首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Maldivian archipelago comprises some of the most characteristic and significant world atoll systems, but the meiobenthic assemblages of these islands continue to be largely unknown. To investigate variations in meiofaunal spatial distribution and biodiversity in back‐reef platforms, three transects were studied, two at Felidhoo (the north and east sides) and one at South Malé. The sedimentological features of the samples obtained were also analyzed to further current knowledge on the relationships that exist between sediments and meiofauna. Our results reveal that the meiofaunal assemblage at these locations is well diversified and includes 20 major taxa. Nematodes and copepods are dominant, together forming 68% of the total meiofauna, followed by platyhelminthes, polychaetes and ostracods. The nematode assemblage is very rich and composed of 34 families and 123 genera – 96 of which (78%) set new records for the Maldives. The structures of the meiofaunal and nematode assemblages are relatively similar on the ‘large‐scale’ level (i.e. when the different platforms are compared) and reveal a low β‐diversity. However, significant dissimilarities were detected within each platform, emphasizing that such ‘small‐scale’ differences are the main factors determining the structure of the meiofauna and, in particular, the nematode assemblages. Although significant differences were not detected between the transects, greater levels of dissimilarity were recognized at North Felidhoo. Here, the building of inclined deposit layers plays a significant role in increasing the heterogeneity of the platform habitats and sediments, confirming the great importance of sediment granulometry as an environmental variable. Indeed, a close relationship is observed between meiofauna (especially for the nematodes) and grain size, which appears to control the structure, diversity and trophic composition of the Maldivian meiofauna assemblages, thus highlighting the high biodiversity existing in the medium‐coarse sands.  相似文献   

2.
We examined the effects of crude oil contamination on community assemblages of meiofauna and nematodes after exposure to total petroleum hydrocarbons in the laboratory. We administered a seawater solution that had been contaminated with total petroleum hydrocarbons to seven treatment groups at different concentrations, while the control group received uncontaminated filtered seawater. The average density of total meiofauna in the experimental microcosms diluted with 0.5%, 1%, 2%, and 4% contaminated seawater was higher than the density in the control. The average density of total meiofauna in the 8%, 15%, and 20% microcosms was lower than the density in the control. The density of nematodes was similar to that of the total meiofauna. Cluster analysis divided the microcosms into group 1 (control, 0.5%, 1%, 2%, and 4% microcosms) and group 2 (8%, 15%, and 20% microcosms). However, SIMPROF analysis showed no significant difference between the two groups (p > 0.05). Bolbolaimus spp. (37.1%) were dominant among the nematodes. Cluster analysis showed similar results for nematode and meiofaunal communities. The total meiofaunal density, nematode density, and number of Bolbolaimus spp. individuals were significantly negatively associated with the concentration of total petroleum hydrocarbons (Spearman correlation coefficients, p < 0.05). Within the nematodes, epistrate feeders (group 2A: 46%) were the most abundant trophic group. Among the treatment groups, the abundance of group 2A increased in low-concentration microcosms and decreased in high-concentration microcosms. Thus, our findings provide information on the effects of oil pollution on meiofauna in the intertidal zones of sandy beaches.  相似文献   

3.
Sediment samples were collected in the intertidal zone of the Dagu River Estuary, Jiaozhou Bay, China in April,July and October 2010 and February 2011 for examining seasonal dynamics of meiofaunal distribution and their relationship with environmental variables. A total of ten meiofaunal taxa were identified, including free-living marine nematodes, benthic copepods, polychaetes, oligochaetes, bivalves, ostracods, cnidarians, turbellarians,tardigrades and other animals. Free-living marine nematodes were the most dominant group in both abundance and biomass. The abundances of marine nematodes were higher in winter and spring than those in summer and autumn. Most of the meiofauna distributed in the 0–2 cm sediment layer. The abundance of meiofauna in hightidal zone was lower than those in low-tidal and mid-tidal zones. Results of correlation analysis showed that Chlorophyll a was the most important factor to influence the seasonal dynamics of the abundance, biomass of meiofauna and abundances of nematodes and copepods. CLUSTER analysis divided the meiofaunal assemblages into three groups and BIOENV results indicated that salinity, concentration of organic matter, sediment sorting coefficient and sediment median diameter were the main environmental factors influencing the meiofaunal assemblages.  相似文献   

4.
The evaluation and management of fisheries resources requires knowledge of spatial and temporal changes in the habitat-associations of fishes. However, most studies concerning habitat associations of small fishes in the shallow regions of estuaries have been limited to daytime sampling strategies. Diel changes were investigated in assemblages of fishes associated with shallow seagrass (Zostera capricorni) and bare sand in two estuaries in south-eastern Australia. Habitat-related differences in assemblages were strong day and night, and were greater than diel changes in assemblages. The seagrass-associated assemblages remained similar day and night and consistently differed from those associated with bare sand. In contrast, the assemblages over sand varied on a diel basis as larger individuals of several species (e.g.Gerres subfasciatus,Platycephalus fuscus) that resided over other (deeper) habitats during the day were caught over shallow sand at night. Further, some species (e.g.Ambassis jacksoniensis) that resided in seagrass during the day occurred over sand at night. Both habitats were utilized by newly recruited juveniles of economically important species and the habitat-associations of these species generally did not differ on a diel basis. Therefore, both habitats are considered important to the fisheries resources of south-eastern Australia. Inclusion of night-time sampling provided a greater understanding and appreciation of the use of the unvegetated habitat by fishes than has previously been acknowledged from studies based solely on daytime sampling. This study indicates that greater consideration of temporal changes in habitat associations of fishes is required in other geographic regions.  相似文献   

5.
The ecology and diversity of the shallow soft‐bottom areas adjacent to coral reefs are still poorly known. To date, the few studies conducted in these habitats dealing with macroinvertebrate fauna have focused on their abundance spatial patterns at high taxonomic levels. Thus, some aspects important to evaluate the importance and vulnerability of these habitats, such as species diversity or the degree of habitat specialization, have often been overlooked. In this study we compared the crustacean assemblages present in four different habitats at Magoodhoo Island coral reef lagoon (Maldives): coral rubble, sandy areas and two different seagrass species (Thalassia hemprichii and Cymodocea sp.). Forty‐two different crustacean species belonging to 30 families and four orders were found. ‘Site’ was a significant factor in all of the statistical analyses, indicating that tropical soft‐bottom habitats can be highly heterogeneous, even at a spatial scale between tens and hundreds of meters. Although traditionally it has been considered that seagrass beds host greater species diversity and abundance of organisms than adjacent unvegetated habitats, no differences in the univariate measures of fauna (abundance of organisms, number of species and Shannon diversity) were observed among habitats. However, sandy areas, coral rubble and seagrass beds exhibited different species composition of crustacean communities. The percentage of taxa considered as potential habitat specialists was 27% and the number of species exclusively occurring in one habitat was especially high in seagrass beds. Thus, degradation of this vegetated habitat would result in a great loss of biodiversity in tropical shallow soft‐bottom habitats.  相似文献   

6.
Field investigations were performed in a low-energy subtidal muddy sediment in Loch Creran, a sea-loch on the west coast of Scotland where the impact of Melinna palmata, a tube-building polychaete, on the meiofaunal community structure was assessed. This polychaete was found in high densities and forms prominent faecal casts on the sediment surface. Samples were retrieved from the casts, the feeding area of the polychaete and from an unaffected control area. The number of nematodes, the dominant taxon, did not vary significantly between areas. Of the five most abundant nematode species one was significantly more abundant in the cast area. Diversity and trophic structure of the nematode component of the meiofauna was very similar in all three areas. Copepods were more than twice as abundant in background sediments as in faecal mounds and feeding areas; however, Longipedia spp. were more abundant in the cast areas. For the copepods these findings support models which state that natural disturbances create a mosaic of patches that have different species compositions depending on their states of recovery.  相似文献   

7.
The productivity and health of seagrass depend on the combined inputs of nutrients from the water and sediments in which they grow and the microbiota with which they live intimately. However, little is known about the composition and diversity pattern of single-celled benthic eukaryotes in seagrass meadows. Here, we investigated how the structure and diversity of the benthic microeukaryotic community vary with respect to season, location, and seagrass colonization, by applying 18S rRNA gene amplicon sequencing for 96 surface sediment samples that were collected from three different seagrass habitats through four seasons. We found that benthic microeukaryotic communities associated with seagrass Zostera japonica exhibited remarkable spatial and seasonal variations, as well as differences between vegetated and unvegetated sediments. Diatoms and dinoflagellates predominated in the benthic microeukaryotic communities, but they were inversely correlated and displaced each other as the dominant microbial group in different seasons or habitats. Mucoromycota was more prevalent in vegetated sediments, whereas Lobulomycetales and Chytridiales had higher proportions in unvegetated sites. Total organic carbon and total organic nitrogen were the most important environmental factors in driving the microeukaryotic assemblages and diversity. Our study expands the available knowledge on the biogeographic distribution patterns and niche preferences for benthic microeukaryotes in seagrass systems.  相似文献   

8.
The effect of an abundant sandy beach polychaete, Scolelepis squamata, on the colonisation of defaunated sediments by marine nematodes indicates that sandy beach fauna can be partially controlled by biological interactions within and across size groups. Experimental cores, equipped with windows allowing infaunal colonisation, were filled with defaunated sandy beach sediment containing two different treatments with and without S. squamata. These cores were inserted into microcosms filled with sediment with indigenous meiofauna collected from the field. The treatments were incubated in the laboratory at ambient temperature and salinity for 2, 7, 14 and 21 days, in order to follow the colonisation process of the defaunated sediments by the indigenous nematode fauna over time. Nematodes initially colonised both treatments, with abundances of up to 10% of the densities in the control; after 2 weeks, nematode densities in the cores without S. squamata surpassed the control densities. Nematode assemblages in both treatments were not species rich, and also differed in composition from the natural assemblages. The most successful colonising species, Enoplolaimus litoralis, was rare in the surrounding sediment, suggesting that colonisation was determined by species-specific characteristics such as body size, motility and feeding strategy. Initially the presence of macrofauna did not affect the nematode community composition, but after 2 weeks of the experiment, the presence of the polychaete seemed to facilitate the earlier establishment of non-opportunistic species.  相似文献   

9.
In May, 2007 we sank the remains of a Minke whale (Balaenoptera acutorostrata) in the East Sea, Peter the Great Bay, at 30 m of water near the coast of Big Pelis Island. In the present study we describe the nematode communities in sediments under the implanted whale carcass. Abundance of nematodes increased with the distance from the carcass. Dominant trophic group was non-selective deposit feeders. The highest values of indexes of a specific diversity and evenness were noted in sediments under the whale, while domination index occurred at the highest distance from the whale. The suggestion is made that the cause of low density of nematodes in sediments under the whale is an extreme increase in number of macrofaunal animals, and predation and food competition between macro- and meiofauna. The changes noted in nematode assemblages living in an implanted whale in shallow waters are similar to those in deep-sea assemblages.  相似文献   

10.
Significant spatial heterogeneity in the abundance and composition of meiofaunal and nematode assemblages was described inside the Genoa-Voltri harbour (Genoa, Italy) in relation to variation in the main environmental variables. In harbour sediments characterized by low Eh values and high organic matter concentrations, total meiofauna abundance was lower (948 ± 919 ind 10 cm−2), nematode individual biomass was higher (0.17 ± 0.07 μg C), kinorhynchs and tanaids were completely absent, and the nematode assemblage was dominated by the genera Terschellingia, Sabatieria (pulchra group) and Paracomesoma. In contrast, in sediment characterized by lower levels of organic pollution, meiofaunal abundance was higher (1085 ± 737 ind 10 cm−2), nematode individual biomass was lower (0.11 ± 0.04 μg C), kinorhynchs and tanaids were present and the nematodes were dominated by the genera Desmodora, Daptonema, Anticoma and Halalaimus.Environmental disturbance as assessed by the analysis of meiofaunal and nematode assemblages and sediment environmental variables changed significantly over a scale hundreds of meters, but did not follow a gradient from the inner to the outer harbour. Analysis of nematode assemblages is proposed as a useful tool for the identification of environmental risk areas which may assist in the development of good planning, monitoring programmes and better management of harbour ecosystems.  相似文献   

11.
Fish, epibenthos and macroinfauna were collected in a Zostera marina bed and nearby unvegetated sediments in the estuary of the Damariscotta River, on the mid-coast of Maine. Samples of epibenthic fauna and fish were collected at low tides both during day and night, and samples of infauna at low tides during the day. The mean density of Zostera shoots in the study area was 335 m−2. Abundance and species number of fish were greater at night than during the day and greater in eelgrass beds (Z. marina) than in unvegetated habitats. Daytime fish collections were dominated by Atlantic silversides (Medinia medinia), while juvenile winter flounder (Pseudopleuronectes americanus) dominated night collections. Also Zostera-associated epifaunal abundances and number of species were significantly higher at night than during the day. Mysis stenolepis, Idotea balthica and Littorina obtusata were dominant species in the epifauna samples. Of the total of 37 invertebrate species encountered, only five occurred both in the infaunal and epifaunal samples. Nineteen different taxa were collected from the benthic core samples. The most abundant invertebrate infaunal taxa were sipunculids, the polychaete Nereis virens, and oligochaetes. Infaunal invertebrate abundances and species diversity were significantly higher in eelgrass beds than in unvegetated sediments. The abundance and number of species of benthic invertebrates were also positively correlated to seagrass biomass. Community diversity values (H′) were relatively low but fit well in the general pattern of decreasing diversity towards northern latitudes.  相似文献   

12.
Biodiversity estimations, particularly in vulnerable tropical regions, are essential to understanding ecosystem structure, function and conservation. While threats to marine and terrestrial ecosystems have fueled increased interest in biodiversity research, information on meiofauna, a key trophic and ecologic community of microscopic organisms that lives within sediments, is still lacking. Here we report the results of a faunistic investigation conducted in Bali, Indonesia. The results reveal that the biodiversity of marine meiofauna in Bali is very high. Meiofauna from coral reefs, sand flats and seagrass beds differed significantly in abundance and diversity. Nonetheless, overall community compositions show that meiofauna communities are affected by environmental variables. The high meiofaunal diversity observed in Bali, a low diversity region of the Coral Triangle, indicates the importance of further meiofaunal research across this region and across a broader diversity of habitats. The data presented provide an important baseline for future studies on biodiversity conservation in the face of environmental changes due to anthropogenic impacts and/or natural events.  相似文献   

13.
Seagrass beds serve as nursery grounds for many fish species and often play an important role in the juvenile stages of economically and recreationally important fishes. The eelgrass Zostera capensis is the dominant submerged macrophyte in permanently open South African estuaries and occupies large intertidal and subtidal areas within the Knysna system. The primary objective of this study was to compare the occurrence of sparids and mugilids in eelgrass and nearby bare sediment areas using sampling with seine nets. The hypothesis that was tested is that mugilids are dominant in unvegetated areas of the Knysna Estuary littoral whereas sparids predominate within eelgrass beds located in the same zone. The results indicate that the family Mugilidae is better represented at unvegetated sites when compared to members of the family Sparidae, with the exception of Lithognathus lithognathus, but that the dominant three sparids and dominant two mugilids were most abundant in sparse eelgrass beds that included both bare and vegetated areas within this habitat type. The main fish species responsible for the separation of fish assemblages associated with unvegetated sites versus those associated with vegetated areas were Rhabdosargus holubi, Liza dumerili, Liza richardsonii, Lithognathus lithognathus, Sarpa salpa and Diplodus capensis, with R. holubi, S. salpa and D. capensis being mainly attracted to eelgrass habitats and L. dumerili, L. richardsonii and L. lithognathus having a stronger affinity for bare areas. This finding confirms a previous estuarine study in the nearby Swartvlei lake littoral, which found that sparids dominated areas where aquatic macrophytes were extensive and that mugilids became more prevalent at those same sites when the macrophytes underwent complete senescence. The length-frequency distributions of some sparid and mugilid species differed considerably between eelgrass and bare sediment areas, whereas those of other species showed little or no difference between these two habitat types.  相似文献   

14.
Mud volcanoes are cold seeps, in which the escape of gas and fluids associated with mud creates 3-D bottom structures that enhance the spatial heterogeneity and potentially alter the functioning of the benthic ecosystems. We investigated a complex system of mud volcanoes of the Mediterranean Sea characterised by the presence of different structures (i.e., isolated domes, domes surrounded by moats, clustered domes, and ridges) displaying different levels of seepage. We hypothesize that the combined effects of seafloor heterogeneity (i.e., different 3-D structures as revealed by detailed topographic analysis), fluid emissions and trophic characteristics of these systems can influence the structural and functional biodiversity of meiofauna (with special focus on the nematodes). We found that sediments affected by intensive seepage displayed the lowest faunal abundances and number of higher taxa. However, mud volcanoes without emissions, but characterized by a high structural complexity (such as the ridges), were associated with the highest meiofaunal abundances and number of higher taxa. Mud volcanoes hosted also a remarkable abundance of rare taxa specifically associated with these structures (e.g., acarians, cumaceans, tanaids, cladocerans and hydroids) and absent in slope sediments (used as a control). Each mud-volcano area displayed a different nematode species composition. Overall 76 nematode species (from a total of 235) were exclusively associated with mud-volcano structures, whilst 29 were exclusively encountered in slope sediments. We conclude that the presence of mud volcanoes, for their contribution to increase spatial heterogeneity and for the extreme conditions associated with gas emissions, promotes higher levels of beta diversity, thus enhancing the regional (gamma) benthic diversity. These findings provide new insights on the factors controlling meiobenthic biodiversity in mud volcanoes and clues for future action of conservation of the biodiversity specifically associated with these habitats.  相似文献   

15.
P. Francour 《Marine Ecology》1997,18(2):157-173
Abstract. Observations of the fish fauna of Posidonia oceanica (L.) DELILE seagrass beds were undertaken in two shallow stations and one deeper station in Port-Cros National Park, between November 1984 and September 1987. Demographic structure, density and biomass of the 19 most abundant species or taxa were assessed by several non-destructive sampling methods. The fish assemblages studied were dominated in number and biomass by a small number of species (Labridae: Symphodus ocellatus and S. tinca ; Sparidae: Diplodus annularis and Sarpa salpa ). Large individuals were infrequent and small size class fish were dominant especially in sheltered shallow areas. Recruitment and migrations (shortor long-term) have been identified as the most important causes of abundance variations over the year. The four trophic categories were sampled only in the sheltered shallow zone, where the herbivore Sarpa salpa represents a strong proportion of the fish fauna (40–70%) during summer. The fish assemblages differ between the three seagrass beds, and the depth appears as the most important factor affecting the fish assemblages in P. oceanica . The functional difference between shallow and deeper seagrass beds is therefore discussed.  相似文献   

16.
Meiofaunal standing stock and nematode community structure were investigated in the western continental shelf of India by collecting samples from every degree square of the shelf during two cruises of the FORV (Fishery and Oceanographic Research Vessel) Sagar Sampada, conducted in 1998 and 2001. Samples were collected from 30, 50, 100 and 200 m depths using a Smith Mc Intyre grab. Meiofaunal density ranged from 8 Ind. 10 cm−2 to 1208 Ind. 10 cm−2 and biomass from 0.07 mg 10 cm−2 to 6.11 mg 10 cm−2. Nematodes were the dominant meiofaunal group, contributing 88% of the density and 44% of the biomass. Harpacticoid copepods were the second important taxa, contributing 8% of both biomass and density. Altogether, 154 species of nematodes belonging to 28 families were recorded from the study area. Numerically, Desmodora spp., Dorylaimopsis sp., Tricoma spp., Theristus spp. and Halalaimus spp. were the dominant species. In general, there was a decrease in biomass and density of meiofauna and species diversity of nematodes with increase in depth. There was a 67% drop in species number from 51 to 100 m (106 species) to the shelf edge (35 species). Species richness and diversity indices showed consistent decrease with depth. The species dominance index was higher below 150 m depth. ANOSIM (from PRIMER) showed a significant difference between the nematodes of the near shore and shelf edge. Latitudinal variation was observed only in the number of nematode species. Biomass and abundance of nematodes were found to increase from coarse to fine sediment, while copepods showed an opposite trend. Multivariate analyses of nematode communities did not reveal any latitudinal or substratum differences. Variables such as depth, latitude, organic matter (OM) and amount of clay were the most relevant parameters influencing the biomass and density of meiofauna, while depth and temperature were the important parameters explaining the distribution of the nematode communities along the western Indian shelf.  相似文献   

17.
A quantitative study of metazoan meiofauna was carried out on bathyal sediments (305, 562, 830 and 1210 m) along a transect within and beneath the oxygen minimum zone (OMZ) in the southeastern Pacific off Callao, Peru (12°S). Meiobenthos densities ranged from 1517 (upper slope, middle of OMZ) to 440–548 ind. 10 cm−2 (lower slope stations, beneath the OMZ). Nematodes were the numerically dominant meiofaunal taxon at every station, followed by copepods and nauplii. Increasing bottom-water oxygen concentration and decreasing organic matter availability downslope were correlated with observed changes in meiofaunal abundance. The 300-m site, located in the middle of the OMZ, differed significantly in meiofaunal abundance, dominance, and in vertical distribution pattern from the deeper sites. At 305 m, nematodes amounted to over 99% of total meiofauna; about 70% of nematodes were found in the 2–5 cm interval. At the deeper sites, about 50% were restricted to the top 1 cm. The importance of copepods and nauplii increased consistently with depth, reaching ∼12% of the total meiofauna at the deepest site. The observation of high nematode abundances at oxygen concentrations <0.02 ml l−1 supports the hypothesis that densities are enhanced by an indirect positive effect of low oxygen involving (a) reduction of predators and competitors and (b) preservation of organic matter leading to high food availability and quality. Food input and quality, represented here by chloroplastic pigment equivalents (CPE) and sedimentary labile organic compounds (protein, carbohydrates and lipids), were strongly, positively correlated with nematode abundance. By way of contrast, oxygen exhibited a strong negative correlation, overriding food availability, with abundance of other meiofauna such as copepods and nauplii. These taxa were absent at the 300-m site. The high correlation of labile organic matter (C-LOM, sum of carbon contents in lipids, proteins and carbohydrates) with CPE (Pearson's r=0.99, p<0.01) suggests that most of the sedimentary organic material sampled was of phytodetrital origin. The fraction of sediment organic carbon potentially available to benthic heterotrophs, measured as C-LOM/Total organic carbon, was on average 17% at all stations. Thus, a residual, refractory fraction, constitutes the major portion of organic matter at the studied bathyal sites.  相似文献   

18.
Metazoan meiofaunal abundance, total biomass, nematode size and the richness of taxa were investigated along bathymetric gradients (from the shelf break down to ca. 5000-m depth) in six submarine canyons and on five adjacent open slopes of three deep-sea regions. The investigated areas were distributed along >2500 km, on the Portuguese to the Catalan and South Adriatic margins. The Portuguese and Catalan margins displayed the highest abundances, biomass and richness of taxa, while the lowest values were observed in the Central Mediterranean Sea. The comparison between canyons and the nearby open slopes showed the lack of significant differences in terms of meiofaunal abundance and biomass at any sampling depth. In most canyons and on most slopes, meiofaunal variables did not display consistent bathymetric patterns. Conversely, we found that the different topographic features were apparently responsible for significant differences in the abundance and distribution of the rare meiofaunal taxa (i.e. taxa accounting for <1% of total meiofaunal abundance). Several taxa belonging to the temporary meiofauna, such as larvae/juveniles of Priapulida, Holothuroidea, Ascidiacea and Cnidaria, were encountered exclusively on open slopes, while others (including the Tanaidacea and Echinodea larvae) were found exclusively in canyons sediments. Results reported here indicate that, at large spatial scales, differences in deep-sea meiofaunal abundance and biomass are not only controlled by the available food sources, but also by the region or habitat specific topographic features, which apparently play a key role in the distribution of rare benthic taxa.  相似文献   

19.
The spread of the invasive alga Caulerpa racemosa var. cylindracea in shallow-water habitats can present different faunal assemblage composition. We compared the amphipod assemblages associated with C. racemosa and natural habitats found on shallow-water Mediterranean soft substrata. Four vegetated habitats were compared: C. racemosa, Caulerpa prolifera, Cymodocea nodosa and Posidonia oceanica with unvegetated substrata. Samples were collected during two sampling periods (September 2004 and March 2005). A total of 63 amphipod species were recorded. The results showed that the vegetated habitats sampled, including C. racemosa stands, supported a higher abundance and species richness of amphipods. Furthermore, the assemblage structure differed between the different habitats, while the abundance of some species was significantly different, depending on habitat. For example, Microdeutopus obtusatus was favoured by C. racemosa habitat; Ampelisca diadema was associated with C. prolifera beds; and Hyale schmidti was more abundant in P. oceanica meadows. Habitat invasion by C. racemosa can exert an important influence on biotic assemblages, modifying habitat structure and associated fauna.  相似文献   

20.
Trends among major metazoan meiofaunal taxa were investigated based on 56 deployments of a multicorer at 10 time points over a period of 11 years (1989–1999) at the Porcupine Abyssal Plain Sustained Observatory site (PAP-SO: 48°50′N 16°30′W, 4850 m depth). This area is characterised by a strong seasonality in the deposition of organic matter to the seafloor and by the massive increase in the density of holothurian species since 1996, the so-called ‘Amperima event’. Total meiofaunal densities ranged from 346 to 1074 ind.×10 cm−2 and showed a significant increase with time when time was represented by cruises, years and the ‘Amperima period’ (1996–1999) vs. the pre-Amperima period (1989–1994). This pattern was driven mainly by the nematodes, which were the dominant taxon (∼90% of total abundance). The third most abundant group, the polychaetes, also increased significantly in abundance over the time series, while the ostracods showed a significant decrease. Most other taxa, including the second-ranked group, the copepods (harpacticoids and nauplii), did not exhibit significant temporal changes in abundance. Ordination of taxon composition showed a shift from the pre-Amperima to the Amperima periods, a trend supported by the significant correlation between the x-ordinate and time. The majority (52–75%) of meiofaunal animals inhabited the top 2 cm of the 5 cm sediment cores analysed. There were significant increases in the proportion of total meiofauna, nematodes and copepods (but not polychaetes) inhabiting the 0–1 cm layer over time (represented by cruises) and between the pre-Amperima and Amperima periods in the case of copepods and polychaetes. During the intensively sampled period (1996–1997), there were indications of seasonal changes in the vertical distribution patterns of total meiofauna and nematodes within the sediment. We discuss the potential link between temporal variations in organic matter flux to the seafloor and meiofaunal populations, considering both qualitative and quantitative changes in fluxes and how they may be linked to climate variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号