首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We make a case for the existence for ultra-massive black holes (UMBHs) in the Universe, but argue that there exists a likely upper limit to black hole (BH) masses of the order of   M ∼ 1010 M  . We show that there are three strong lines of argument that predicate the existence of UMBHs: (i) expected as a natural extension of the observed BH mass bulge luminosity relation, when extrapolated to the bulge luminosities of bright central galaxies in clusters; (ii) new predictions for the mass function of seed BHs at high redshifts predict that growth via accretion or merger-induced accretion inevitably leads to the existence of rare UMBHs at late times; (iii) the local mass function of BHs computed from the observed X-ray luminosity functions of active galactic nuclei predict the existence of a high-mass tail in the BH mass function at   z = 0  . Consistency between the optical and X-ray census of the local BH mass function requires an upper limit to BH masses. This consistent picture also predicts that the slope of the   M bh–σ  relation will evolve with redshift at the high-mass end. Models of self-regulation that explain the co-evolution of the stellar component and nuclear BHs naturally provide such an upper limit. The combination of multiwavelength constraints predicts the existence of UMBHs and simultaneously provides an upper limit to their masses. The typical hosts for these local UMBHs are likely the bright, central cluster galaxies in the nearby Universe.  相似文献   

2.
We make use of the first high-resolution hydrodynamic simulations of structure formation which self-consistently follows the build-up of supermassive black holes (BHs) introduced in Di Matteo et al. to investigate the relation between BHs, host halo and large-scale environment. There are well-defined relations between halo and BH masses and between the activities of galactic nuclei and halo masses at low redshifts. A large fraction of BHs forms anti-hierarchically, with a higher ratio of BH to halo mass at high than at low redshifts. At   z = 1  , we predict group environments (regions of enhanced local density) to contain the highest mass and most active (albeit with a large scatter) BHs while the rest of the BH population to be spread over all densities from groups to filaments and voids. Density dependencies are more pronounced at high rather than low redshift. These results are consistent with the idea that gas rich mergers are likely the main regulator of quasar activity. We find star formation to be a somewhat stronger and tighter function of local density than BH activity, indicating some difference in the triggering of the latter versus the former. There exist a large number of low-mass BHs, growing slowly predominantly through accretion, which extends all the way into the most underdense regions, that is, in voids.  相似文献   

3.
The next generation of X-ray telescopes have the potential to detect faint quasars at very high redshift and probe the early growth of massive black holes (BHs). We present modelling of the evolution of the optical and X-ray active galactic nucleus (AGN) luminosity function at  2 < z < 6  based on a cold dark matter (CDM) merger-driven model for the triggering of nuclear activity combined with a variety of fading laws. We extrapolate the merger-driven models to   z > 6  for a range of BH growth scenarios. We predict significant numbers of sources at   z ∼ 6  with fluxes just an order of magnitude below the current detection limits and thus detectable with XEUS and Constellation-X , relatively independently of the fading law chosen. The predicted number of sources at even higher redshift depends sensitively on the early growth history of BHs. For passive evolution models in which BHs grow constantly at their Eddington limit, detectable BHs may be rare beyond   z ∼ 10  even with Generation-X . However, in the more probable scenario that BH growth at   z > 6  can be described by passive evolution with a small duty cycle, or by our merger-driven accretion model, then we predict that XEUS and Generation-X will detect significant numbers of BHs out to   z ∼ 10  and perhaps beyond.  相似文献   

4.
In the pre-reionization Universe, the regions of the intergalactic medium (IGM) which are far from luminous sources are the last to undergo reionization. Until then, they should be scarcely affected by stellar radiation; instead, the X-ray emission from an early black hole (BH) population can have much larger influence. We investigate the effects of such emission, looking at a number of BH model populations (differing for the cosmological density evolution of BHs, the BH properties, and the spectral energy distribution of the BH emission). We find that BH radiation can easily heat the IGM to  103–104 K  , while achieving partial ionization. The most interesting consequence of this heating is that BHs are expected to induce a 21-cm signal (  δ T b∼ 20–30 mK  at   z ≲ 12  ) which should be observable with forthcoming experiments (e.g. LOFAR). We also find that at   z ≲ 10  BH emission strongly increases the critical mass separating star-forming and non-star-forming haloes.  相似文献   

5.
The introduction of low-frequency radio arrays is expected to revolutionize the study of the reionization epoch. Observation of the contrast in redshifted 21-cm emission between a large H  ii region and the surrounding neutral intergalactic medium (IGM) will be the simplest and most easily interpreted signature. However, the highest redshift quasars known are thought to reside in an ionized IGM. Using a semi-analytic model we describe the redshifted 21-cm signal from the IGM surrounding quasars discovered using the i -drop-out technique (i.e. quasars at   z ∼ 6  ). We argue that while quasars at   z < 6.5  seem to reside in the post-overlap IGM, they will still provide valuable probes of the late stages of the overlap era because the light-travel time across a quasar proximity zone should be comparable to the duration of overlap. For redshifted 21-cm observations within a 32-MHz bandpass, we find that the subtraction of a spectrally smooth foreground will not remove spectral features due to the proximity zone. These features could be used to measure the neutral hydrogen content of the IGM during the late stages of reionization. The density of quasars at   z ∼ 6  is now well constrained. We use the measured quasar luminosity function to estimate the prospects for discovery of high-redshift quasars in fields that will be observed by the Murchison Widefield Array.  相似文献   

6.
We model the cosmological co-evolution of galaxies and their central supermassive black holes (BHs) within a semi-analytical framework developed on the outputs of the Millennium Simulation. This model, described in detail by Croton et al. and De Lucia and Blaizot, introduces a 'radio mode' feedback from active galactic nuclei (AGN) at the centre of X-ray emitting atmospheres in galaxy groups and clusters. Thanks to this mechanism, the model can simultaneously explain: (i) the low observed mass dropout rate in cooling flows; (ii) the exponential cut-off in the bright end of the galaxy luminosity function and (iii) the bulge-dominated morphologies and old stellar ages of the most massive galaxies in clusters. This paper is the first of a series in which we investigate how well this model can also reproduce the physical properties of BHs and AGN. Here we analyse the scaling relations, the fundamental plane and the mass function of BHs, and compare them with the most recent observational data. Moreover, we extend the semi-analytic model to follow the evolution of the BH mass accretion and its conversion into radiation, and compare the derived AGN bolometric luminosity function with the observed one. While we find for the most part a very good agreement between predicted and observed BH properties, the semi-analytic model underestimates the number density of luminous AGN at high redshifts, independently of the adopted Eddington factor and accretion efficiency. However, an agreement with the observations is possible within the framework of our model, provided it is assumed that the cold gas fraction accreted by BHs at high redshifts is larger than at low redshifts.  相似文献   

7.
Stellar-mass black holes (BHs) are expected to segregate and form a steep density cusp around supermassive black holes (SMBHs) in galactic nuclei. We follow the evolution of a multimass system of BHs and stars by numerically integrating the Fokker–Planck energy diffusion equations for a variety of BH mass distributions. We find that the BHs 'self-segregate', and that the rarest, most massive BHs dominate the scattering rate closest to the SMBH  (≲10−1 pc)  . BH–BH binaries form out of gravitational wave emission during BH encounters. We find that the expected rate of BH coalescence events detectable by Advanced LIGO is  ∼1–102 yr−1  , depending on the initial mass function of stars in galactic nuclei and the mass of the most massive BHs. We find that the actual merger rate is likely ∼10 times larger than this due to the intrinsic scatter of stellar densities in many different galaxies. The BH binaries that form this way in galactic nuclei have significant eccentricities as they enter the LIGO band (90 per cent with   e > 0.9  ), and are therefore distinguishable from other binaries, which circularize before becoming detectable. We also show that eccentric mergers can be detected to larger distances and greater BH masses than circular mergers, up to  ∼700 M  . Future ground-based gravitational wave observatories will be able to constrain both the mass function of BHs and stars in galactic nuclei.  相似文献   

8.
9.
Recent results from the Wilkinson Microwave Anisotropy Probe ( WMAP ) satellite suggest that the intergalactic medium (IGM) was significantly reionized at redshifts as high as   z ∼ 17  . At this early epoch, the first ionizing sources probably appeared in the shallow potential wells of mini-haloes with virial temperatures   T vir < 104 K  . Once such an ionizing source turns off, its surrounding H ii region Compton cools and recombines. None the less, we show that the 'fossil' H ii regions left behind remain at high adiabats, prohibiting gas accretion and cooling in subsequent generations of mini-haloes. This greatly amplifies feedback effects explored in previous studies, and early star formation is self-limiting. We quantify this effect to show that star formation in mini-haloes cannot account for the bulk of the electron scattering opacity measured by WMAP , which must be due to more massive objects. We argue that gas entropy, rather than IGM metallicity, regulates the evolution of the global ionizing emissivity and impedes full reionization until lower redshifts. We discuss several important consequences of this early entropy floor for reionization. It reduces gas clumping, curtailing the required photon budget for reionization. An entropy floor also prevents H2 formation and cooling, due to reduced gas densities: it greatly enhances feedback from ultraviolet photodissociation of H2. An early X-ray background would also furnish an entropy floor to the entire IGM; thus, X-rays impede rather than enhance H2 formation. Future 21-cm observations may probe the topology of fossil H ii regions.  相似文献   

10.
If the cosmological dark matter has a component made of small primordial black holes (BHs), they may have a significant impact on the physics of the first stars and on the subsequent formation of massive BHs. Primordial BHs would be adiabatically contracted into these stars and then would sink to the stellar centre by dynamical friction, creating a larger BH which may quickly swallow the whole star. If these primordial BHs are heavier than  ∼1022 g  , the first stars would likely live only for a very short time and would not contribute much to the reionization of the Universe. They would instead become  10–103 M  BHs which (depending on subsequent accretion) could serve as seeds for the super-massive BHs seen at high redshifts as well as those inside galaxies today.  相似文献   

11.
We show that near-infrared observations of the red side of the Lyα line from a single gamma-ray burst (GRB) afterglow cannot be used to constrain the global neutral fraction of the intergalactic medium (IGM),     , at the GRB's redshift to better than     . Some GRB sightlines will encounter more neutral hydrogen than others at fixed     owing to the patchiness of reionization. GRBs during the epoch of reionization will often bear no discernible signature of a neutral IGM in their afterglow spectra. We discuss the constraints on     from the   z = 6.3  burst, GRB050904, and quantify the probability of detecting a neutral IGM using future spectroscopic observations of high-redshift, near-infrared GRB afterglows. Assuming an observation with signal-to-noise ratio similar to the Subaru FOCAS spectrum of GRB050904 and that the column density distribution of damped Lyα absorbers is the same as measured at lower redshifts, a GRB from an epoch when     can be used to detect a partly neutral IGM at 97 per cent confidence level ≈10 per cent of the time (and, for an observation with three times the sensitivity, ≈30 per cent of the time).  相似文献   

12.
The low-density hydrogen and helium in the intergalactic medium (IGM) probed by quasi-stellar object (QSO) absorption lines is sensitive to the amplitude and spectral shape of the metagalactic ultraviolet (UV) background. We use realistic H  i and He  ii Lyα forest spectra, constructed from state-of-the-art hydrodynamical simulations of a Λ cold dark matter (ΛCDM) universe to confirm the reliability of using line profile fitting techniques to infer the ratio of the metagalactic H  i and He  ii ionization rates. We further show that the large spatial variations and the anticorrelation with H  i absorber density observed in the ratio of the measured He  ii to H  i column densities can be explained in a model where the H  i ionization rate is dominated by the combined UV emission from young star-forming galaxies and QSOs and the He  ii ionization rate is dominated by emission from QSOs only. In such a model the large fluctuations in the column density ratio are due to the small number of QSOs expected to contribute at any given point to the He  ii ionization rate. A significant contribution to UV emission at the He  ii photoelectric edge from hot gas in galaxies and galaxy groups would decrease the expected fluctuations in the column density ratio. Consequently, this model appears difficult to reconcile with the large increase in He  ii opacity fluctuations towards higher redshift. Our results further strengthen previous suggestions that observed He  ii Lyα forest spectra at z ∼ 2–3.5 probe the tail end of the reionization of He  ii by QSOs.  相似文献   

13.
Galaxies in compact groups tend to be deficient in neutral hydrogen compared to isolated galaxies of similar optical properties. In order to investigate the role played by a hot intragroup medium (IGM) for the removal and destruction of H  i in these systems, we have performed a Chandra and XMM–Newton study of eight of the most H  i deficient Hickson compact groups. Diffuse X-ray emission associated with an IGM is detected in four of the groups, suggesting that galaxy–IGM interactions are not the dominant mechanism driving cold gas out of the group members. No clear evidence is seen for any of the members being currently stripped of any hot gas, nor for galaxies to show enhanced nuclear X-ray activity in the X-ray bright or most H  i deficient groups. Combining the inferred IGM distributions with analytical models of representative disc galaxies orbiting within each group, we estimate the H  i mass-loss due to ram-pressure and viscous stripping. While these processes are generally insufficient to explain observed H  i deficiencies, they could still be important for H  i removal in the X-ray bright groups, potentially removing more than half of the interstellar medium in the X-ray bright HCG 97. Ram pressure may also have facilitated strangulation through the removal of galactic coronal gas. In X-ray undetected groups, tidal interactions could be playing a prominent role, but it remains an open question whether they can fully account for the observed H  i deficiencies.  相似文献   

14.
We investigate a number of potential foregrounds for an ambitious goal of future radio telescopes such as the Square Kilometer Array (SKA) and the Low Frequency Array (LOFAR): spatial tomography of neutral gas at high redshift in 21-cm emission. While the expected temperature fluctuations due to unresolved radio point sources is highly uncertain, we point out that free–free emission from the ionizing haloes that reionized the Universe should define a minimal bound. This emission is likely to swamp the expected brightness temperature fluctuations, making proposed detections of the angular patchwork of 21-cm emission across the sky unlikely to be viable. Hα observations with JWST could place an upper bound on the contribution of high-redshift sources to the free–free background. An alternative approach is to discern the topology of reionization from spectral features due to 21-cm emission along a pencil-beam slice. This requires tight control of the frequency-dependence of the beam in order to prevent foreground sources from contributing excessive variance. We also investigate potential contamination by galactic and extragalactic radio recombination lines (RRLs). These are unlikely to be show-stoppers, although little is known about the distribution of RRLs away from the Galactic plane. The mini-halo emission signal is always less than that of the intergalactic medium (IGM), making mini-haloes unlikely to be detectable. If they are seen, it will be only in the very earliest stages of structure formation at high redshift, when the spin temperature of the IGM has not yet decoupled from the cosmic microwave background.  相似文献   

15.
We use a combination of a cosmological N -body simulation of the concordance Λ cold dark matter paradigm and a semi-analytic model of galaxy formation to investigate the spin development of central supermassive black holes (BHs) and its relation to the BH host galaxy properties. In order to compute BH spins, we use the α model of Shakura & Sunyaev and consider the King et al. warped disc alignment criterion. The orientation of the accretion disc is inferred from the angular momentum of the source of accreted material, which bears a close relationship to the large-scale structure in the simulation. We find that the final BH spin depends almost exclusively on the accretion history and only weakly on the warped disc alignment. The main mechanisms of BH spin-up are found to be gas cooling processes and disc instabilities, a result that is only partially compatible with Monte Carlo models where the main spin-up mechanisms are major mergers and disc instabilities; the latter results are reproduced when implementing randomly oriented accretion discs in our model. Regarding the BH population, we find that more massive BHs, which are hosted by massive ellipticals, have higher spin values than less massive BHs, hosted by spiral galaxies. We analyse whether gas accretion rates and BH spins can be used as tracers of the radio loudness of active galactic nuclei (AGN). We find that the current observational indications of an increasing trend of radio-loud AGN fractions with stellar and BH mass can be easily obtained when placing lower limits on the BH spin, with a minimum influence from limits on the accretion rates; a model with random accretion disc orientations is unable to reproduce this trend. Our results favour a scenario where the BH spin is a key parameter to separate the radio-loud and radio-quiet galaxy populations.  相似文献   

16.
We have carried out an investigation of the environments of low redshift H  ii galaxies by cross-correlating their positions on the sky with those of faint field galaxies in the Automatic Plate Measuring Machine (APM) catalogues. We address the question of whether violent star formation in H  ii galaxies is induced by low-mass companions by statistically estimating the mean space density of galaxies around them. We argue that even if low-mass companions were mainly intergalactic H  i clouds, their optical counterparts should be detectable at faint limits of the APM scans.
A significantly positive signal is detected for the H  ii galaxy–APM galaxy angular cross-correlation function, but the amplitude is poorly determined. The projected cross-correlation function has a higher signal-to-noise ratio, and suggests that the amplitude is slightly lower than for normal field galaxies. This implies that these bursting dwarf galaxies inhabit slightly lower density environments than those of normal field galaxies, consistent with other studies of emission-line galaxies. This suggests that in these dwarf starburst galaxies, star formation is not always triggered by tidal interactions, and a significant fraction must have a different origin.  相似文献   

17.
Gravitational wave emission by coalescing black holes (BHs) kicks the remnant BH with a typical velocity of hundreds of  km s−1  . This velocity is sufficiently large to remove the remnant BH from a low-mass galaxy but is below the escape velocity from the Milky Way (MW) galaxy. If central BHs were common in the galactic building blocks that merged to make the MW, then numerous BHs that were kicked out of low-mass galaxies should be freely floating in the MW halo today. We use a large statistical sample of possible merger tree histories for the MW to estimate the expected number of recoiled BH remnants present in the MW halo today. We find that hundreds of BHs should remain bound to the MW halo after leaving their parent low-mass galaxies. Each BH carries a compact cluster of old stars that populated the core of its original host galaxy. Using the time-dependent Fokker–Planck equation, we find that the present-day clusters are  ≲1 pc  in size, and their central bright regions should be unresolved in most existing sky surveys. These compact systems are distinguishable from globular clusters by their internal (Keplerian) velocity dispersion greater than 100 km s−1 and their high mass-to-light ratio owing to the central BH. An observational discovery of this relic population of star clusters in the MW halo would constrain the formation history of the MW and the dynamics of BH mergers in the early Universe. A similar population should exist around other galaxies and may potentially be detectable in M31 and M33.  相似文献   

18.
We study cosmic microwave background (CMB) secondary anisotropies produced by inhomogeneous reionization by means of cosmological simulations coupled with the radiative transfer code crash . The reionization history is consistent with the Wilkinson Microwave Anisotropy Probe Thomson optical depth determination. We find that the signal arising from this process dominates over the primary CMB component for   l ≳ 4000  and reaches a maximum amplitude of   l ( l + 1) Cl /2π≃ 1.6 × 10−13  on arcmin scales (i.e. l as large as several thousands). We then cross-correlate secondary CMB anisotropy maps with neutral hydrogen 21-cm line emission fluctuations obtained from the same simulations. The two signals are highly anticorrelated on angular scales corresponding to the typical size of H  ii regions (including overlapping) at the 21-cm map redshift. We show how the CMB/21-cm cross-correlation can be used: (i) to study the nature of the reionization sources; (ii) to reconstruct the cosmic reionization history; (iii) to infer the mean cosmic ionization level at any redshift. We discuss the feasibility of the proposed experiment with forthcoming facilities.  相似文献   

19.
We investigate the potential of the Square Kilometer Array Telescope (SKA) to constrain the sound speed of dark energy. The Integrated Sachs Wolfe (ISW) effect results in a significant power spectrum signal when Cosmic Microwave Background (CMB) temperature anisotropies are cross-correlated with galaxies detectable with the SKA in H  i . We consider using this measurement, the autocorrelation of H  i galaxies and the CMB temperature power spectrum to derive constraints on the sound speed. We study the contributions to the cross-correlation signal made by galaxies at different redshifts and use redshift tomography to improve the signal-to-noise. We use a  χ2  analysis to estimate the significance of detecting a sound speed different from that expected in quintessence models, finding that there is potential to distinguish very low sound speeds from the quintessence value.  相似文献   

20.
Analytic derivations of the correlation function and the column density distribution for neutral hydrogen in the intergalactic medium (IGM) are presented, assuming that the non-linear baryonic mass density distribution in the IGM is lognormal. This ansatz was used earlier by Bi & Davidsen to perform one-dimensional simulations of lines of sight and analyse the properties of absorption systems. We have taken a completely analytic approach, which allows us to explore a wide region of the parameter space for our model. The analytic results have been compared with observations to constrain various cosmological and IGM parameters, whenever possible. Two kinds of correlation functions are defined: (i) along the line of sight (LOS); and (ii) across the transverse direction. We find that the effects on the LOS correlation owing to changes in cosmology and the slope of the equation of state of the IGM, γ , are of the same order, which means that we cannot constrain both the parameters simultaneously. However, it is possible to constrain γ and its evolution using the observed LOS correlation function at different epochs provided that one knows the background cosmology. We suggest that the constraints on the evolution of γ obtained using the LOS correlation can be used as an independent tool to probe the reionization history of the Universe. From the transverse correlation function, we obtain the excess probability, over random, of finding two neutral hydrogen overdense regions separated by an angle θ . We find that this excess probability is always less than 1 per cent for redshifts greater than 2. Our models also reproduce the observed column density distribution for neutral hydrogen, and the shape of the distribution depends on γ . Our calculations suggest that one can rule out γ >1.6 for z ≃2.31 using the column density distribution. However, one cannot rule out higher values of γ at higher redshifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号