recorded in the shear-wave window immediately above the earthquake foci. Abrupt changes in the orientation and/or ellipticity of the shear-wave polarizations are almost always observed during the first few cycles following the initial shear-wave arrival on each seismogram. The horizontal projections of the polarizations of the first shear-wave arrivals at any given station show nearly parallel alignments with approximately the same orientations at each of the recording sites (with one exception). It is difficult to explain this uniform alignment over a wide area in terms of scattering at the irregular surface topography or by earthquake focal mechanisms. We demonstrate that the shear-wave splitting is likely to be the result of anisotropy in the region above the earthquake foci, which could produce polarizations displaying the observed alignments. The temporal change of the azimuth of alignment, observed at one locality between 1979 and 1980, may be due to the release of a local stress anomaly by a very near earthquake.  相似文献   

10.
i
Displacements of Love waves generated by a two-dimensional point source in a layered medium have been studied earlier by Sezawa & Sato by the method of successive reflections at the boundaries. In this paper the same problem has been worked out by using Green's function. The paper deals with the study of attenuation of Love waves of low periods in the coastal region. Experimental observations show that Love waves of smaller periods can be obtained only in the island observing stations. A slight intervention of the continental boundary is sufficient to attenuate lower period Love waves giving a hint thereby that attenuation of lower periods takes place perhaps at the continental margin. Taking a simplified configuration for the continental boundary and using Green's function technique, the displacement of Love waves due to a point source has been obtained and it has been shown that attenuation of Love waves of smaller periods takes place in the continental margin due to the slope of the boundary.  相似文献   

11.
We invert surface-wave and geodetic data for the spatio-temporal complexity of slip during the M w =8.1 Chile 1995 event by simulated annealing. This quasi-global inversion method allows for a wide exploration of model space, and retains the non-linearity of the source tomography problem. Complex source spectra are obtained from 5 to 45 mHz from first- and second-orbit fundamental-mode Rayleigh waves using an empirical Green's function cross-correlation technique. Coseismic displacement vectors were measured at 10 GPS sites near Antofagasta. They are part of a French-Chilean experiment which monitors the Northern Chile seismic gap. The spectra, together with the geodetic data, are inverted for the moment distribution on a 2-D dipping fault, under the physical constraints of slip positivity and causality. Marginal a posteriori distributions of the model parameters are obtained from several independently inverted solutions. In general, features of the slip model are well resolved. Data are well fitted by a purely unilateral southward rupture with a nearly uniform velocity around 2.5–3.0 km s−1, and a total duration of 65 s. Several regions of moment release were imaged, one near the hypocentre, a major one 80 km south of it and a minor one 160 km south of it. The major patch of moment release seemed to have propagated to relatively shallow depths near the trench, 100 km SSW of the epicentre. The region of major slip is located updip of the 1987, M w =7.5 earthquake, suggesting a causal relationship. Most of the slip occurred updip of the hypocentre (36 km), but the entire coupled plate interface (20–40 km) ruptured during the Chile 1995 event.  相似文献   

12.
The Loma Prieta earthquake (magnitude 7.0), which occurred in October 1989 in central California, was preceded by a period during which the mean magnitude of background seismicity in a small region near the eventual epicentre was abnormally low. This period may have begun as early as 1979, and it continued until mid-1988, after which the mean magnitude increased to a higher than normal value until the main earthquake. These changes were observed in the seismicity of an area 40  km in radius, centred on the Loma Prieta epicentre, and are consistent with the predictions of fracture mechanics studies. The 1988 change correlates with a reported change in long-term strain.
  A procedure has been developed for resolving such temporal changes in seismicity using CUSUM statistics. It demonstrates that the anomaly was highly significant, on the basis of analyses of two independent catalogues. There was also a significant anomaly before the 1994 Northridge earthquake.
  The hypothesis that large earthquakes are preceded by periods in which the mean magnitude of background activity is abnormally low, in the immediate vicinity of the eventual epicentre, is a tantalizing one. The analysis tool examined here may be useful for resolving such changes. Care needs to be taken, however, in routine surveillance of earthquake populations that contain large aftershock sequences.  相似文献   

13.
Summary. The Lg phase has been shown previously to be a collection of higher-mode surface waves guided by the continental crust (Knopoff, Schwab & Kausel). A simple scaling between continental and oceanic crustal thicknesses suggests that a search for an oceanic Lg phase should be made in the period range from 1 to 2s. In a search for SH polarized Lg arrivals over oceanic paths, we found that in addition to the fundamental mode, seismo-grams at relatively short ranges in the Pacific showed the presence of only the first higher mode with group velocities on the steep portion of the dispersion curve rather than at the group velocity minimum as expected. Numerical model analysis indicates that, contrary to the continental case, there is no strong confluence of stationary phases of higher-mode crustal waves in the appropriate period range to produce Lg wave packets; this is due to small but significant differences in scaled crustal structures. Further, lateral variations in the thickness of oceanic sediments are sufficient to scatter most of the crustal surface-wave energy within a relatively short distance. Even were this thickness uniform, attenuation in the sediments would be strong enough to absorb the Lg stationary phases in a short distance.  相似文献   

14.
Rifted margins are created as a result of stretching and breakup of continental lithosphere that eventually leads to oceanic spreading and formation of a new oceanic basin. A cornerstone for understanding what processes control the final transition to seafloor spreading is the nature of the continent‐ocean transition (COT). We reprocessed multichannel seismic profiles and use available gravity data to study the structure and variability of the COT along the Northwest subbasin (NWSB) of the South China Sea. We have interpreted the seismic images to discern continental from oceanic domains. The continental‐crust domain is characterized by tilted fault blocks generally overlain by thick syn‐rift sedimentary units, and underlain by fairly continuous Moho reflections typically at 8–10 s twtt. The thickness of the continental crust changes greatly across the basin, from ~20 to 25 km under the shelf and uppermost slope, to ~9–6 km under the lower slope. The oceanic‐crust domain is characterized by a highly reflective top of basement, little faulting, no syntectonic strata and fairly constant thickness (over tens to hundreds of km) of typically 6 km, but ranging from 4 to 8 km. The COT is imaged as a ~5–10 km wide zone where oceanic‐type features directly abut or lap on continental‐type structures. The South China margin continental crust is cut by abundant normal faults. Seismic profiles show an along‐strike variation in the tectonic structure of the continental margin. The NE‐most lines display ~20–40 km wide segments of intense faulting under the slope and associated continental‐crust thinning, giving way to a narrow COT and oceanic crust. Towards the SW, faulting and thinning of the continental crust occurs across a ~100–110 km wide segment with a narrow COT and abutting oceanic crust. We interpret this 3D structural variability and the narrow COT as a consequence of the abrupt termination of continental rifting tectonics by the NE to SW propagation of a spreading centre. We suggest that breakup occurred abruptly by spreading centre propagation rather than by thinning during continental rifting. We propose a kinematic evolution for the oceanic domain of the NWSB consisting of a southward spreading centre propagation followed by a first narrow ridge jump to the north, and then a younger larger jump to the SE, to abandon the NWSB and create the East subbasin of the South China Sea.  相似文献   

15.
During May 1990 and January-February 1991, an extensive geophysical data set was collected over the Côte d'Ivoire-Ghana continental margin, located along the equatorial coast of West Africa. The Ghana margin is a transform continental margin running subparallel to the Romanche Fracture Zone and its associated marginal ridge—the Côte d'Ivoire-Ghana Ridge. From this data set, an explosive refraction line running ∼ 150 km, ENE-WSW between 3°55'N, 3°21'W and 4°23'N, 2°4'W, has been modelled together with wide-angle airgun profiles, and seismic reflection and gravity data. This study is centred on the Côte d'Ivoire Basin located just to the north of the Côte d'Ivoire-Ghana Ridge, where bathymetric data suggest that a component of normal rifting occurred, rather than the transform motion observed along the majority of the equatorial West African margin.
Traveltime and amplitude modelling of the ocean-bottom seismometer data shows that the continental Moho beneath the margin rises in an oceanward direction, from ∼ 24 km below sea level to ∼ 17 km. In the centre of the line where the crust thins most rapidly, there exists a region of anomalously high velocity at the base of the crust, reaching some 8 km in thickness. This higher-velocity region is thought to represent an area of localized underplating related to rifting. Modelling of marine gravity data, collected coincident with the seismic line, has been used to test the best-fitting seismic model. This modelling has shown that the observed free-air anomaly is dominated by the effects of crustal thickness, and that a region of higher density is required at the base of the crust to fit the observed data. This higher-density region is consistent in size and location with the high velocities required to fit the seismic data.  相似文献   

16.
5·12汶川大地震诱发了崩塌、滑坡、泥石流等次生灾害,崩塌、滑坡堆积物给泥石流的形成提供了大量松散固体物质,将导致灾区部分山洪沟转化为泥石流沟,为此,给出了一种泥石流沟的判识方法和指标.调查发现,汶川灾区的地形地貌和降雨条件满足泥石流的暴发条件,提出用流域单位面积的松散固体物质方量来判识泥石流沟;调查西部山区的50条泥石流沟,提出以0.1 m3/m2的松散固体物质量作为泥石流沟的判别指标,以2m3/m2的松散固体物质量作为粘性泥石流沟的判别指标.  相似文献   

17.
苏生瑞  李松  程强 《山地学报》2012,(3):321-327
震后崩塌是强烈地震造成的震裂山体在后期余震、降雨及重力作用下变形不断发展并再次发生的崩塌。基于对四川省省道S303线映秀-卧龙段震后公路边坡崩塌灾害的调查,通过空间分布、崩塌与物质组成、岩性、失稳斜坡坡度、坡高、坡形、坡向和崩塌形成机理的关系等方面的分析,得到了震后崩塌灾害的发育规律:1.震后崩塌分布规律与地震时引发的崩塌的规律一致,即地震时易发生崩塌的地段地震后仍然易发生崩塌。2.按照边坡物质组成,以岩质边坡崩塌占绝大多数,岩土组合体边坡次之;较坚硬岩石中发生的崩塌多而较弱岩石中发生崩塌少,沿线发生崩塌最多的是岩性为闪长岩、辉长岩和变质砂岩等坚硬岩石组成的斜坡。3.失稳斜坡坡度在36°~85°之间,主要分布在41°~60°之间,即震后崩塌灾害主要发生在40°以上的斜坡。映秀-耿达段和耿达-卧龙段发生崩塌的边坡坡度有明显的差别,映秀-耿达段集中在坡度为46°~60°的斜坡,而耿达-卧龙段集中在在坡度为41°~55°的斜坡。4.绝大多数崩塌发生在坡高150 m以内的斜坡上,映秀-耿达段和耿达-卧龙段发生崩塌的边坡高度有明显的差别,映秀-耿达段集中在高度为51~350 m的斜坡,而耿达-卧龙段集中在在高度<200 m的斜坡,尤以高度<100 m的最多。5.阳坡和阴坡的崩塌数量有明显的差异,阳坡发生崩塌的数量远远大于阴坡崩塌发生的数量。6.震后边坡崩塌的形成机理以滑移式崩塌和倾倒式为主。映秀-耿达段和耿达-卧龙段地处不同地质构造单元,由于岩性的差异,发生崩塌的斜坡的坡度、高度和主要形成机理具有差异性。  相似文献   

18.
Summary. A secular variation anomaly has been discovered at the north-east part of the Fergana vdey by repeated measurements every year or less. The change of total field Δ F at the 'magnetic epicentre' was 9 nT in 1977 and 16 nT in 1978 relative to the level of 1973. In 1977 an anomalous region was recognized, where according to the data from 25 observation points Δ F increased in the northern part up to 5.2 nT, and decreased by 4.7nTin the southern part according to a further 22 points. Permanent observations were begun at the epicentre in 1978 October. We normally observed variations of Δ F differences with magnitude ± 2–3 nT, which were not correlated with worldwide magnetic activity. Anomalous variations appeared on October 26 and rose to a maximum value of + 23 nT on October 30. The decrease of this anomalous field began on October 31. This made it possible to predict a potential earthquake. The Alay earthquake with M = 7.0 occurred on November 2 six hours after the prediction was issued; Δ F then returned to the initial level. Thus, using the geomagnetic field variations in the Fergana region, geophysicists were able to predict the moment of a strong earthquake.  相似文献   

19.
Summary. The Western Approaches Margin (WAM) profile was shot to test the hypothesis that the reflectivity observed in the lower crust is related to extensional processes. The preliminary results of the experiment show that the reflectivity in the lower crust appears to become weaker on the continental shelf near the slope break. Detailed examination of the data however, show a significant increase in noise in the region where the layering appears to fade. The noise may be of sufficient amplitude to obscure any coherent lower crustal events present. Therefore, the only conclusion that can presently be drawn from the dataset is that the layering does not become more pronounced in the region of maximum extension.  相似文献   

20.
Simultaneous inversion of seismic data   总被引:2,自引:0,他引:2  
Summary. The resolving power of different data sets, consisting of surface-wave dispersion measurements and S travel times, are compared for a continental structure. The shear velocity in the low-velocity zone can be resolved in some detail with higher-mode phase-velocity data. Sufficient resolution for small density contrasts (0.03 g cm−3) until depths of ∼ 300 km can be reached if higher-mode group velocities are available as well, even at a precision as low as 0.10 km/s. At greater depths the density is not resolved, and here travel-time data are superior to higher modes in resolving the shear velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号