首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
Conventional methods for modal beamforming of underwater acoustic signals using a vertical-line hydrophone array (VLA) can suffer significant degradation in resolution when the array is geometrically deficient, i.e., consists of sparsely spaced elements and spans the water column partially or is poorly navigated. Designed for estimating the coefficients of the normal modes, these conventional methods include the direct projection (DP) of the data on the calculated mode shapes and least-squares (LS) fitting of the mode sum to the data. The degradation, in the form of modal cross talk or sidelobes, is a result of an undersampling in depth. This cross talk may be mitigated with the application of proper space-time filter constraints in the case of a pulse transmission. In this paper, a generalized least-squares (GLS) mode beamformer, capable of incorporating physical space-time constraints on the propagation of sound, is presented. The formulation is based on the well-known theorem of Gauss and Markov. Initialized by a model prediction of the basic arrival structure of the normal modes and incorporating, iteratively, refined estimates of the statistics of the modal fluctuations, this GLS technique strives to boost the resolution of a geometrically deficient VLA. The improvement is demonstrated using the VLA data collected during a shallow-water tomography experiment in the Barents Sea. The superiority of the GLS method over the conventional DP and LS methods is evident, providing a high-quality time series of modal arrivals as a function of geophysical time, which, in turn, reveals the dominant time scales of the oceanic processes associated with the Barents Sea Polar Front  相似文献   

2.
利用在东海测量的双跃层声速剖面和修改的单跃层声速剖面,数值模拟了2种跃层条件下不同收发深度声脉冲传播的波形。模拟结果表明,当声源或接收器位于上混合层时,信号波形在2种条件下都出现梳状多途结构。当声源和接收器都位于下混合层时,信号波形在2种条件下均相似。当声源位于中间均匀层时,信号波形在除上混合层以外的4层都有显著差异。用简正波的深度-简正波号域的幅度和相应的群速度解释了双跃层和单跃层声速剖面条件下信号波形特点以及异同的原因。  相似文献   

3.
This paper applies a full-field technique to invert bottom sound profile and bottom reflectivity from simulated acoustic data in a shallow water environment. Bottom sound-speed profile and bottom reflectivity have been traditionally estimated using seismic reflection/refraction techniques when acoustic ray paths and travel time can be identified and measured from the data. However, in shallow water, the many multipaths due to bottom reflection/refraction make such identification and measurement rather difficult. A full-field inversion technique is presented here that uses a broad-band source and a vertical array for bottom sound-speed and reflectivity inversion. The technique is a modified matched field inversion technique referred to as matched beam processing. Matched beam processing uses conventional beamforming processing to transform the field data into the beam domain and correlate that with the replica field also in the beam domain. This allows the analysis to track the acoustic field as a function of incident/reflected angle and minimize contamination or mismatch due to sidelobe leakage  相似文献   

4.
Geoacoustic properties of the seabed have a controlling role in the propagation and reverberation of sound in shallow-water environments. Several techniques are available to quantify the important properties but are usually unable to adequately sample the region of interest. In this paper, we explore the potential for obtaining geotechnical properties from a process-based stratigraphic model. Grain-size predictions from the stratigraphic model are combined with two acoustic models to estimate sound speed with distance across the New Jersey continental shelf and with depth below the seabed. Model predictions are compared to two independent sets of data: 1) Surficial sound speeds obtained through direct measurement using in situ compressional wave probes, and 2) sound speed as a function of depth obtained through inversion of seabed reflection measurements. In water depths less than 100 m, the model predictions produce a trend of decreasing grain-size and sound speed with increasing water depth as similarly observed in the measured surficial data. In water depths between 100 and 130 m, the model predictions exhibit an increase in sound speed that was not observed in the measured surficial data. A closer comparison indicates that the grain-sizes predicted for the surficial sediments are generally too small producing sound speeds that are too slow. The predicted sound speeds also tend to be too slow for sediments 0.5-20 m below the seabed in water depths greater than 100 m. However, in water depths less than 100 m, the sound speeds between 0.5-20-m subbottom depth are generally too fast. There are several reasons for the discrepancies including the stratigraphic model was limited to two dimensions, the model was unable to simulate biologic processes responsible for the high sound-speed shell material common in the model area, and incomplete geological records necessary to accurately predict grain-size  相似文献   

5.
A computational case study of coupled-mode 400-Hz acoustic propagation over the distance 27 km on the continental shelf is presented. The mode coupling reported here is caused by lateral gradients of sound-speed within packets of nonlinear internal waves, often referred to as solitary wave packets. In a waveguide having unequal attenuation of modes, directional exchange of energy between low- and high-loss modes, via mode coupling, can become time dependent by the movement of waves and can cause temporally variable loss of acoustic energy into the bottom. Here, that bottom interaction effect is shown to be sensitive to stratification conditions, which determine waveguide properties and, in turn, determine modal attenuation coefficients. In particular, time-dependent energy loss due to the presence of moving internal wave packets is compared for waveguides with and without a frontal feature similar to that found at the shelfbreak south of New England. The mean and variability of acoustic energy level 27 km distant from a source are shown to be altered in a first order way by the presence of the frontal feature. The effects of the front are also shown to be functions of source depth.  相似文献   

6.
声跃层结构变化对深海汇聚区声传播的影响   总被引:1,自引:0,他引:1  
张旭  张永刚  董楠  张健雪 《台湾海峡》2011,30(1):114-121
根据射线理论建立了线性声速结构条件下的声跃层强度与深海汇聚区关系模型,用最小位移角讨论了海洋环境变化(如声跃层强度变化、声跃层位置变化及季节性跃层生消等)与汇聚区距离和宽度变化的相关性.结果表明,声跃层的结构变化对汇聚区特征影响很大.声跃层强度增大使汇聚区向远离声源的方向变化,跃层强度每增加0.01 s-1对应的汇聚区位移增大约为3.5~5.0 km.声跃层位置变化对汇聚区的影响小于声跃层强度,与两层结构的声速剖面相比,上行结构使汇聚区向靠近声源的方向变化,声跃层上升200 m对应的汇聚区位移减小约为1.0~1.5 km,声跃层越浅,汇聚区距离越近;下行结构使汇聚区向远离声源的方向变化,混合层加深200 m对应的汇聚区位移增大约为1.0~1.5 km,混合层越深,汇聚区距离越远.季节性跃层的生消使近表层有负梯度、零梯度和正梯度的变化.负梯度结构的变化规律与两层结构条件下的声跃层强度变化类似,但对汇聚区的影响程度相对较小;正梯度结构使汇聚区在近表层出现表面声道,梯度值的增强将使汇聚区向靠近声源的方向变化.  相似文献   

7.
The integrated bottom scattering strength (ISS) and the modal backscattering matrix (MBSM) have been used to describe the bottom backscattering in shallow-water reverberation modeling, and both can be extracted from the reverberation data. The relationship between the ISS and the MBSM based on the same reverberation data in shallow water is discussed. It is shown that the ISS is an angular weighting average of the MBSM in mode space. The weighting factors are range-depth-frequency-dependent and also depend on the sound-speed profile (SSP) in the water column. Thus, the ISS has a complex variation. This complexity of the ISS causes it to be so variable that it provides little basic understanding of the scattering. Numerical examples are conducted to show this complexity.  相似文献   

8.
Acoustic signals from small explosive charges have been measured with sonobuoys on twelve tracks in Australian northern shallow waters with the aim of assessing whether useful geoacoustic information could be obtained. Using the frequency band from 14 to 70 Hz, travel times of head waves were monitored, and the sound speeds and depths of corresponding interfaces in the seabed were derived. The water sound speed varied a little with range, and its depth dependence was allowed for by using its average value. Head waves from interfaces indistinguishable from the seafloor (the water/seabed interface) were detected on only three of the tracks, with derived sound speeds of 2100 to 2300 m/s. The first sub-bottom interfaces were from 50 to 600 m beneath the seafloor, and their sound speeds ranged from around 2000 m/s to 6400 m/s. Thus the head waves were from chalk or limestone, cemented sediments in which sound-speed gradients would be small. The amount of data obtained for the seafloor was limited by incoherence of the signals and, for some tracks, by excessive spacing between shots. The incoherence is generally attributed to multiple head waves that are individually unresolvable, while on two tracks there were indications of medal ground waves. Occasional anomalous data were obtained, but generally the assumptions of the simple interpretation method were found to be valid. Since no curvature in the range-time lines was observed, there was no evidence of sub-bottom sound-speed gradients being significant  相似文献   

9.
In this paper, inversion for bottom sediment properties at a site on the New Jersey continental shelf is studied as part of the Shallow Water Acoustic Technology (SWAT) project. A source towed at a constant water depth over a range of some tens of kilometers transmitted low-frequency continuous wave (cw) signals, which were measured on a bottom-moored vertical line array of receivers. For the along-shelf geometry, the zeroth-order asymptotic Hankel transform is then applied to the acoustic field at 50 Hz measured on the resulting synthetic aperture horizontal array created at each receiver depth. The resulting horizontal wave number spectra, which have peaks corresponding to the mode eigenvalues, are observed to have slightly different values at different receiver depths, and therefore, stochastic mode inversion is exploited to utilize all of the observed peak position information. The estimated sound-speed profile (SSP) for the upper 10 m of sediment is then compared with an inversion result obtained using midfrequency (2–16 kHz) chirp sonar pulses reflected at normal incidence from the sediment. Although obtained using totally different inversion techniques, both estimated profiles are shown to be in good agreement in the top 10 m of sediment. The acoustic field simulated using the inverted SSP also agrees well with the measured acoustic field at each receiver depth. Furthermore, simulated sound fields which use this profile as input data are shown to be effective in predicting the measurements obtained at a different frequency (125 Hz) and for a different (cross-shelf) geometry.   相似文献   

10.
Historical hydrographic data are used to determine the spatial and seasonal patterns of uncertainty in thermohaline and sound-speed fields in a well-sampled region, the continental shelf and slope in the Middle Atlantic Bight (MAB). Several different historical databases are combined to produce two-dimensional (2-D) plan view and cross-shelf fields of temperature, salinity, and sound speed in two separate regions, the New England shelf and the shelf off Delaware and Maryland. In addition, spatial maps of the sound-speed fields reveal that the maximum variance of the sound speed occurs at the edge of the continental shelf, in the vicinity of the shelfbreak front. The standard deviation of the sound speed was largest during the spring and summer, with magnitudes as large as 14 m/s in a narrow band coinciding with the mean position of the shelfbreak front. During spring the peak in variance was located near the surface outcrop of the front, but during summer the maximum variance was centered at a depth of 30 m, immediately beneath the seasonal thermocline. Comparisons with both synoptic measurements from the Shelfbreak PRIMER experiment as well as moored time series from the Nantucket Shoals Flux Experiment confirm that the shelfbreak front is a "hotspot" of uncertainty (maximum variance), and that the vertical structure of the peak variance is dependent on the presence or absence of the seasonal thermocline  相似文献   

11.
Measured time series were generated by small omnidirectional explosive sources in a shallow water area. A bottom-mounted hydrophone recorded sound signals that propagated over a sloping bottom. The time series in the 250-500 Hz band were analyzed with a broad-band adiabatic normal mode approach. The measured waveforms contain numerous bottom interacting multipaths that are complicated by the subbottom structure that contains high-velocity layers near the water-sediment interface. Several of the details of the geoacoustic structure and the depth of the water column at the receiver are inferred from comparisons of the measured data to simulated time series. The sensitivity of broad-band matched-field ambiguity surfaces in the range-depth plane for a single receiver to selected waveguide parameters is examined. A consistent analysis is made where the simulated time series are compared to the measured time series along with the single-receiver matched-field localization solutions for ranges out to 5 km. In this range interval, it was found that the peak cross-correlation between the measured and simulated time series varied between 0.84 and 0.69. The difference between the GPS range and the range obtained from the matched-field solution varied from 0 to 63 m. The geoacoustic structure obtained in the analysis consists of an 8-m low-velocity sediment layer over an 8-m high-velocity layer followed by a higher velocity, infinite half-space  相似文献   

12.
基于斯涅耳折射定律,将海水垂向等分成若干层,利用傅里叶步近算法,构建受声速剖面唯一控制的声线传播弯曲模型。将该模型用于模拟研究不同浅海声跃层类型对声线传播弯曲的影响,得出声线波长和轨迹长度按负跃层、无跃层、正跃层的顺序逐渐增加。并利用该模型定量研究跃层深度、跃层强度、跃层厚度三特征参量对声线传播弯曲的影响,得出负跃层强度越大、厚度越大、深度越浅,声线弯曲越大,波长越小。正跃层三特征参量对声线作用相反。  相似文献   

13.
海洋冷水团是海洋学家关注多年的问题 ,其监测方法亟待解决。本文将简正波波数层析法用于冷水团监测 ,并对简正波波数层析用于反演黄海冷水团声速剖面进行了数值模拟。数值模拟结果表明 ,简正波波数层析可以用于反演平均声速剖面 ,特别在监测与距离有关海洋环境的声速结构方面大有潜力。  相似文献   

14.
The covariance matrix of sound-speed variations is determined from yo-yo CTD data collected during the SWARM 95 experiment at a fixed station. The data covered approximately 2 h and were collected during a period when nonlinear solitary internal waves were absent or negligible. The method of empirical orthogonal functions (EOF) is applied to the sound-speed covariance matrix assuming that the internal wave modes are uncorrelated. The first five eigenvectors are found to agree well with the theoretically modeled eigenfunctions based on the measured buoyancy frequency and the internal wave eigenmode equation. The mode amplitudes for the first five modes are estimated from the corresponding eigenvalues. They agree with the Garrett-Munk model if j*=1 is used instead of j*=3. A second method is used to deduce the mode amplitudes and mode frequency spectra by projecting the sound-speed variation (as a function of time) onto the theoretical mode depth functions. The mode amplitudes estimated with this method are in agreement with the EOF results. A modified Garrett-Munk model is proposed to fit the frequency spectrum of linear internal waves in shallow water  相似文献   

15.
《Oceanologica Acta》1998,21(1):59-68
Sound-speed computations from CTD casts in the Arabian Gulf during 1992, reveal spatial and temporal variations in acoustic properties. Hydrographic conditions affecting sound speed propagation were seasonally investigated. A monotonic decrease in sound speed profiles with depth was commonly observed at almost all the stations in the Gulf. However, an exception occurred at Hormuz strait during winter. The water exchange pattern between the Gulf of Oman and the Arabian Gulf seems to influence the sound-speed structure, especially in the southern part of the latter. Winter profiles along the Gulf axis showed almost vertically homogenous sound speed. Maximum speeds are observed in summer, with a strong gradient associated with the development of the summer thermocline layer. Horizontal distributions in both winter and summer show a decreasing trend in sound speed from the Strait of Hormuz to the head of the Gulf. The resultant profiles provide a more comprehensive and reliable data set than any that have been reported in the literature. Shallowness and multiple refraction and reflection in the Arabian Gulf may cause sound speed energy to be trapped. No sound channel was detected inside the Gulf. A correlation analysis shows that sound speed is closely correlated with temperature throughout the Gulf, except in winter in the southern half where salinity effects, as a result of inversion and water exchange at the entrance, are found to be dominant.  相似文献   

16.
Acoustic wave fields in an ocean waveguide with a sediment layer having continuously varying density and sound speed overlying an elastic subbottom are considered in this analysis. The objective of this study is to investigate the effects of seabed acoustic properties, including the density and sound speed of the sediment layer and subbottom, on the characteristics of the wave fields. Examination of the reflection coefficient, wavenumber spectrum, and noise intensity of the sound field through numerical analysis has shown that the variation in the acoustic properties in the sediment layer is an important factor in determining the reflected or noise sound fields. In particular, the sediment thickness-to-wavelength ratio and the types of variation of acoustic properties inside the layer give rise to many characteristics that potentially allow for acoustic inversion of the seabed properties. With regard to the wave-field components in a shallow-water environment, the various types of waves existing in a seismo-acoustic waveguide have been illustrated. The results indicate that the effects of the sediment properties on the wavenumber spectrum are primarily on the continuous and evanescent regimes of the wave field. The noise intensity generated by distributive random monopoles at various depths, together with the effect of refractive sound-speed distribution in the water column, has been obtained and analyzed.  相似文献   

17.
声速剖面时空分布的获取是利用声学方法监测内波的核心问题。在反演算法中,声速剖面通常是采用展开的方式用若干个参数来表示的。这就导致了有时很难从反演结果中直接获得内波的相关信息。本文的目标是找到一种通过展开系数直接获取内波特性的方法。通过推导内波水动力方程,可以从较少的声速剖面样本中提取出水动力简正模态(Hydrodynamic Normal Modes,HNMs)作为声速剖面展开的正交基。较之广泛采用的正交经验函数(Empirical Orthogonal Functions, EOFs),HNMs直接与内波活动相关,具有更明确的物理含义。然后,基于HNMs对声速剖面的时间序列进行展开,获得展开系数。最后,从前两阶展开系数的时间导数中可以获取内波活动的信息。将方法应用于受内波影响而具有明显时空扰动的南海北陆架区温度链数据,结果表明:只用前两节模态就可以在较好的精度范围内重构声速剖面。前两阶系数的时间导数具有独特的双震荡结构可以用于探测内孤立波。从展开系数也可以获得幅度以及波长信息。理论推导和实验分析证明了本文方法在内波监测中的有效性。HNMs方法使用便利且对样本的依赖性较小,可以在内波活跃海域作为EOFs的有效补充用于声速剖面的展开。  相似文献   

18.
A 3-D model of sediment sound speed for a 90-km $^{2}$ area on the New Jersey shelf was constructed by application of a geoacoustic inversion technique. This approach is based on a combination of seismic reflection measurements and a perturbative inversion scheme using horizontal wave number estimates. In a two-step process, seismic reflection measurements were used to identify depths at which discontinuities in the sound-speed profile (SSP) likely occur. Then, the perturbative inversion algorithm made use of this a priori information by employing qualitative regularization, an optimal method for addressing stability and uniqueness issues associated with solving the ill-posed inversion problem that provides for resolution of the layered seabed structure.   相似文献   

19.
Features observed in horizontal wavenumber spectra from low-frequency acoustic measurements taken off the New Jersey Shelf are analyzed through forward modeling using PE models. Environmental models which produce very good agreement with relative intensity data may only match wavenumbers of lower order modes. A prominent feature in contours of modal amplitude versus horizontal wavenumber and depth is the presence of double images of some higher order modes. Two possible causes of this phenomenon are examined. Range dependence in the environment can produce multiple modal images, but the magnitudes of variations required are much larger than those expected at the experiment site. The more likely cause of the double modes is shown to be a duct deep (two acoustic wavelengths) within the sediment. It produces modes with wavenumbers that are close together and with shapes that are very similar in the water column. Comparisons of model predictions with 50-Hz experimental wavenumbers and mode shapes show good agreement, except for amplitudes of some higher order modes. Predictions at 75 Hz typically require more detailed information about the sediment structure in order to accurately match all the features of higher order modes in the data  相似文献   

20.
Measurements of the three-dimensional (3-D) structure of a sound-speed field in the ocean with the spatial and temporal resolution required for prediction of acoustic fields are extremely demanding in terms of experimental assets, and they are rarely available in practice. In this study, a simple analytic technique is developed within the ray approximation to quantify the uncertainty in acoustic travel time and propagation direction that results from an incomplete knowledge or purely statistical characterization of sound-speed variability in the horizontal plane. Variation of frequency of an acoustic wave emitted by a narrowband source due to a temporal variation of environmental parameters is considered for deterministic and random media. In a random medium with locally statistically homogeneous, time-dependent 3-D fluctuations of the sound speed, calculation of the signal frequency and bearing angle variances as well as the travel-time bias due to horizontal refraction is approximately reduced to integration of respective statistical parameters of the environmental fluctuations along a ray in a background, range-dependent, deterministic medium. The technique is applied to acoustic transmissions in a coastal ocean, where tidally generated nonlinear internal waves are the prevailing source of sound-speed fluctuations, and in a deep ocean, where the fluctuations are primarily due to spatially diffuse internal waves with the Garrett–Munk spectrum. The significance of 3-D and four-dimensional (4-D) acoustic effects in deep and shallow water is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号