首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Total and reactive mercury concentrations have been measured on samples of surface water taken along the shores of the Bay of Biscay and in the Gironde Estuary. In the low turbid areas of the Bay of Biscay the average concentration of total mercury of unfiltered samples is 3.5 ± 0.7 (n = 15) and the reactive mercury 2.1 ± 0.7 (n = 12) pmol l−1; the high levels, up to 27.6 (total mercury) and 4.6 (reactive mercury) pmol l−1 are from the most turbid samples taken from the Marennes-Oléron basin. In the Gironde Estuary, the distribution of total dissolved mercury rises to a peak of concentration (38 pmol l−1) within the high turbidity zone where the salinity is lower than 10‰. The possible origin of this pattern of distribution is discussed.  相似文献   

2.
Measurements of bromoform (CHBr3), diiodomethane (CH2I2), chloroiodomethane (CH2ICl) and bromoiodomethane (CH2IBr) were made in the water column (5–100 m depth) of the Southern Ocean within 0–40 km of the Antarctic sea ice during the ANTXX1/2 transect of the German R/V Polarstern, at five locations between 70–72°S and 9–11°W in the Antarctic spring/summer of 2003–2004. Some of the profiles exhibited a very pronounced layer of surface sea-ice meltwater, as evidenced by salinity minima and temperature maxima, along with surface maxima in concentrations of CHBr3, CH2I2, CH2ICl and CH2IBr. These results are consistent with in situ surface halocarbon production by ice algae liberated from the sea ice, although production within the sea ice followed by transport cannot be entirely ruled out. Additional sub-surface maxima in halocarbons occurred between 20 and 80 m. At a station further from shore and not affected by surface sea-ice meltwater, surface concentrations of CH2I2 were decreased whereas CH2ICl concentrations were increased compared to the stations influenced by meltwater, consistent with photochemical conversion of CH2I2 to CH2ICl, perhaps during upward mixing from a layer at  70 m enhanced in iodocarbons. Mean surface (5–10 m) water concentrations of halocarbons in these coastal Antarctic waters were 57 pmol l− 1 CHBr3 (range 44–78 pmol l− 1), 4.2 pmol l− 1 CH2I2 (range 1.7–8.2 pmol l− 1), 0.8 pmol l− 1 CH2IBr (range 0.2–1.4 pmol l− 1), and 0.7 pmol l− 1 CH2ICl (range 0.2–2.4 pmol l− 1). Concurrent measurements in air suggested a sea-air flux of bromoform near the Antarctic coast of between 1 and 100 (mean 32.3, median 10.4) nmol m− 2 day− 1 and saturation anomalies of 557–1082% (mean 783%, median 733%), similar in magnitude to global shelf values. In surface samples affected by meltwater, CH2I2 fluxes ranged from 0.02 to 6.1 nmol m− 2 day− 1, with mean and median values of 1.9 and 1.1 nmol m− 2 day− 1, respectively.  相似文献   

3.
Rates of transformation, recycling and burial of nitrogen and their temporal and spatial variability were investigated in deep-sea sediments of the Porcupine Abyssal Plain (PAP), NE Atlantic during eight cruises from 1996 to 2000. Benthic fluxes of ammonium (NH4) and nitrate (NO3) were measured in situ using a benthic lander. Fluxes of dissolved organic nitrogen (DON) and denitrification rates were calculated from pore water profiles of DON and NO3, respectively. Burial of nitrogen was calculated from down core profiles of nitrogen in the solid phase together with 14C-based sediment accumulation rates and dry bulk density. Average NH4 and NO3-effluxes were 7.4 ± 19 μmol m−2 d−1 (n = 7) and 52 ± 30 μmol m−2 d−1 (n = 14), respectively, during the period 1996–2000. During the same period, the DON-flux was 11 ± 5.6 μmol m−2 d−1 (n = 5) and the denitrification rate was 5.1 ± 3.0 μmol m−2 d−1 (n = 22). Temporal and spatial variations were only found in the benthic NO3 fluxes. The average burial rate was 4.6 ± 0.9 μmol m−2 d−1. On average over the sampling period, the recycling efficiency of the PON input to the sediment was 94% and the burial efficiency hence 6%. The DON flux constituted 14% of the nitrogen recycled, and it was of similar magnitude as the sum of burial and denitrification. By assuming the PAP is representative of all deep-sea areas, rates of denitrification, burial and DON efflux were extrapolated to the total area of the deep-sea floor (>2000 m) and integrated values of denitrification and burial of 8 ± 5 and 7 ± 1 Tg N year−1, respectively, were obtained. This value of total deep-sea sediment denitrification corresponds to 3–12% of the global ocean benthic denitrification. Burial in deep-sea sediments makes up at least 25% of the global ocean nitrogen burial. The integrated DON flux from the deep-sea floor is comparable in magnitude to a reported global riverine input of DON suggesting that deep-sea sediments constitute an important source of DON to the world ocean.  相似文献   

4.
The Mussel Watch program conducted along the French coasts for the last 20 years indicates that the highest mercury concentrations in the soft tissue of the blue mussel (Mytilus edulis) occur in animals from the eastern part of Seine Bay on the south coast of the English Channel, the “Pays de Caux”. This region is characterized by the presence of intertidal and submarine groundwater discharges, and no particular mercury effluent has been reported in its vicinity. Two groundwater emergence systems in the karstic coastal zone of the Pays de Caux (Etretat and Yport with slow and fast water percolation pathways respectively) were seasonally sampled to study mercury distribution, partitioning and speciation in water. Samples were also collected in the freshwater–seawater mixing zones in order to compare mercury concentrations and speciation between these “subterranean” or “groundwater” estuaries and the adjacent macrotidal Seine estuary, characterized by a high turbidity zone (HTZ). The mercury concentrations in the soft tissue of mussels from the same areas were monitored at the same time.The means of the “dissolved” (< 0.45 μm) mercury concentrations (HgTD) in the groundwater springs were 0.99 ± 0.15 ng l− 1 (n = 18) and 0.44 ± 0.17 ng l− 1 (n = 17) at Etretat and Yport respectively. High HgTD concentrations were associated with strong runoff over short water pathways during storm periods, while low concentrations were associated with long groundwater pathways. Mean particulate mercury concentrations were 0.22 ± 0.05 ng mg− 1 (n = 16) and 0.16 ± 0.10 ng mg− 1 (n = 17) at Etretat and Yport respectively, and decreased with increasing particle concentration probably as a result of dilution by particles from soil erosion. Groundwater mercury speciation was characterized by high reactive-to-total mercury ratios in the dissolved phase (HgRD/HgTD: 44–95%), and very low total monomethylmercury concentrations (MMHg < 8 pg l− 1). The HgTD distributions in the Yport and Etretat mixing zones were similar (overall mean concentration of 0.73 ± 0.21 ng l− 1, n = 43), but higher than those measured in the adjacent industrialized Seine estuary (mean: 0.31 ± 0.11 ng l− 1, n = 67). In the coastal waters along the Pays de Caux dissolved monomethylmercury (MMHgD) concentrations varied from 9.5 to 13.5 pg l− 1 (2 to 8% of the HgTD). Comparable levels were measured in the Seine estuary (range: 12.2– 21.1 pg l−1; 6–12% of the HgTD). These groundwater karstic estuaries seem to be mostly characterized by the higher HgTD and HgRD concentrations than in the adjacent HTZ Seine estuary. While the HTZ of the Seine estuary acts as a dissolved mercury removal system, the low turbid mixing zone of the Pays de Caux receives the dissolved mercury inputs from the groundwater seepage with an apparent Hg transfer from the particulate phase to the “dissolved” phase (< 0.45 μm). In parallel, the soft tissue of mussels collected near the groundwater discharges, at Etretat and Yport, exhibited significantly higher values than those found in the mussel from the mouth of the Seine estuary. We observe that this difference mimics the differences found in the mercury distribution in the water, and argue that the dissolved phase of the groundwater estuaries and coastal particles are significant sources of bioavailable mercury for mussels.  相似文献   

5.
6.
Potentiometric titrations of deep Black Sea water give reasonably precise values of sulphide in the concentration range 30–300 μmol l−1 and a strong indication of thiols in the concentration range 10–30 μmol l−1. Organic analysis of Black Sea water should therefore include the search for compounds containing SH groups. A simple stoichiometric model indicates that sulphur-containing proteins might be the main source of thiols after hydrolysis and deamination. The alkalinity and total sulphide are simply related by At = 3287 ± 30 + (3.84 ± 0.10) [H2 S]t μmol kg−1. The slope of 3.84 instead of the stoichiometric slope of 2.31 indicates a lack of reduced sulphate in the form of hydrogen sulphide.  相似文献   

7.
Analyses of the concentration product (Ca2+) × (CO32−) in the pore waters of marine sediments have been used to estimate the apparent solubility products of sedimentary calcite (KSPc) and aragonite (KSPa) in seawater. Regression of the data gives the relation In KPSPc = 1.94 × 10−3 δP − 14.59 The 2°C, 1 atm value of KSPc is, then, 4.61 × 10−7 mol2 l−2. The pressure coefficient yields a at 2°C of −43.8 cm3 atm−1. A single station where aragonite is present in the sediments gives a value of KSPa = 9.2 × 10−7 (4°C, 81 atm). The calcite data are very similar to those determined experimentally by Ingle et al. (1973) for KSPc at 2°C and 1 atm. The calculated is also indistinguishable from the experimental results of Ingle (1975) if is assumed to be independent of pressure.  相似文献   

8.
Uptake of inorganic carbon and ammonium by the plankton community of three North Carolina estuaries was measured using 14C and 15N isotope methods. At 0% light, C appeared to be lost via respiration, and at increasing light levels uptake of inorganic carbon increased linearly, saturated (mean Ik = 358±30 μEin m−2 s−1), and frequently showed inhibition at the highest light intensities. At 0% light NH4+ uptake was significantly greater than zero and was frequently equivalent to uptake in the light (light independent); at increasing light levels NH4+ uptake saturated (mean Ik = 172±44 μEin m−2 s−1) and frequently indicated strong inhibition. Light-saturated uptake rates of inorganic carbon and NH4+ were a function of chlorophyll a (r2 = 0·7−0·9); average assimilation numbers were 625 nmol CO2 (μg chl. a)−1 h−1 and 12·9 nmol NH4+ (μg chl. a)−1 h−1 and were positively correlated with temperature (r2 = 0·3−0·7). The ratio of dark to light-saturated NH4+ uptake tended to be near 1·0 for large algal populations at low NH4+ concentrations, indicating near light independence of uptake; whereas the ratio was lower for the opposite conditions. These data are interpreted as indicative of nitrogen stress, and it is suggested that uptake of NH4+ deep in the euphotic zone and at night are mechanisms for balancing the C:N of cellular pools. A 24-h study using summed short-term incubations confirmed this; the cumulative C:N of CO2 and NH4+ uptake during the daylight period was 10–20, whereas over the 24-h period the ratio was 6 due to dark NH4+ uptake. Annual carbon and nitrogen primary productivity were respectively estimated as 24 and 4·0 mol m−2 year−1 for the South River estuary, 42 and 7·3 mol m−2 year−1 for the Neuse River estuary, and 9·6 and 1·6 mol m−2 year−1 for the Newport River estuary.  相似文献   

9.
Elemental (TOC, TN, C/N) and stable carbon isotopic (δ13C) compositions and n-alkane (nC16–38) concentrations were measured for Spartina alterniflora, a C4 marsh grass, Typha latifolia, a C3 marsh grass, and three sediment cores collected from middle and upper estuarine sites from the Plum Island salt marshes. Our results indicated that the organic matter preserved in the sediments was highly affected by the marsh plants that dominated the sampling sites. δ13C values of organic matter preserved in the upper fresh water site sediment were more negative (−23.0±0.3‰) as affected by the C3 plants than the values of organic matter preserved in the sediments of middle (−18.9±0.8‰) and mud flat sites (−19.4±0.1‰) as influenced mainly by the C4 marsh plants. The distribution of n-alkanes measured in all sediments showed similar patterns as those determined in the marsh grasses S. alterniflora and T. latifolia, and nC21 to nC33 long-chain n-alkanes were the major compounds determined in all sediment samples. The strong odd-to-even carbon numbered n-alkane predominance was found in all three sediments and nC29 was the most abundant homologue in all samples measured. Both δ13C compositions of organic matter and n-alkane distributions in these sediments indicate that the marsh plants could contribute significant amount of organic matter preserved in Plum Island salt marsh sediments. This suggests that salt marshes play an important role in the cycling of nutrients and organic carbon in the estuary and adjacent coastal waters.  相似文献   

10.
Concentrations of Hg0 in surface waters and atmosphere of the Scheldt estuary and the North Sea are presented and their relationship with biological processes is discussed. Hg0 concentrations in the Scheldt estuary range from 0.1 to 0.38 pmol·l−1 in the winter and from 0.24 to 0.65 pmol·l−1 in the summer and show a positive relationship with phytoplankton pigments. In the North Sea Hg0 concentrations range from 0.06 to 0.8 pmol·l−1 and are higher in coastal stations. Transfer velocities across the air–sea interface were calculated using a classical shear turbulence model. Volatilization fluxes of Hg0 were calculated for the Scheldt estuary and the North Sea. For the Scheldt estuary the fluxes range from 226–284 pmol·m−2·d−1 in winter and 500–701 pmol·m−2·d−1 in summer and for the North Sea the fluxes range from 59–1110 pmol·m−2·d−1 for an average windspeed of 8.1 m·s−1. These fluxes are comparable to the wet and dry depositional fluxes to the North Sea. Hg0 formation rates necessary to balance the volatilization fluxes vary from 0.2 to 4% d−1.  相似文献   

11.
Coastal upwelling systems are regions with highly variable physical processes and very high rates of primary production and very little is known about the effect of these factors on the short-term variations of CO2 fugacity in seawater (fCO2w). This paper presents the effect of short-term variability (<1 week) of upwelling–downwelling events on CO2 fugacity in seawater (fCO2w), oxygen, temperature and salinity fields in the Ría de Vigo (a coastal upwelling ecosystem). The magnitude of fCO2w values is physically and biologically modulated and ranges from 285 μatm in July to 615 μatm in October. There is a sharp gradient in fCO2w between the inner and the outer zone of the Ría during almost all the sampling dates, with a landward increase in fCO2w.CO2 fluxes calculated from local wind speed and air–sea fCO2 differences indicate that the inner zone is a sink for atmospheric CO2 in December only (−0.30 mmol m−2 day−1). The middle zone absorbs CO2 in December and July (−0.05 and −0.27 mmol·m−2 day−1, respectively). The oceanic zone only emits CO2 in October (0.36 mmol·m−2 day−1) and absorbs at the highest rate in December (−1.53 mmol·m−2 day−1).  相似文献   

12.
Midsummer (1 August) population estimates of about 2 million O-group plaice (Pleuronectes platessa L.) were derived for sandy bays around the Firth of Forth in 1979–1980. This is an order of magnitude less than similar estimates made for the Clyde Sea Area in 1973–1974. Autumn population estimates of 0·4–1·0 million fish were comparable to estimates by the Ministry of Agriculture, Fisheries and Food for the area between the Scottish border and Flamborough Head (2·3 million for 1970 and 1973) which represented 4·8% (1973) to 5·3% (1970) of the total number of O-group fish on the English east coast.Largo Bay was the most important nursery area holding 25% of the total population. It is particularly well situated to receive newly metamorphosed plaice carried in water currents along the north side of the Forth from the spawning ground off Fife Ness. Plaice in the Forth are mainly distributed on fine to medium sandy beaches (186–480 μm), the mean number per haul in midsummer (D) being correlated with the median diameter (m.d. in μm) of the low water sediments by the equation: D=−45·7666+0·2327 m.d. (n=11,r=0·68,P<0·02 but>0·01).The shallow inshore water in sandy bays in the outer Firth was well mixed and more marine than estuarine (27·7–35·0‰). The correlation coefficient between fish density and water temperature was low, while that with salinity (S‰) was: D=6·1618+0·2238S (n=23,r=0·62,P<0·005).Regression analysis demonstrated that the relationship between the instantaneous mortality rate (Z) and the initial population density (Dp) was: Z×100=0·7480+0·0546dp (n=12,r=0·87,P<0·001).The mean mortality rate for the O-group plaice in the Forth nursery areas was 53% month−1.  相似文献   

13.
Wind-driven cyclonic eddies are hypothesized to relieve nutrient stress and enhance primary production by the upward displacement of nutrient-rich deep waters into the euphotic zone. In this study, we measured nitrate (NO3), particulate carbon (PC), particulate nitrogen (PN), their stable isotope compositions (δ15N-NO3, δ13C-PC and δ15N-PN, respectively), and dissolved organic nitrogen (DON) within Cyclone Opal, a mature wind-driven eddy generated in the lee of the Hawaiian Islands. Sampling occurred in March 2005 as part of the multi-disciplinary E-Flux study, approximately 4–6 weeks after eddy formation. Integrated NO3 concentrations above 110 m were 4.8 times greater inside the eddy (85.8±6.4 mmol N m−2) compared to the surrounding water column (17.8±7.8 mmol N m−2). Using N-isotope derived estimates of NO3 assimilation, we estimated that 213±59 mmol m−2 of NO3 was initially injected into the upper 110 m Cyclone Opal formation, implying that NO3 was assimilated at a rate of 3.75±0.5 mmol N m−2 d−1. This injected NO3 supported 68±19% and 66±9% of the phytoplankton N demand and export production, respectively. N isotope data suggest that 32±6% of the initial NO3 remained unassimilated. Self-shading, inefficiency in the transfer of N from dissolved to particulate export, or depletion of a specific nutrient other than N may have led to a lack of complete NO3 assimilation. Using a salt budget approach, we estimate that dissolved organic nitrogen (DON) concentrations increased from eddy formation (3.8±0.4 mmol N m−2) to the time of sampling (4.0±0.09 mmol N m−2), implying that DON accumulated at rate of 0.83±1.3 mmol N m−2 d−1, and accounted for 22±15% of the injected NO3. Interestingly, no significant increase in suspended PN and PC, or export production was observed inside Cyclone Opal relative to the surrounding water column. A simple N budget shows that if 22±15% of the injected NO3 was shunted into the DON pool, and 32±6% is unassimilated, then 46±16% of the injected NO3 remains undocumented. Alternative loss processes within the eddy include lateral exchange of injected NO3 along isopycnal surfaces, remineralization of PN at depth, as well as microzooplankton grazing. A 9-day time series within Cyclone Opal revealed a temporal depletion in δ15N-PN, implying a rapid change in the N source. A change in NO3 assimilation, or a shift from NO3 fueled growth to assimilation of a 15N-deplete N source, may be responsible for such observations.  相似文献   

14.
Concentrations of bacteria, chlorophyll a, and several dissolved organic compounds were determined during 11 tidal cycles throughout the year in a high and a low elevation marsh of a brackish tidal estuary. Mean bacterial concentrations were slightly higher in flooding (7·1 × 106 cells ml−1) than in ebbing waters (6·5 × 106 cells ml−1), and there were no differences between marshes. Mean chlorophyll a concentrations were 36·7 μg l−1 in the low marsh and 20·4 μg l−1 in the high marsh. Flux calculations, based on tidal records and measured concentrations, suggested a small net import of bacterial and algal biomass into both marshes. Over the course of individual tidal cycles, concentrations of all parameters were variable and not related to tidal stage. Heterotrophic activity measured by the uptake of 3H-thymidine, was found predominantly in the smallest particle size fractions (< 1·0 μm). Thymidine uptake was correlated with temperature (r = 0·48, P < 0·01), and bacterial productivity was estimated to be 7 to 42 μg Cl−1 day−1.  相似文献   

15.
We examined the effect of light on water column and benthic fluxes in the Pensacola Bay estuary, a river-dominated system in the northeastern Gulf of Mexico. Measurements were made during the summers of 2003 and 2004 on 16 dates distributed along depth and salinity gradients. Dissolved oxygen fluxes were measured on replicate sediment and water column samples exposed to a gradient of photosynthetically active radiation. Sediment inorganic nutrient (NH4+, NO3, PO43−) fluxes were measured. The response of dissolved oxygen fluxes to variation in light was fit to a photosynthesis–irradiance model and the parameter estimates were used to calculate daily integrated production in the water column and the benthos. The results suggest that shoal environments supported substantial benthic productivity, averaging 13.6 ± 4.7 mmol O2 m−2 d−1, whereas channel environments supported low benthic productivity, averaging 0.5 ± 0.3 mmol O2 m−2 d−1SE). Estimates of baywide microphytobenthic productivity ranged from 8.1 to 16.5 mmol O2 m−2 d−1, comprising about 16–32% of total system productivity. Benthic and water column dark respiration averaged 15.2 ± 3.2 and 33.6 ± 3.7 mmol O2 m−2 d−1, respectively Inorganic nutrient fluxes were generally low compared to relevant estuarine literature values, and responded minimally to light exposure. Across all stations, nutrient fluxes from sediments to the water column averaged 1.11 ± 0.98 mmol m−2 d−1 for NH4+, 0.58 ± 1.08 mmol m−2 d−1 for NO3, 0.01 ± 0.09 mmol m−2 d−1 for PO43−. The results of this study illustrate how light reaching the sediments is an important modulator of benthic nutrient and oxygen dynamics in shallow estuarine systems.  相似文献   

16.
The hydrolysis of silicic acid, Si(OH)4, was studied in a simplified seawater medium (0.6 M Na(Cl)) at 25°C. The measurements were performed as potentiometric titrations (hydrogen electrode) in which OH was generated coulometrically. The total concentration of Si(OH)4, B, and log[H+] were varied within the limits 0.00075 B 0.008 M and 2.5 -log[H+] 11.7, respectively. Within these ranges the formation of SiO(OH)3 and SiO2(OH)22− with formation constants log β−11(Si(OH)4 SiO(OH)3 + H+) = −9.472 ±0.002 and log β−21(Si(OH)4 SiO2(OH)22− + 2H+) = −22.07 ± 0.01 was established. With B > 0.003 M polysilicate complexes are formed, however, with -log[H+] 10.7 their formation does not significantly affect the evaluated formation constants. Data were analyzed with the least squares computer program LETAGROPVRID.  相似文献   

17.
Rates of net nitrification were calculated for four large (13 m3) estuarine-based microcosms that had been subjected to inorganic nutrient enrichment. Calculated rates were based on two years of weekly nitrate and nitrite measurements and ranged from a maximum of 0·55 μmol NO2+3 produced l−1 day−1 in the control tank (no enrichment) to over 13 μmol NO2+3 produced l−1 day−1 in the most enriched tank (receiving 18·6 μmol NH4 l−1 day−1). Almost all NO2+3 production was pelagic, little was benthic. Net NO3 production or net NO2 production dominated the net nitrification rates during different seasons. Good correlations were found between various oxidation rates and substrate concentrations. The calculated net nitrite production rates were 10 to 1000 times higher than previously reported rates for open ocean systems, demonstrating the potential importance of nitrification to estuarine systems.  相似文献   

18.
Monthly seawater pH and alkalinity measurements were collected between January 1996 and December 2000 at 10°30′N, 64°40′W as part of the CARIACO (CArbon Retention In A Colored Ocean) oceanographic time series. One key objective of CARIACO is to study temporal variability in Total CO2 (TCO2) concentrations and CO2 fugacity (fCO2) at this tropical coastal wind-driven upwelling site. Between 1996 and 2000, the difference between atmospheric and surface ocean CO2 concentrations ranged from about − 64.3 to + 62.3 μatm. Physical and biochemical factors, specifically upwelling, temperature, primary production, and TCO2 concentrations interacted to control temporal variations in fCO2. Air–sea CO2 fluxes were typically depressed (0 to + 10 mmol C m 2 day 1) in the first few months of the year during upwelling. Fluxes were higher during June–November (+ 10 to 20 mmol C m 2 day 1). Fluxes were generally independent of the slight changes in salinity normally seen at the station, but low positive flux values were seen in the second half of 1999 during a period of anomalously heavy rains and land-derived runoff. During the 5 years of monthly data examined, only two episodes of negative air–sea CO2 flux were observed. These occurred during short but intense upwelling events in March 1997 (−10 mmol C m 2 day 1) and March 1998 (− 50 mmol C m 2 day 1). Therefore, the Cariaco Basin generally acted as a source of CO2 to the atmosphere in spite of primary productivity in excess of between 300 and 600 g C m 2 year 1.  相似文献   

19.
Suspended particle dynamics were investigated in the Ogeechee River Estuary during neap tide in July 1996. Samples were operationally separated into ‘ truly suspended ’ (settling velocity <0·006 cm s−1) and ‘ settleable ’ (settling velocity >0·006 cm s−1) fractions over the course of a tidal cycle to determine whether these two fractions were comprised of particles with differing biological and chemical characteristics. Total suspended sediment, organic carbon and nitrogen, chlorophyll a and phaeopigment concentrations were measured in each fraction, as well as rates of bacterial hydrolytic enzyme activity [β-1,4-glucosidase (βGase) and β-xylosidase (βXase)]. The majority of the suspended sediment (by weight) was in the truly suspended fraction; all measured parameters were largely associated with this fraction as well. When compared to the settleable material, the truly suspended material was significantly higher in % POC (5·7±0·6 vs. 3·9±1·8), % chlorophyll (0·07±0·02 vs. 0·03±0·01), % phaeopigment (0·030±0·006 vs. 0·018±0·012), and weight-specific maximal uptake rates (Vmaxper mg suspended sediment) of both enzymes (1·8±0·4 vs. 0·7± 0·2 nmol mg−1 h−1βGase and 1·1±0·3vs . 0·3±0·2 nmol mg−1 h−1βXase), providing clear evidence for a qualitative distinction between the two fractions. These results are interpreted to mean that the more organic-rich, biologically active material associated with the suspended fraction is likely to have a different fate in this Estuary, as ‘ truly suspended ’ sediments will be readily transported whereas ‘ settleable ’ sediments will settle and be resuspended with each tide. These types of qualitative differences should be incorporated into models of particle dynamics in estuaries.  相似文献   

20.
Appropriate conditions have been achieved for the accurate, rapid, and highly precise shipboard simultaneous determination of dissolved organic carbon and total dissolved nitrogen in seawater by high temperature catalytic oxidation. A nitrogen-specific Antek 705D chemiluminescence detector and a CO2-specific LiCor Li6252 IRGA have been coupled in-series with a Shimadzu TOC-5000 organic carbon analyser. Precision of both simultaneous measurements is ≤1.5%, i.e. ±1 μmol C l−1 and ±0.3 μmol N l−1, respectively. Quality of analysis is not compromised by vibrations associated with ocean going research vessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号