首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The 3·2 km long Rose Creek fan delta of west‐central Nevada is prograding from an active rift margin into the 32 m deep Walker Lake. A case study of the forms, processes and facies of this fan delta reveals that the proximal and medial zones mainly are of sub‐aerial origin, and the distal zone is of lacustrine origin. Pebbly to bouldery rock‐avalanche mounds >100 m thick (Facies A) and muddy to bouldery debris flow levées 0·5 to 2·0 m thick (Facies B) dominate the proximal zone, whereas mostly matrix‐supported cobbly pebbly debris flow lobes 0·1 to 1·0 m thick (Facies C) typify the medial zone. Surficial pebble lags and gully fills (Facies D) are widespread in both zones but, in exposures, comprise only partings or lenticles between debris flow units. The distal fan delta mainly consists of lakeshore to lake‐bottom tracts formed by extensive wave reworking of debris flow facies. Nearshore deposits include erosional cobbly boulder lag beaches (Facies E), pebbly constructional beaches attached at headcuts or on barrier spits (Facies F), pebbly upper shoreface (Facies G) and sandy lower shoreface (Facies H) tracts positioned lakeward of the beach, and pebbly landward‐dipping foresets (Facies I) and backshore‐pond sand and mud (Facies J) present landward of the spits. Erosional lag beaches fringe the windward north side of the fan‐delta front, attached constructional beaches characterize the central zone, and southward‐elongating barrier spits typify the leeward south side, extending from the zone of greatest projection of the fan delta into the lake. Shoreline facies asymmetry results from largely unidirectional longshore drift caused by high fetch to the north and minimal fetch to the south, combined with the arcuate shape of the fan‐delta front. The spits overlie a platform deposited below common wave base consisting of south‐east‐trending cones of pebbly Gilbert foresets (Facies K) and sandy toesets (Facies L). Typically slumped silt and mud (Facies M) fringe both this platform and lower shoreface sand in deeper water. This case demonstrates facies types and patterns that are inconsistent with the widely promoted fan‐delta facies model having a front consisting of an apron of radially directed Gilbert foresets deposited where sub‐aerial flows enter the lake. The Rose Creek fan‐delta front instead features a sharp contact between sub‐aerial and lakeshore facies formed where waves erode, sort and redistribute heterogeneous debris flow sediment into the various shallow‐to‐deep lake facies. Gilbert foresets are present only in the lee of the fan delta where sediment moving by longshore drift reaches the brink of the spit front. This facies scenario results from the infrequency of fan‐building events versus nearly constant wind‐induced waves, a scenario that, in contrast to the popular Gilbert model, probably is the norm for fan deltas. The level of Walker Lake, and thus the position of wave reworking on the Rose Creek fan delta, fluctuated over a range of ~157 m during the last 18 kyr, producing complex interfingering between sub‐aerial and lakeshore facies across a 1700 m wide radial belt, typifying a wave‐modified, freestand lacustrine fan delta.  相似文献   

2.
The Pleistocene Higashikanbe Gravel, which crops out along the Pacific coast of the Atsumi Peninsula, central Japan, consists of well‐sorted, pebble‐ to cobble‐size gravel beds with minor sand beds. The gravel includes large‐scale foreset beds (5–10 m high) and overlying subhorizontal beds (0·5–3 m thick), showing foreset and topset structure, from which the gravel has previously been interpreted as deposits of a Gilbert‐type delta. However, (1) the gravel beds lack evidence of fluvial activity, such as channels in the subhorizontal beds; (2) the foresets incline palaeolandwards; (3) the gravels fill a fluvially incised valley; and (4) the gravels overlie low‐energy deposits of a restricted environment, such as a bay or an estuary. The foresets generally dip towards the inferred palaeoshoreline, indicating landward accretion of gravel. Reconstruction of the palaeogeography of the peninsula indicates that the Higashikanbe Gravel was deposited as a spit similar to that developed at the western tip of the present Atsumi Peninsula, rather than as a delta. According to the new interpretation, the large‐scale foreset beds are deposits on the slopes of spit platforms and accreted in part to the sides of small islets that are fragments of the submerging spit during relative sea‐level rise. The subhorizontal beds include nearshore deposits on the spit platform topsets and deposits of gravel shoals or bars, which are reworked sediments of the spit beach gravels during a transgression. The lack of spit beach facies in the subhorizontal beds results from truncation by shoreface erosion. Dome structure, which is a cross‐sectional profile of a recurved gravel spit at its extreme point, and sandy tidal channel deposits deposited between the small islets were also identified in the Higashikanbe Gravel. The Higashikanbe Gravel fills a fluvially incised valley and occupies a significant part of a transgressive systems tract, suggesting that gravelly spits are likely to be well developed during transgressions. The large‐scale foreset beds and subhorizontal beds of gravelly spits in transgressive systems tracts contrast with the foreset and topset beds of deltas, characteristic of highstand, lowstand and shelf‐margin systems tracts.  相似文献   

3.
Sediments exposed at low tide on the transgressive, hypertidal (>6 m tidal range) Waterside Beach, New Brunswick, Canada permit the scrutiny of sedimentary structures and textures that develop at water depths equivalent to the upper and lower shoreface. Waterside Beach sediments are grouped into eleven sedimentologically distinct deposits that represent three depositional environments: (1) sandy foreshore and shoreface; (2) tidal‐creek braid‐plain and delta; and, (3) wave‐formed gravel and sand bars, and associated deposits. The sandy foreshore and shoreface depositional environment encompasses the backshore; moderately dipping beachface; and a shallowly seaward‐dipping terrace of sandy middle and lower intertidal, and muddy sub‐tidal sediments. Intertidal sediments reworked and deposited by tidal creeks comprise the tidal‐creek braid plain and delta. Wave‐formed sand and gravel bars and associated deposits include: sediment sourced from low‐amplitude, unstable sand bars; gravel deposited from large (up to 5·5 m high, 800 m long), landward‐migrating gravel bars; and zones of mud deposition developed on the landward side of the gravel bars. The relationship between the gravel bars and mud deposits, and between mud‐laden sea water and beach gravels provides mechanisms for the deposition of mud beds, and muddy clast‐ and matrix‐supported conglomerates in ancient conglomeratic successions. Idealized sections are presented as analogues for ancient conglomerates deposited in transgressive systems. Where tidal creeks do not influence sedimentation on the beach, the preserved sequence consists of a gravel lag overlain by increasingly finer‐grained shoreface sediments. Conversely, where tidal creeks debouch onto the beach, erosion of the underlying salt marsh results in deposition of a thicker, more complex beach succession. The thickness of this package is controlled by tidal range, sedimentation rate, and rate of transgression. The tidal‐creek influenced succession comprises repeated sequences of: a thin mud bed overlain by muddy conglomerate, sandy conglomerate, a coarse lag, and capped by trough cross‐bedded sand and gravel.  相似文献   

4.
Facies analysis of widely distributed exposures of the 32·6 km2 and 8·1-km-long Warm Spring Canyon fan, central Death Valley, shows that it has been built principally by debris-flow deposits. These deposits were derived from a mature Panamint Range catchment mostly underlain by Precambrian mudrock, quartzite and dolomite. Stacked, clast-rich and matrix-supported debris-flow lobes of slightly bouldery, muddy, pebble–cobble gravel in beds 20–150 cm thick dominate the fan from apex to toe, accounting for 75–98% of most exposures. Interstratified with the debris flows are less abundant (2–25% of cuts), thinner (5–30 cm) and more discontinuous beds of clast-supported and imbricated, pebble–cobble gravel deposited by overland flows and gully flows. This facies formed by the surficial fine-fraction water winnowing of the debris flows primarily during recessional flood stage of the debris-flow events. Two other facies associations make up a small part of the fan. The incised-channel tract consists of a 250-m-wide clast-supported ribbon of irregularly to thickly bedded, boulder, pebble, cobble gravel nested within debris-flow deposits. This channel fill is oriented generally perpendicular to the Panamint range front. It formed by extensive erosion and winnowing of debris flows deposited within the incised channel, into which all water discharge from the catchment is funnelled. The limited presence of this facies only straddling the present incised channel indicates that this channel overall has maintained a consistent position on the fan except for slight lateral shifts, some caused by strike-slip offset. Fault offset temporarily closed the upper incised channel, causing recessional debris-flow mud to be ponded behind the dam. The other local facies assemblage consists of subrounded to rounded, moderately sorted pebble gravel in low-angle cross-beds that slope both basinwards and fanwards. This gravel was deposited in beachface, backshore and shoreface barrier-spit environments that developed where Lake Manly impinged on the Warm Spring fan during late Pleistocene time. These deposits straddle headcuts into, and were derived from, erosion of the debris-flow deposits. Wave energy sorted finer sediment from the shore zone, concentrated coarser sediment and rounded the coarse to very coarse pebble fraction by selective reworking.  相似文献   

5.
Clemmensen, L. B. & Murray, A. S. 2009: Luminescence dating of Holocene spit deposits: An example from Skagen Odde, Denmark. Boreas , 10.1111/j.1502-3885.2009.00110.x. ISSN 0300-9483.
Skagen Odde is a large, active spit system in northern Denmark that started to form about 7200 years ago. Models for spit growth have usually relied on radiocarbon-dating of swale peat (Martørv). In this study, we date the spit deposits at three sites directly using Optically Stimulated Luminescence (OSL) to obtain supplementary age control on spit development. The spit deposits consist of a lowermost succession of shoreface, beach and backshore aeolian deposits topped by a swale peat and followed by an uppermost succession of aeolian sand sheet and dune deposits. The ages of the shallow marine, beach and backshore aeolian deposits at the main study site are indistinguishable, implying good resetting of the shallow marine deposits; the average age of 4640±250 years compares well with earlier model predictions based on radiocarbon-dating of swale peat. Aeolian sand extracted from the uppermost part of the swale peat at this site provides OSL ages of between 1600 and 2500 years, in good agreement with a calibrated AMS age from the same level of 2330–2200 years. The uppermost aeolian succession consists of two units separated by a thin palaeosol, and the aeolian units have OSL ages of about 1500 years and younger than 130 years. Lowermost spit deposits at the two additional sites have average ages of 5010±240 and 3730±190, respectively, supporting the existing chronology for spit growth based on radiocarbon-dating.  相似文献   

6.
ABSTRACT Lower Pliocene temperate carbonates exhibit landward‐downlapping beds at the southern margin of the Carboneras Basin in south‐eastern Spain. This rarely documented stratal geometry resulted from the accumulation of bedded bioclastic carbonate sand and gravel by longshore currents along a spit platform located a few hundred metres from the palaeoshoreline. The top of the spit platform was covered by shoals that extended over a gently dipping ramp inclined to the north. On the landward slope of the spit, sediments washed over from the shoal area were deposited in parallel‐laminated beds with a southward dip of 8–11°. These beds aggraded and retrograded after an increase in accommodation space, probably related to an Early Pliocene eustatic sea‐level rise. As a result, the beds downlap onto the underlying unconformity surface in a shoreward direction. Eventually, the depression between the shoreline and the spit platform was filled, and a gentle ramp became established. These Pliocene exposures in the Carboneras Basin and a similar Upper Miocene example in southern Spain suggest that landward‐downlapping stratal geometries can be expected in nearshore temperate carbonates along basin margins, and demonstrate a similarity in sedimentary dynamics to siliciclastic sands and gravels.  相似文献   

7.
The Anvil Spring Canyon fan of the Panamint Range piedmont in central Death Valley was built entirely by water-flow processes, as revealed by an analysis of widespread 2- to 12-m-high stratigraphic cuts spanning the 9·7 km radial length of this 2·5–5·0° sloping fan. Two facies deposited from fan sheetfloods dominate the fan from apex to toe. The main one (60–95% of cuts) consists of sandy, granular, fine to medium pebble gravel that regularly and sharply alternates with cobbly coarse to very coarse pebble gravel in planar couplets 5–25 cm thick oriented parallel to the fan surface. The other facies (0–25% of cuts) comprises 10- to 60-cm-thick, wedge-planar and wedge-trough beds of pebbly sand and sandy pebble gravel in backsets sloping 3–28°. Both facies are interpreted as resulting from rare, sediment-charged flash floods from the catchment, and were deposited by supercritical standing waves of expanding sheetfloods on the fan. Standing waves were repeatedly initiated, enlarged, migrated, and then terminated either by gradually rejoining the flood or by more violent breakage and washout. The frequent autocyclic growth and destruction of standing waves during an individual sheetflood resulted in the deposition of multiple coarse and fine couplet and backset sequences 50–250 cm thick across the active depositional lobe of the fan. Erosional intensity during washout of the standing wave determined whether early-phase backset-bed deposits or washout-phase sheetflood couplet deposits were selectively preserved in a given cycle. Two minor facies are also found in the Anvil fan. Pebble–cobble gravel lags (0–20% of cuts) are present above erosional scours into the sheetflood couplet and backset deposits. They consist of coarse gravel concentrated through fine-fraction winnowing of the host sheetflood facies by sediment-deficient water flows. This reworking occurred during recessional flood stage or from non-catastrophic discharge during the long intervals between major flash floods. This facies is common at the surface, giving rise to a ‘braided-stream’ appearance. However, it is stratigraphically limited, present as thin, continuous to discontinuous beds or lenses that bound 50- to 250-cm-thick sheetflood sequences. The other minor facies of the Anvil fan consists of clast-supported and imbricated, thickly stratified, pebbly, cobbly, boulder gravel present in narrow, radially aligned ribbons nested within sheetflood deposits. This facies is interpreted as representing deposition in the incised channel of the fan, a subenvironment characterized by greater flow competence resulting from maintained depth from channel-wall confinement, and by more frequent water flows and winnowing events caused by its direct connection with the catchment feeder channel.  相似文献   

8.
Quaternary sedimentary successions are described from the Linda Valley, a small valley in western Tasmania that was dammed by ice during Early and Middle Pleistocene glaciations. Mapping and logging of exposures suggest that an orderly sequence of deposits formed during ice incursion, occupation and withdrawal from tributary valleys. Four principal sediment assemblages record different stages of ice occupation in the valley. As the glacier advanced, a proglacial, lacustrine sediment assemblage dominated by laminated silts and muds deposited from suspension accumulated in front of the glacier. A subglacial sediment assemblage consisting of deformed lacustrine deposits and lodgement till records the overriding of lake-bottom sediments as the glacier advanced up the valley into the proglacial lake. As the glacier withdrew from the valley, a supraglacial sediment assemblage of diamict, gravel, sand and silt facies formed on melting ice in the upper part of the valley. A lacustrine regression in the supraglacial assemblage is inferred on the basis of a change from deposits mainly resulting from suspension in a subaqueous setting to relatively thin and laterally discontinuous laminated sediments, occurrence of clastic dykes, and increasing complexity of the geometry of deposits that indicate deposition in a subaerial setting. A deltaic sediment assemblage deposited during the final stage of ice withdrawal from the valley consists of steeply dipping diamict and normally graded gravel facies formed on delta foresets by subaqueous sediment gravity flows. The sediment source for the delta, which prograded toward the retreating ice margin, was the supraglacial sediment assemblage previously deposited in the upper part of the valley. A depositional model developed from the study of the Linda Valley may be applicable to other alpine glaciated areas where glaciers flowed through or terminated in medium- to high-relief topography.  相似文献   

9.
Carbonate aeolian deposits are common along arid to semiarid, wind-exposed, present-day coastlines bordered by productive carbonate ramps. Lithified carbonate dunes (aeolianites) have been described around the world in marine terraces of Quaternary age, but these deposits have seldom been identified in the Pre-Quaternary record. Several authors have suggested that this scarcity reflects that these deposits form and are preserved only during icehouse periods characterized by high-amplitude sea-level changes. Others [e.g. McKee and Ward Carbonate Depositional Environments (1983) , AAPG Memoirs, Vol. 33, pp. 131–170] suggest that the scarcity of aeolianites in the Pre-Quaternary record could reflect the ‘great difficulty in recognising wind blown carbonate deposits and in differentiating between them [aeolianites] and other carbonate sands of nearshore environments’. It has been considered that carbonate shoreface/foreshore deposits are very difficult to discriminate petrographically from backshore deposits. This petrographic study of recent sediments from the shoreface to backshore along the northern coast of Chrissi Island, Crete, confirms that carbonate aeolian sands can be very easily misinterpreted as shoreface deposits. Textural examination of thin sections by image analysis techniques indicates, however, that grain orientation patterns differ between facies. Shoreface deposits exhibit a unimodal distribution of grain orientation (flat rose diagram), whereas backshore deposits show a tendency towards a bimodal distribution with a significant proportion of vertical grains. This observation has been confirmed in Pleistocene aeolianites from Tunisia and Western Australia. Grain verticality thus seems to be a reliable criterion for discriminating wind-lain carbonate bodies from shoreface deposits. Vertical grains in aeolian carbonate deposits could reflect gravity effects (e.g. reorientation of grains because of meteoric water percolation and air pull-up). Laboratory experiments conducted on carbonate sands under the action of percolating waters confirm this hypothesis. This reorganization process is preferentially developed in recently deposited and loosely packed sands resulting from grainfall and/or grainflow. In addition, this suggests that the presence of vertical grain orientation might be an indicator of the frequency and intensity of rainfalls during deposition.  相似文献   

10.
The Mono estuary is an infilled, microtidal estuary located on the wave-dominated Bight of Benin coast which is subject to very strong eastward longshore drift. The estuarine fill comprises a thick unit of lagoonal mud deposited in a ‘central basin’between upland fluvial deposits and estuary-mouth wave-tide deposits. This lagoonal fill is capped by organic-rich tidal flat mud. In addition to tidal flat mud, the superficial facies overlying the ‘central basin’fill include remnants of spits resting on transgressive/washover sand, an estuary-mouth association of beach, shoreface, flood-tidal delta and tidal inlet deposits, and a thin sheet of fluvial sediments deposited over tidal flat mud. After an initial phase of spit intrusion over the infilled central basin east of the present Mono channel, the whole estuary mouth became bounded by a regressive barrier formed from sand supplied by the Volta Delta during the middle Holocene eustatic highstand. Barrier progradation ceased late in the Holocene following the establishment of an equilibrium plan-form shoreline alignment that allowed through-drift of Volta sand to sediment sinks further downdrift. Over the same period, accretion, from fluvially supplied sediments, of the estuarine plain close to the limit of spring high tides, or, over much of the lower valley, into a fluvial plain no longer subject to tidal flooding, induced marked meandering of the Mono and its tidal distributaries in response to confinement of much of the tidal prism to these channels. The process resulted in erosion of spit/washover and regressive barrier sand, and in reworking of the tidal flat and floodbasin deposits. The strong longshore drift, equilibrium shoreline alignment and the year-round persistence of a tidal inlet maintained by discharge from the Mono and from Lake Ahémé have resulted in a stationary barrier that is reworked by a mobile inlet. The Mono example shows that advanced estuarine infill may result in considerable facies reworking, obliteration of certain facies and marked spatial imbrication of fluvial, estuarine and wave-tide-deposited facies, and confirms patterns of sedimentary change described for microtidal estuaries on wave-influenced coasts. In addition, this study shows that local environmental factors such as sediment supply relative to limited accommodation space, and strong longshore drift, which may preclude accumulation of sediments in the vicinity of the estuary mouth, may lead to infilled equilibrium or near-equilibrium estuaries that will not necessarily evolve into deltas.  相似文献   

11.
《Quaternary Science Reviews》2007,26(5-6):743-758
Detailed examination of the Tekapo Formation in the Tasman Valley, New Zealand has identified 20 facies, and five facies associations. These associations are delta foresets and bottomsets, sediment density flows, ice-contact lake sediments with ice-rafted debris and resedimentation deposits, and outwash gravels. Interpretation of the sediment-landform associations informed by observations at modern glacier termini suggests that the Late Pleistocene Tekapo Formation moraines have been formed by downwasting of a more expanded Tasman Glacier. During the early stages of glacier retreat, ponds on the glacier surface develop into thermokarst lakes which enlarge and coalesce to form a large supraglacial lake. Continued downwasting causes the lake outlet river to entrench into the impounding latero-frontal ice-cored moraine, lowering the lake level. This exposes lake-bottom sediments and forms shorelines on the proximal slopes of the ice-cored moraine. As the ice-cored moraine melts, these lake sediments are deformed and deposited against the Mt. John moraine. The observations and interpretations reported here suggest the Late Pleistocene end moraine is a constructional feature not a structural (glaciotectonic) feature as suggested by previous studies.  相似文献   

12.
The Eocene Trihueco Formation is one of the best exposed successions of the Arauco Basin in Chile. It represents a period of marine regression and transgression of second-order duration, during which barrier island complexes developed on a muddy shelf. The strata are arranged in classical shoaling-upward parasequences of shoreface and beach facies capped by coal-bearing, back-barrier lagoon deposits. These fourth-order cycles are superimposed upon third-order cycles which caused landward and seaward shifts of the coastal facies belts. The final, punctuated rise in sea level is represented by shelf mudrocks with transgressive incised shoreface sandstones. Relative sea-level oscillations as revealed in the stratigraphy of the Trihueco Formation show a reasonable correlation with published Eocene eustatic curves.  相似文献   

13.
《Sedimentary Geology》2006,183(1-2):1-13
Integrated sedimentological and micropaleontological (foraminifers and ostracods) analyses of two 55 m long borehole cores (S3 and S4) drilled in the subsurface of Lesina lagoon (Gargano promontory—Italy) has yielded a facies distribution characteristic of alluvial, coastal and shallow-marine sediments. Stratigraphic correlation between the two cores, based on strong similarity in facies distribution and AMS radiocarbon dates, indicates a Late Pleistocene to Holocene age of the sedimentary succession.Two main depositional sequences were deposited during the last 60-ky. These sequences display poor preservation of lowstand deposits and record two major transgressive pulses and subsequent sea-level highstands. The older sequence, unconformably overlying a pedogenized alluvial unit, consists of paralic and marine units (dated by AMS radiocarbon at about 45–50,000 years BP) that represent the landward migration of a barrier-lagoon system. These units are separated by a ravinement surface (RS1). Above these tansgressive deposits, highstand deposition is characterised by progradation of the coastal sediments.The younger sequence, overlying an unconformity of tectonic origin, is a 10 m-thick sedimentary body, consisting of fluvial channel sediments overlain by transgressive–regressive deposits of Holocene age. A ravinement surface (RS2), truncating the transgressive (lagoonal and back-barrier) deposits in core S4, indicates shoreface retreat and landward migration of the barrier/lagoon system. The overlying beach, lagoon and alluvial deposits are the result of mid-Holocene highstand sedimentation and coastal progradation.  相似文献   

14.
On the southwest-facing slopes of a bedrock ridge lying between Cardigan Bay to the north and the Afon Teifi to the south stands a group of hills in which 30-35 m of cross-laminated and parallel-laminated sands with lenticular upward-fining gravel sequences are overlain by 10-12 m of gravel in a single foreset bed. The sediments mantle a surface of till sloping gently toward the southwest, were transported toward the southwest (across one margin of the Afon Teifi valley), and were cut by a system of densely arranged conjugate normal faults striking northwest-southeast. The lenticular gravels and fault system suggest that the deposits accumulated as a glaciofluvial outwash spread, and on top of an ice-lobe that became isolated in the Teifi valley during the downwasting of a glacier which had occupied Cardigan Bay and much of the country to the south. The large gravel foresets capping the succession are the only indication at Banc-y-Warren of the former existence of a lake, but neither a large nor deep body of water need be envisaged.  相似文献   

15.
Thick bay‐fill sequences that often culminate in strandplain development serve as important sedimentary archives of land–ocean interaction, although distinguishing between internal and external forcings is an ongoing challenge. This study employs sediment cores, ground‐penetrating radar surveys, radiocarbon dates, palaeogeographic reconstructions and hydrodynamic modelling to explore the role of autogenic processes – notably a reduction in wave energy in response to coastal embayment infilling – in coastal evolution and shoreline morphodynamics. Following a regional 2 to 4 m highstand at ca 5·8 ka, the 75 km2 Tijucas Strandplain in southern Brazil built from fluvial sediments deposited into a semi‐enclosed bay. Holocene regressive deposits are underlain by fluvial sands and a Pleistocene transgressive–regressive sequence, and backed by a highstand barrier‐island. The strandplain is immediately underlain by 5 to 16 m of seaward‐thickening, fluvially derived, Holocene‐age, basin‐fill mud. Several trends are observed from the landward (oldest) to the seaward (youngest) sections of the strandplain: (i) the upper shoreface and foreshore become finer and thinner and shift from sand‐dominated to mud‐dominated; (ii) beachface slopes decrease from >11° to ca 7°; and (iii) progradation rates increase from 0·4 to 1·8 m yr?1. Hydrodynamic modelling demonstrates a correlation between progressive shoaling of Tijucas Bay driven by sea‐level fall and sediment infilling and a decrease in onshore wave‐energy transport from 18 to 4 kW m?1. The combination of allogenic (sediment supply, falling relative sea‐level and geology) and autogenic (decrease in wave energy due to bay shoaling) processes drove the development of a regressive system with characteristics that are rare, if not unique, in the Holocene and rock records. These findings demonstrate the complexities in architecture styles of highstand and regressive systems tracts. Furthermore, this article highlights the diverse internal and external processes and feedbacks responsible for the development of these intricate marginal marine sedimentary systems.  相似文献   

16.
Shoreface architecture, evolution (mid-Holocene to present) and depths of transgressive ravinement were examined from Sabine Pass, at the Texas–Louisiana border, to South Padre Island, near the Texas–Mexico border, using 30 shoreface transects. Shoreface transects extend out to 16-m water depth, each created from an echo-sounding profile and, on average, seven sediment cores. The shoreface is composed of three broad sedimentological facies: the upper shoreface, composed almost entirely of sand; the proximal lower shoreface, composed of sand with thickly to medium-bedded (50–10 cm) mud; and the distal lower shoreface, composed dominantly of mud with medium- to thinly bedded (20–3 cm) sand. Shoreface architecture and evolution is extremely variable along the Texas coast. Shoreface gradients increase from 2·25 m km–1 in east Texas to 3·50 m km–1 in south Texas. Shoreface sands coarsen towards south Texas. East and south Texas shoreface deposits are thin and retrograding whereas central Texas shoreface deposits are thicker and prograding. Central Texas is characterized by stacked shoreface successions, whereas in east Texas, lower shoreface sands are preserved only in offshore banks. Preservation of shoreface deposits is low in south Texas. Although eustatic fluctuations and accommodation space have a strong impact on overall mid-Holocene to present shoreface evolution and preservation potential, along-strike variations in sediment supply and wave energy are the main factors controlling shoreface architecture. The transgressive ravinement surface varies from –6 to –15 m along the Texas coast.  相似文献   

17.
Since most barrier systems appear to have retreated into their present positions from further out on the continental shelf, the continental shelf is a logical place in which to investigate barrier genesis. The Middle Atlantic Bight of North America, one of the best known shelf sectors, does not appear to contain any drowned barriers. Instead, a series of terraces bear on their surfaces a discontinuous carpet of lagoonal sediments beneath a discontinuous sand sheet formed by erosional barrier retreat. Scarps separating terraces are the lower shorefaces of stillstand barriers whose superstructures were destroyed when shoreface retreat resumed. Thus the “origin” of most barriers is that they have retreated in from the position of their immediate predecessors. Barrier genesis, in the classic sense of large-scale, coastwise spit progradation or mainland-beach detachment, could only have occurred at Late Wisconsin lowstand, when the sense of sea-level displacement was reversed. The relative roles of coastwise spit progradation and mainland-beach detachment depend on coastal relief and slope, with steep, rugged coasts favoring spit progradation at the expense of mainland-beach detachment. Since most major barrier systems form on flat coastal plains, it would appear that mainland-beach detachment is the more important mode of barrier formation.During stillstands or periods of reduction in the rate of sea-level rise, coasts can more nearly approach their climax configuration, in which the shoreline is relatively straight, and the shoreface is well developed and of maximum possible slope. Coastal adjustments during such periods may require localized mainland-beach detachment and coastwise spit progradation, in order to attain such a configuration.  相似文献   

18.
The stratigraphy of the last deglaciation sequence is investigated in Lake Saint‐Jean (Québec Province, Canada) based on 300 km of echo‐sounder two dimensional seismic profiles. The sedimentary archive of this basin is documented from the Late Pleistocene Laurentidian ice‐front recession to the present‐day situation. Ten seismic units have been identified that reflect spatio‐temporal variations in depositional processes characterizing different periods of the Saint‐Jean basin evolution. During the postglacial marine flooding, a high deposition rate of mud settling, from proglacial glacimarine and then prodeltaic plumes in the Laflamme Gulf, produced an extensive, up to 50 m thick mud sheet draping the isostatically depressed marine basin floor. Subsequently, a closing of the water body due to glacio‐isostatic rebound occurred at 8.5 cal. ka BP, drastically modifying the hydrodynamics. Hyperpycnal flows appeared because fresh lake water replaced dense marine water. River sediments were transferred towards the deeper part of the lake into river‐related sediment drifts and confined lobes. The closing of the water body is also marked by the onset of a wind‐driven internal circulation associating coastal hydrodynamics and bottom currents with sedimentary features including shoreface deposits, sediment drifts and a prograding shelf‐type body. The fingerprints of a forced regression are well expressed by mouth‐bar systems and by the shoreface–shelf system, the latter unexpected in such a lacustrine setting. In both cases, a regressive surface of lacustrine erosion (RSLE) has been identified, separating sandy mouth‐bar from glaciomarine to prodeltaic muds, and sandy shoreface wedges from the heterolithic shelf‐type body, respectively. The Lake Saint‐Jean record is an example of a regressive succession driven by a glacio‐isostatic rebound and showing the transition from late‐glacial to post‐glacial depositional systems.  相似文献   

19.
Hypersaline lakes occur in hydrologically closed basins due to evaporitic enrichment of dissolved salts transported to the lakes by surface water and groundwater. At the hypersaline Lydden Lake in Saskatchewan, Canada, groundwater/lake-water interaction is strongly influenced by the geological heterogeneity of glacial deposits, whereby a highly permeable glaciofluvial sand/gravel deposit is underlain by glaciolacustrine deposits consisting of dense clay interspersed with silt/sand lenses. Pressure head distribution in a near shore area indicates a bi-directional flow system. It consists of topographically driven flow of fresh groundwater towards the lake in the sand/gravel aquifer and density-driven, landward flow of saline groundwater in the underlying glaciolacustrine deposits. Electrical resistivity tomography, and chemical and isotopic composition of groundwater clearly show the landward intrusion of saline water in the heterogeneous unit. The feasibility of bi-directional flow and transport is supported by numerical simulations of density-coupled groundwater flow and transport. The results suggest that the geologically controlled groundwater exchange processes have substantial influences on both inputs and outputs of dissolved minerals in hypersaline lakes in closed basins.  相似文献   

20.
Spit systems are seldom recognized in the pre‐Quaternary sedimentary record compared to their common occurrence along present‐day coasts and in Quaternary successions. This lack of recognition may partly be due to the lack of widely accepted depositional models describing the facies characteristics of spit systems and their subaqueous platforms in particular. The Skagen spit system is a large active system that began to form 7150 yr bp and from 5500 bp to Recent times it has prograded 4 m year?1 and accumulated 3·5 × 109 m3 of sand. The spit system provides a unique opportunity for establishing a well‐constrained depositional model because uplift and erosion have made large windows into the preserved facies, while active spit‐forming processes can be examined at the young prograding end of the same system. The depositional model presented here thus builds on excellent outcrops, surface morphology, a well‐defined palaeogeography and detailed C14 age control supplemented with observations from continuous well cores and profiles obtained by ground‐penetrating radar and transient electromagnetic surveys. The factors that have governed the development of the spit system, such as relative sea‐level change, wave and current climate, tidal range, sediment transport and depositional rates are also well‐understood. The sedimentary facies of the spit system are grouped into four principal units consisting from below of thick storm sand beds, dune and bar‐trough deposits, beach deposits and peat beds. These four units form a coarsening and shallowing upward sand‐dominated succession, up to 32 m thick, which overlies offshore silt with a transition zone and is topped by a diastem overlain by young aeolian dune sand. The sedimentary structures and depositional processes are described in detail and integrated into a depositional model, which is compared to other spit systems and linear shoreface models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号