首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Newark Island layered intrusion is a composite layered intrusion within the Nain anorthosite complex, Labrador. The intrusion comprises a lower layered series (LS) dominated by troctolites, olivine gabbros and oxide-rich cumulates and an upper hybrid series (HS) characterized by a wide range of mafic, granitic and hybrid cumulates and discontinuous layers of chilled mafic rocks (Wiebe 1988). The HS crystallized from a series of replenishments of both silicic and basic magmas. The LS crystallized from periodically replenished basic magmas. The LS has a lower zone that consists mainly of olivine-plagioclase cumulates and contains minor cryptic reversals in mineral compositions that resulted from replenishments of relatively primitive magma. An upper zone is dominated by olivine-plagioclaseaugite-ilmenite cumulates. Cumulus titanomagnetite and pyrrhotite occur within some oxide-rich cumulates, and the stratigraphically highest layers contain cumulus apatite. At intermediate levels in the sequence, cumulus inverted pigeonite occurs in place of olivine. Several prominent regressions in the stratigraphy of the upper zone are marked by fine-grained troctolitic layers with much higher Mg no. [100 MgO/(MgO+FeO)] and anorthite than underlying cumulates. These layers coarsen upward and grade back to oxide-bearing olivine gabbros within thicknesses ranging from 10 cm to 15 m. Dikes that cut the LS have major- and trace-element compositions that strongly suggest that they are feeders for the replenishments. In the lower zone when olivine and plagioclase were the only cumulus phases, replenishments were less dense than the resident magma and rose as plumes and mixed with it. Precipitation of cumulus oxides in the upper zone lowered the density of resident magma so that subsequent replenishments were more dense than resident magma. Replenishments that occurred after oxides began to precipitate had small injection velocities. These post-oxide injections flowed along the interface between resident magma and the cumulate pile and precipitated flow-banded, fine-grained troctolites.  相似文献   

2.
Mg-skarns enclosed in dunite cumulates of the Neo-Proterozoic Ioko-Dovyren intrusion (northern Baikal region, Russia) can be traced to silica-poor dolomitic host rock layers. The dominant minerals of the skarns are brucite (pseudomorph after periclase), forsterite and Cr-poor spinel. Rapid heating of quartz-poor dolomitic xenoliths led to the formation of minor olivine, followed by the breakdown of dolomite to calcite and periclase. Xenoliths were partially melted upon further heating resulting in a calcite melt. This low-density melt was quantitatively squeezed out, mixed with the surrounding mafic magma and left behind periclase and olivine. This caused the crystallization of new olivine with elevated CaO contents in zones above skarn-bearing horizons. Mixing of calcite melt with the surrounding mafic magma also resulted in the crystallization of Cats-rich clinopyroxene instead of plagioclase. The mineralogy of contaminated dunite cumulates is consistent with assimilation of approximately 4wt% CaO by the Ioko-Dovyren mafic magma.  相似文献   

3.
A Permian (~265 Ma) intrusive complex which formed as a magmatic feeder reservoir to an immature island-arc volcano is fortuitously exposed in southern New Zealand. Known as the Greenhills Complex, this intrusion was emplaced at shallow crustal levels and consists of two layered bodies which were later intruded by a variety of dykes. Cumulates, which include dunite, olivine clinopyroxenite, olivine gabbro, and hornblende gabbro-norite, are related products of parent-magma fractionation. Both primary (magmatic) and secondary platinum-group minerals occur within dunite at one locality. Using the composition of cumulus minerals, mafic dykes and melt inclusions, we have determined that the parent magmas of the complex were hydrous, low-K island-arc tholeiites of ankaramitic affinities. Progressive magmatic differentiation of this parent magma generated fractionated melt of high-alumina basalt composition which is now preserved only as dykes which cut the Complex. Field evidence and cumulus mineral profiles reveal that the magma chambers experienced turbulent magmatic conditions during cumulate-rock formation. Recharge of the chambers by primitive magma is likely to have coincided with eruption of residual melt at the surface. Similar processes are inferred to account for volcanic-rock compositions in other parts of this arc terrane and in modern island-arc systems.  相似文献   

4.
The Wingellina Hills intrusion is a small composite gabbroic/ultramaficintrusion and forms a tectonically dismembered segment of theUpper Proterozoic Giles complex in central Australia. Its 1600m of exposed magmatic stratigraphy formed in a continuouslyfractionating, periodically replenished magma chamber. Olivinegabbro and gabbronorite units alternate with lenticular strataboundintercalations of ultramafic (peridotite and pyroxenite) cumulates.A well-developed hybrid footwall zone of intermingled gabbroand pyroxenite underlies each ultramafic unit and demonstratesthe intrusive relationships of ultramafics into gabbroic cumulatemembers. The limited range of mg-number [100 ? Mg/(Mg+Fe)] of ferromagnesiansilicates indicates that the magmatic sequence covers a rathersmall spectrum in chemical fractionation and that the WingellinaHills intrusion represents the basal portion of a formerly largerlayered complex. The mg-number of olivine ranges from 89 to77, below which olivine is replaced by cumulus orthopyroxene.Clinopyroxene covers a wider mg-number range from 91 to 77 andis systematically enriched in MgO relative to coexisting orthopyroxeneand olivine. Anorthite content in plagioclase generally correlatespositively with mg-number changes of coexisting ferromagnesiansilicates. Interstitial plagioclase in clinopyroxenites containsexsolution lamellae of pure orthoclase. These antiperthitesare among the most calcic recorded, with plagioclase hosts betweenAn60 and An80. Bulk antiperthite compositions range around An65–Ab15–Or20and straddle a high-temperature (Or20) solvus in the plagioclasetriangle. The extent of former solid solution between calcicplagioclase and orthoclase indicates crystallization and coolingof the cumulates under moderate pressure and anhydrous conditions. Cryptic mg-number variations show that the intrusion experiencedweak iron enrichment with stratigraphic height. Normal fractionationis confined to the gabbroic members of the sequence, whereasultramafic intercalations are associated with sharp chemicalreversals toward more refractory mineral compositions. Reversalsof mg-number are considerably displaced into the underlyinggabbroic units by up to 50 m relative to the basis of ultramaficintercalations, which indicates extensive postcumulus infiltrationmetasomatism following the emplacement of fresh magma. The trivalentoxides in clinopyroxene have retained their pristine stratigraphicvariation patterns through later metasomatic events and stillcoincide with the cumulus layering. Macroscopic and cryptic layering in the Wingellina Hills intrusionare consistent with a continuously fractionating magma chamberwhose differentiation path was repeatedly reset by periodicinfluxes of primitive parent melt. Ultramafic and gabbroic cumulatemembers can be derived from a single olivine-saturated parentmelt by sequential separation of olivine, olivine-clinopyroxene,and finally olivine/orthopyroxene-clinopyroxene-plagioclase.A series of orthopyroxene-rich cumulates in the mixing zonesof the two melts crystallized from hybrids of the most primitiveand most evolved end-member compositions. Liquidus temperatures calculated for the resident and replenishingmelt components yield 1250 and 1350?C, respectively. As a resultof this temperature difference, fresh influxes of hot parentliquid crystallized rapidly under strongly undercooled conditionsas they ponded on, and quenched against,the chamber floor. Rapidcooling caused a temporary acceleration of the crystallizationfront and formation of impure cumulates with high trapped meltproportions, which resulted in a close coincidence of orthocumulateunits with stratigraphic levels of primitive melt addition.Grain sizes in orthocumulates vary with the cooling rate andpass through a maximum as the degree of undercooling increases.High cooling rates also influenced the composition of some cumulusphases. Clinopyroxenes from ultramafics in the mixing zonesare enriched in iron and aluminium (despite a more primitiveparent melt) and fall outside the fractionation path, especiallyif the batch of new hot magma was small compared with the poolof cooler resident liquid. Aluminous cumulus spinel is partof a metastable crystallization sequence and only crystallizedin the most magnesian ultramafics after episodes of intraplutonicquenching.  相似文献   

5.
Petrology of the Marginal Border Series of the Skaergaard Intrusion   总被引:3,自引:3,他引:3  
The Marginal Border Series (MBS) of the Skaergaard intrusionconsists of rocks formed by in situ crystallization againstthe walls of the intrusion. Most of these rocks are productsof fractional crystallization, though samples believed to representchilled liquid occur locally at the intrusive contact. The MBScomprises only 5% of the exposed volume of the intrusion, butwithin its thickness, the order of crystallization and the compositionsof fractionated rocks and minerals vary systematically withdistance inward from the intrusive contact in largely the samemanner as rocks and minerals upward through the Layered Series(LS). Earliest differentiates are cumulates of olivine and plagioclase.The most basic compositions of cumulus plagioclase (An72) andolivine (Fo84) in these rocks indicate that the amount of fractionationpreceding formation of the exposed LS was substantially lessthat previously believed. Field and compositional data indicatethat picritic blocks are xenoliths rather than cumulates ofthe Skaergaard magma. Xenoliths of gneiss in all stages of reactionare locally abundant; however, there is no evidence that uppercrustal material contaminated the magma from which the MBS cumulatesformed. Compositions of cumulus minerals in the MBS differ fromthose in comparable LS rocks. Cumulates in the lower marginscontain more calcic plagioclase, more magnesian augite in allbut the late differentiates, and more iron-rich olivine. Thecompositions of cumulus olivine and to a lesser degree thoseof other mafic silicates, were modified to more iron-rich compositionsby re-equilibration with relatively large amounts of interstitialliquid. The lower MBS and LS crystallized from the same magma, but fractionationoccurred at different rates on the walls and floor of the intrusion.The upper margin may have crystallized from a magma of modifiedcomposition and fractionated at rates different from that inthe lower margin and Upper Border Series (UBS). Crystals onthe floor and roof of the intrusion accumulated faster or moreefficiently than on the walls. At any given stage of fractionation,crystals also accumulated against all sides of the magma chamberat about the same rate. Either the rates of cooling, crystallization,and crystal retention affected accumulation rates locally asfunctions of rock type and geometry of the walls, or these rateswere largely independent of wall rock owing to buffering ofconductive heat loss possibly to an envelope of hydrothermalfluid circulating around the crystallizing magma. The appearanceor disappearance of cumulus minerals in the lower MBS occursat higher structural levels than in the LS and at lower structurallevels than in the UBS. These relationships together with cumulusmineral compositions indicate that magma at the margins wasalways somewhat less fractionated than that at the floor androof of the chamber. It is proposed that these relationshipsreflect the combined effects of liquid and crystal fractionationof the magma within largely independent convection systems inthe lower and upper parts of the chamber.  相似文献   

6.
ABSTRACT

A chromite deposit was discovered in the Kudi ophiolite in the Palaeozoic western Kunlun orogenic belt. Chromite forms elongated (<2 m in width) and banded chromitite bodies (<0.1 m in width for each band) in dunite and podiform chromitite bodies (<1.5 m in width) in harzburgite. Dunite is classified into two types. Type I dunite hosting massive and banded chromitites shows low Fo in olivine (88.1–90.9), moderate Cr# [=Cr/(Cr + Al), 0.47–0.56] in chromite, and a positively sloped primitive mantle-normalized platinum group elements (PGE) pattern, suggesting that it is a cumulate of a mafic melt. Harzburgite and type II dunite show olivine with high Fo (>91.1) and chromite with moderate to high Cr# (0.44–0.61), and flat to negatively sloped primitive mantle-normalized PGE patterns, indicating that they are residual mantle peridotite after partial melting. Chromite in all three types of chromitites has relatively uniform moderate values Cr# ranging from 0.43 to 0.56. Massive chromitite contains euhedral chromite with high TiO2 (0.40–0.43 wt.%) and has a positively sloped primitive mantle-normalized PGE pattern, suggesting that it represents a cumulate of a melt. Rocks containing disseminated and banded chromite show overall low total PGE, < 117 ppb, and a negatively sloped primitive mantle-normalized PGE pattern. Chromite grains in these two types of occurrences are irregular in shape and enclose olivine grains, suggesting that chromite formed later than olivine. We suggest that chromite-oversaturated melt penetrated into the pre-existing dunite and crystallized chromite. The oxygen fugacity (fO2 values of chromitites and peridotites are high, ranging from FMQ+0.8 (0.8 logarithmic unit above the fayalite-magnetite-quartz buffer) to FMQ+2.3 for chromitites and from FMQ+0.9 to FMQ+2.8 for peridotites (dunite and harzburgite). The mineral compositions and high fO2 values as well as estimated parental magma compositions of the chromitites suggest that the Kudi ophiolite formed in a sub-arc setting.  相似文献   

7.
Kazuhito Ozawa 《Lithos》1983,16(1):1-16
The Miyamori ultramafic complex forms the basal ultramafic portion of an ophiolite. The complex consists of a tectonic member which is composed dominantly of harzburgite and dunite, and a cumulate member which is composed of interlayered wehrlite, dunite and clinopyroxenite. The tectonite member is overlain by the cumulate member and characterized by tabular granular or porphyroclastic textures, a strong lineation and magnesian olivine (Mg/Mg + Fe = 0.88–0.93). In contrast, the cumulate member exhibits igneous textures and shows no evidence of a penetrative deformation. The olivine is less magnesian than that of the tectonite member (Mg/Mg + Fe = 0.82–0.89). At the boundary of the two members, harzburgite xenoliths have been found in wehrlite of the cumulate member. The minerals at the core of a few large harzburgite xenoliths preserve the compositional characteristics of typical harzburgites in the tectonic member. The occurrence of the harzburgite xenolith in vehrlite and the structural and textural features of the two members indicate that the tectonite member had already been deformed before a magma intruded into the tectonite member and formed a magma chamber in which cumulates were deposited together with harzburgite fragments on the floor of the tectonite. The xenoliths show a fine grained mosaic texture, which may be attributed by the heat of the intruded magma. This hiatus implies that the magma which made the cumulate member did not originate directly from the underlying harzburgite.  相似文献   

8.
Group II xenoliths, corresponding to the lithology of dunite, wehrlite to olivine clinopyroxenite and olivine websterite to websterite, occur in Pleisto-Holocene alkali basalts from Jeju Island, South Korea. The large grain size (up to 5?mm), moderate mg# [=100?×?Mg/(Mg?+?Fetotal) atomic ratio] of olivine (79–82) and pyroxenes (77–83), and absence of metamorphic textural features indicate that they are cumulates of igneous origin. Based on textural features, mineral equilibria and major and trace element variations, it can be inferred that the studied xenoliths were crystallized from basaltic melts enriched in incompatible trace elements and belong to the Jeju Pleisto-Holocene magma system. They appear to have been emplaced near the present Moho, an estimated 5–8?kbars beneath Jeju Island. Consolidation of cumulates was followed by infiltration of silica-enriched metasomatic melt, producing secondary orthopyroxenes at the expense of olivine. The metasomatic agent appears to have been a silica-enriched residual melt evolved from an initially slightly silica-undersaturated alkali basalt to silica-saturated compositions by fractional crystallization under relatively high pressure conditions. The result of this study indicates that relatively young olivine-bearing cumulates could have been metasomatized by a silica-enriched melt within underplates, suggesting that silica enrichment can occur in intraplate Moho-related rocks as well as in the upper mantle of the subarc area.  相似文献   

9.
Rare earth elements in bulk cumulates and in separated minerals (plagioclase, apatite, Ca-poor and Ca-rich pyroxenes, ilmenite and magnetite) from the Bjerkreim–Sokndal layered intrusion (Rogaland Anorthosite Province, SW Norway) are investigated to better define the proportion of trapped liquid and its influence on bulk cumulate composition. In leuconoritic rocks (made up of plagioclase, Ca-poor pyroxene, ilmenite, ±magnetite, ±olivine), where apatite is an intercumulus phase, even a small fraction of trapped liquid significantly affects the REE pattern of the bulk cumulate, together with cumulus minerals proportion and composition. Contrastingly, in gabbronoritic cumulates characterized by the presence of cumulus Ca-rich pyroxene and apatite, cumulus apatite buffers the REE content. La/Sm and Eu/Eu* vs. P2O5 variations in leuconorites display mixing trends between a pure adcumulate and the composition of the trapped liquid, assumed to be similar to the parental magma. Assessment of the trapped liquid fraction in leuconorites ranges from 2 to 25% and is systematically higher in the north-eastern part of the intrusion. The likely reason for this wide range of TLF is different cooling rates in different parts of the intrusion depending on the distance to the gneissic margins. The REE patterns of liquids in equilibrium with primitive cumulates are calculated with mass balance equations. Major elements modelling (Duchesne, J.C., Charlier, B., 2005. Geochemistry of cumulates from the Bjerkreim–Sokndal layered intrusion (S. Norway): Part I. Constraints from major elements on the mechanism of cumulate formation and on the jotunite liquid line of descent. Lithos. 83, 299–254) permits calculation of the REE content of melt in equilibrium with gabbronorites. Partition coefficients for REE between cumulus minerals and a jotunitic liquid are then calculated. Calculated liquids from the most primitive cumulates are similar to a primitive jotunite representing the parental magma of the intrusion, taking into account the trapped liquid fraction calculated from the P2O5 content. Consistent results demonstrate the reliability of liquid compositions calculated from bulk cumulates and confirm the hypothesis that the trapped liquid has crystallized as a closed-system without subsequent mobility of REE in a migrating interstitial liquid.  相似文献   

10.
The Mersin ophiolite, represented by approximately 6-km-thick oceanic lithospheric section on the southern flank of the Taurus calcareous axis, formed in the Mesozoic Neo-Tethyan ocean some time during Late Cretaceous in southern Turkey. The ultramafic and mafic cumulates having over 3 km thickness consist of dunite ± chromite, wehrlite, clinopyroxenite at the bottom and pass into gabbroic cumulates in which leucogabbro, olivine-gabbro and anorthosite are seen. Crystallization order is olivine (Fo91−80) ± chromian spinel (Cr# 60-80), clinopyroxene (Mg#95−77), plagioclase (An95.6−91.6) and orthopyroxene (Mg#68−77). Mineral chemistry of ultramafic and mafic cumulates suggest that highly magnesian olivines, clinopyroxenes and absence of plagioclase in the basal ultramafic cumulates are in good agreement with products of high-pressure crystal fractionation of primary basaltic melts beneath an island-arc environment. Major, trace element geochemistry of the cumulative rocks also indicate that Mersin ophiolite was formed in an arc environment. Coexisting Ca-rich plagioclase and Forich olivine in the gabbroic cumulates show arc cumulate gabbro characteristics. Field relations as well as the geochemical data support that Mersin ophiolite formed in a supra-subduction zone tectonic setting in the southern branch of the Neo-Tethys in southern Turkey.  相似文献   

11.
石板墩堆晶岩位于中祁连地块西段党河断裂带北侧,主要由橄榄岩、蛇纹石化橄辉岩和辉长岩组成,具有多旋回、多韵律层的产出特征。辉长岩LA ICP MS锆石U Pb年龄为(4865 ± 33) Ma。岩石地球化学结果显示,蛇纹石化橄辉岩和辉长岩配分型式十分相似,具有富集大离子亲石元素、亏损高场强元素、LREE相对富集、HREE平坦型分布以及正Eu异常(Eu/Eu*=097~304)的特点。研究结果表明,蛇纹石化橄辉岩、辉长岩为同源岩浆作用的产物,源区为被俯冲流体交代过的软流圈地幔,形成于火山弧环境,是在岩浆作用过程中不断发生堆晶作用,并在堆晶之后再次泵入混合大量新的玄武岩浆反复进行所形成。结合区域大地构造背景,认为中祁连西段是早古生代早期在残留的微陆块基础上形成的一个火山弧增生杂岩地体。  相似文献   

12.
Fe-rich dunite xenoliths within the Kimberley kimberlites compriseolivine neoblasts with minor elongated, parallel-oriented ilmenite,and rarely olivine porphyroclasts and spinel. Compared withtypical mantle peridotites, olivines in the Fe-rich duniteshave lower forsterite (Fo87–89) and NiO contents (1300–2800ppm), which precludes a restitic origin for the dunites. Chrome-richspinels are remnants of a metasomatic reaction that producedilmenite and phlogopite. Trace element compositions differ betweenporphyroclastic and neoblastic olivine, the latter having higherTi, V, Cr and Ni and lower Zn, Zr and Nb contents, documentingtheir different origins. The dunites have high 187Os/ 188Osratios (0·11–0·15) that result in youngmodel ages for most samples, whereas three samples show isotopicmixtures between Phanerozoic neoblasts and ancient porphyroclasticmaterial. Most Fe-rich dunite xenoliths are interpreted to berecrystallized cumulates related to fractional crystallizationof Jurassic Karoo flood basalt magmatism, whereas the porphyroclastsare interpreted to be remnants from a much earlier (probablyArchaean Ventersdorp) magmatic episode. The calculated parentalmagma for the most primitive olivine neoblasts in the Fe-richdunites is similar to low-Ti Karoo basalts. Modelling the crystalfractionation of the inferred parental magma with pMELTS yieldselement fractionation trends that mirror the element variationof primitive low-Ti Karoo basalts. KEY WORDS: dunite xenoliths; fractional crystallization; Karoo; large igneous province; pMELTS; Re–Os; trace elements  相似文献   

13.
新疆洪古勒楞蛇绿岩套中堆积杂岩的地球化学特征及成因   总被引:2,自引:0,他引:2  
新疆和布克赛尔蒙古族自治县境内的洪古勒楞蛇绿岩块,出露于西准噶尔海西褶皱带的西部。该蛇绿岩块的层序发育完好,尤其是保存了具有完整层序的堆积杂岩相。本文描述了堆积杂岩的矿物化学成分演化以及岩石化学、微量元素和稀土元素的地球化学变化规律,指出蛇绿岩、堆积杂岩具有层状镁铁超镁铁岩体的主要特点,两者在成因上是相似的。文中提出蛇绿岩、堆积杂岩是在岩浆房中经液态岩浆重力堆积形成的观点,并对液态堆积机制进行了解释。  相似文献   

14.
Rare dunite and 2-pyroxene gabbro xenoliths occur in banded trachyte at Puu Waawaa on Hualalai Volcano, Hawaii. Mineral compositions suggest that these xenoliths formed as cumulates of tholeiitic basalt at shallow depth in a subcaldera magma reservoir. Subsequently, the minerals in the xenoliths underwent subsolidus reequilibration that particularly affected chromite compositions by decreasing their Mg numbers. In addition, olivine lost CaO and plagioclase lost MgO and Fe2O3 during subsolidus reequilibration. The xenoliths also reacted with the host trachyte to form secondary mica, amphibole, and orthopyroxene, and to further modify the compositions of some olivine, clinopyroxene, and spinel grains. The reaction products indicate that the host trachyte melt was hydrous. Clinopyroxene in one dunite sample and olivine in most dunite samples have undergone partial melting, apparently in response to addition of water to the xenolith. These xenoliths do not contain CO2 fluid inclusions, so common in xenoliths from other localities on Hualalai, which suggests that CO2 was introduced from alkalic basalt magma between the time CO2-inclusion-free xenoliths erupted at 106±6 ka and the time CO2-inclusion-rich xenoliths erupted within the last 15 ka.  相似文献   

15.
Large (≥2 mm) chromite grains are present in IIIAB iron meteorites and in the main-group pallasites (pmg), closely related to high-Au IIIAB irons. Pallasites seem to have formed by the intrusion of a highly evolved metallic magma from a IIIAB-like core into fragmented olivine of the overlying dunite mantle. High Cr contents are commonly encountered during the analyses of metallic samples of high-Au IIIAB irons and main-group pallasites, an indication that Cr contents were high in the intruding liquid and that Cr behaved as an incompatible element during the crystallization of the IIIAB magma, contrary to expectations based on the negative IIIAB Cr-Ni and Cr-Au trends among low-Au IIIAB irons.In a region about 10 cm across in the Brenham main-group pallasite massive chromite fills the interstices between olivine grains, the site normally occupied by metal in Brenham and other pallasites. The massive chromite may have formed as a late cumulus phase; because Fe-Ni was also crystallizing, its absence in the chromite-rich region suggests a separation associated with differences in liquid buoyancy. The coexisting chromite and olivine are zoned; in the olivine FeO is highest in pallasitic (olivine-metal) regions, lowest in rims adjacent to chromite, and intermediate in the cores of these olivines. Chromite shows the opposite zoning, with the highest FeO contents at grain edges adjacent to olivine. The observed gradients are those expected to form by Fe-Mg exchange between olivine and chromite during slow cooling at subsolidus temperatures. Compared to normal Brenham, contents of phosphoran olivine and phosphates are higher in the chromitic pallasitic region. We also report data for large-to-massive chromites present in pmg Molong and in high-Au IIIAB Bear Creek that, like Brenham, formed from a highly evolved magma. The Bear Creek chromite has a much lower Mg content than that in the pallasites, implying that, in the pmg, the Mg was extracted from the olivine during high-temperature reaction with the precipitating chromite. There are other circumstantial arguments indicating that Cr was incompatible in the metal during the crystallization of the IIIAB magma, with the concentration in the residual magma rising from an initial value of about 300 μg/g to a value around 700 μg/g when Bear Creek and Brenham were formed. We consider possible explanations for these negative Cr-Au and Cr-Ni trends and find the most probable one to be that they reflect sampling artefacts resulting from analysts avoiding visible chromite (and the commonly associated phase FeS) when choosing metal samples.  相似文献   

16.
This study documents the petrography and whole-rock major and trace element geochemistry of 38 samples mainly from a drill core through the entire Fedorivka layered intrusion (Korosten Pluton), as well as mineral compositions (microprobe analyses and separated mineral fraction analyses of plagioclase, ilmenite, magnetite and apatite) of 10 samples. The Fedorivka layered intrusion can be divided into 4 lithostratigraphic units: a Lower Zone (LZ, 72 m thick), a Main Zone (MZ, 160 m thick), and an Upper Border Zone, itself subdivided into 2 sub-zones (UBZ2, 40 m thick; UBZ1, 50 m thick). Igneous lamination defines the cumulate texture, but primary cumulus minerals have been affected by trapped liquid crystallization and subsolidus recrystallization. The dominant cumulus assemblage in MZ and UBZ2 is andesine (An39–42), iron-rich olivine (Fo32–42), augite (En29–35Fs24–29Wo42–44), ilmenite (Hem1–6), Ti-magnetite (Usp52–78), and apatite. The data reveal a continuous evolution from the floor of the intrusion (LZ) to the top of MZ, due to fractional crystallization, and an inverse evolution in UBZ, resulting from crystallization downwards from the roof. The whole-rock Fe/Mg ratio and incompatible element contents (e.g. Rb, Nb, Zr, REE) increase in the fractionating magma, whereas compatible elements (e.g. V, Cr) steadily decrease. The intercumulus melt remained trapped in the UBZ cumulates due to rapid cooling and lack of compaction, and cumulus mineral compositions re-equilibrated (e.g. olivine, Fe–Ti oxides). In LZ, the intercumulus melt was able to partially or totally escape. The major element composition of the MZ cumulates can be approximated by a mixing (linear) relationship between a plagioclase pole and a mafic pole, the latter being made up of all mafic minerals in (nearly) constant relative proportions. By analogy with the ferrobasaltic/jotunitic liquid line of descent, defined in Rogaland, S. Norway, and its conjugated cumulates occurring in the Transition Zone of the Bjerkreim-Sokndal intrusion (Rogaland, a monzonitic (57% SiO2) melt is inferred to be in equilibrium with the MZ cumulates. The conjugated cumulate composition falls (within error) on the locus of cotectic compositions fixed by the 2-pole linear relationship. Ulvöspinel is the only Ti phase in some magnetites that have been protected from oxidation. QUIlF equilibria in these samples show that magnetite and olivine in MZ have retained their liquidus compositions during subsolidus cooling. This permits calculation of liquidus fO2 conditions, which vary during fractionation from ΔFMQ = 0.7 to − 1.4 log units. Low fO2 values are also evidenced by the late appearance of cumulus magnetite (Fo42) and the high V3+-content of the melt, reflected in the high V-content of the first liquidus magnetite (up to 1.85% V).  相似文献   

17.
The Bjerkreim-Sokndal layered intrusion belongs to the Proterozoic anorthositic province in the Rogaland area of southern Norway. The northwestern part of the intrusion comprises a ca. 6 km-thick Layered Series made up of megacyclic units (MCU) arranged in a syncline; each megacyclic unit reflects the influx of fresh magma into the chamber. The boundary between megacyclic units III and IV has been studied in detail at Storeknuten on the southern flank of the syncline. The megacyclic units can be subdivided into a series of cumulate stratigraphic zones; the interval from the top of zone IIIe to the base of zone IVd is exposed in the Storeknuten area. Modally layered plagioclase-hypersthene-ilmenite-magnetite-augite-apatite cumulates belonging to zone IIIe are overlain by 30 m of massive plagioclase-rich rocks (commonly containing ilmenite and/or hypersthene) constituting zone IVa. The entry of cumulus olivine defines the base of zone IVb (dominantly plagioclase-olivine-ilmenite cumulates) which is about 100 m thick. Many of the olivines are partly or completely replaced by Ca-poor pyroxene/Fe---Ti oxide symplectites. This massive leucotroctolitic zone is overlain by modally layered, laminated plagioclase-hypersthene-ilmenite cumulates of zone IVc. The successive entry of magnetite, apatite (accompanied by Ca-rich pyroxene) and inverted pigeonite defines zones IVd, e and f respectively. The entry of K-feldspar (accompanied by Fe-rich olivine) defines the base of a jotunitic transition zone which passes upwards into mangerites and quartz mangerites.

There is a compositional regression through zone IVa. The upper part of zone IIIe has Ca-poor pyroxene with about En68, plagioclase with An44–48 and a Sr-isotope ratio of about 0.7062, while the base of zone IVb has olivine with Fo75 together with En78, An53 and 0.7050 respectively. Similar reversals are shown by the minor element compositions of plagioclase and Fe---Ti oxides. Sr-isotope ratios increase systematically up through zone IVb (reaching 0.7058 in zone IVd) while An% and Sr in plagioclase and Ni and Cr in Fe---Ti oxides decrease. Olivine compositions vary unsystematically and are believed to have changed their Fe:Mg ratios as a result of trapped liquid shift.

The magma residing in the chamber when the influx at the base of megacyclic unit IV took place was compositionally zoned, and assimilation of gneissic country rock at the roof had resulted in the Sr-isotope ratio increasing up through the magma column. The new magma had a Sr-isotope ratio of about 0.7050 while the resident magma had a ratio of 0.7062 at the floor, increasing upwards. The new magma mixed with the basal layer(s) of the compositionally zoned resident magma and crystallization of this hybrid magma during influx and mixing produced the compositional regression in zone IVa. When magma influx ceased, olivine-bearing rocks began to crystallize at the base of zone IVb. The leucotroctolites at the base of this zone are the most primitive rocks in the entire intrusion. The systematic increase in Sr-isotope ratios up through zone IVb resulted from progressive mixing between new and resident magma. This mixing either took place during magma influx or by the progressive mixing of overlying resident magma layers during crystallization.

Calculations based on geochemical modelling, the thickness of cumulate stratigraphy repeated and Sr-isotope ratios indicate that the new magma influx had a thickness of 350–500 m in the Storeknuten section and that the leucotroctolites of zone IVb represent about 20–30% crystallization of this influx.  相似文献   


18.
Mafic rocks at Lake Nipigon provide a record of rift-related continental basaltic magmatism during the Keweenawan event at 1109 Ma. The mafic rocks consist of an early, volumetrically minor suite of picritic intrusions varying in composition from olivine gabbro to peridotite and a later suite of tholeiitic diabase dikes, sheets and sills. The diabase occurs primarily as two 150 to 200 m thick sills with a textural stratigraphy indicating that the sills represent single cooling units. Compositional variation in the sills indicates that they crystallized from several magma pulses.The diabases are similar in chemistry to olivine tholeiite flood basalts of the adjacent Keweenawan rift, particularly with respect to low TiO2, K2O and P2O5. The picrites have higher TiO2, K2O and P2O5 than the diabases and are similar to, but more primitive than, high Fe-Ti basalts which erupted early in the Keweenawan volcanic sequence.All of the rocks crystallized from fractionated liquids. The picrites are cumulate rocks derived at shallow crustal depths from a magma controlled predominantly by olivine fractionation. Picritic chills are in equilibrium with olivine phenocrysts of composition Fo80 and are interpreted to represent the least evolved liquids observed. The parental magma of the picrites was probably Fe rich relative to the parental magma of the diabase. The diabase sills crystallized from an evolved basaltic liquid controlled by cotectic crystallization of plagioclase and lesser olivine and pyroxene.The emplacement of dense olivine phyric picritic magmas early in the sequence, followed by later voluminous compositionally evolved magmas of lower density suggests the development of a crustal density filter effect as the igneous event reached a peak. Delamination of the crust-mantle interface may have resulted in the transition from olivine controlled primitive magma to fractionated magma through the development of crustal underplating.  相似文献   

19.
The Ultramafic Series of the Stillwater Complex in the MountainView area of the intrusion consists of 17 cyclic units thathave been numbered stratigraphically. A typical unit has olivinecumulates at the base, olivine–bronzite cumulates at intermediatelevels, and bronzite cumulates at the top. Most cyclic unitsalso have chromite-rich layers near their base, the thickestbeing the G and H chromitite zones in units 10 and 11. The Gand H zones are each separated from the top of the underlyingcyclic unit by 1–3 m of coarse-grained olivine cumulateand pegmatite; and they are both succeeded by thinner chromititezones, respectively called the hanging wall G (HWG) and thehanging wall H (HWH) zones, situated {small tilde}20 m and 5m above them. The G and H chromitite zones feature rhythmicsequences of thin layers that tend to progress upward from massivechromitite through chromite–olivine cumulate to olivine–chromitecumulate (the last with the minerals in approximately cotecticproportions of about 98:2). In cyclic units 10 and 11, variationsof Mg/Fe in the olivine and bronzite, and of Ni in the olivine,are small and show no clear stratigraphic fractionation trends.The abundance of Cr in the chromite in unit 10 does have a fractionationtrend, however, being generally highest at the bottom of theunit and lowest at the top, with a regression at the HWG zone.In general, Cr in chromite is highest at the base of a rhythmicunit and decreases upward, but it shows no overall decline throughsuccessive rhythmic units; Fe3 exhibits opposite variation,being lowest in the massive chromite, and highest in the disseminatedgrains. The G and H chromitite zones, in the Mountain View area, eachcontain enough chromite to form a single layer of massive chromitite{small tilde} 1 m thick. If their formation involved removalof only 30% of the Cr in the parental magmatic liquid (estimatedconcentration, 600 ppm), then this liquid could have amountedvolumetrically to an areally equivalent layer at least 2000m thick. Model calculations demonstrate that such a large volumeof liquid is consistent with the small variations of Mg/Fe inthe pyroxenes and olivines in the Stillwater cyclic units. We postulate that the G and H chromitite zones and cyclic unitsthat host them formed in response to the entry of new pulsesof primitive magmatic liquid into the Stillwater chamber. Fromexperimental observations, we infer that these pulses producedfountains in which the primitive liquid mixed with residualfractionated liquids, yielding hybrids that were compositionallywithin the chromite liquidus field (or volume) and that weresupercooled (supersaturated ) with respect to the oxide mineral.These effects may have been enhanced by low fO2 (oxygen fugacity)in the primitive liquid and(or) by high fO2 of the fractionatedliquid. The hybrid liquids probably collected at the bottomof the chamber in a zoned layer that then divided into double-diffusiveconvecting layers. In these circumstances, the lowest chromite-richlayer in a rhythmic sequence could have formed from the lowestdouble-diffusive liquid layer, and the next could then haveformed when this liquid mixed with the liquid layer above it—andso on up the sequence. We argue that the thick G and H chromititezones are situated toward the top of the Ultramafic Series becausethat level marks when the compositional contrasts between theinjected primitive liquid and the residual fractionated liquidsin the chamber were greatest.  相似文献   

20.
Cliff S.J. Shaw   《Lithos》1997,40(2-4):243-259
The Coldwell alkaline complex is a large (> 350 km2) gabbro and syenite intrusion on the north shore of Lake Superior. It was emplaced at 1108 Ma during early magmatic activity associated with the formation of the Mid-Continent Rift of North America. The eastern gabbro forms a partial ring dyke on the outer margin of the complex and consists of at least three discrete intrusions. The largest of these is the layered gabbro that comprises a 300 m thick fine- to medium-grained basal unit overlain by up to 1100 m of variably massive to layered gabbroic cumulates which vary from olivine gabbro to anorthosite. Several xenoliths of Archaean metamorphic rocks that range in size from 10's to 100's of meters are present in the central part of the intrusion. Within discrete horizons in the layered gabbro are many centimeter- to meter-scale, gabbroic xenoliths. The main cumulus minerals, in order of crystallization, are plagioclase, olivine and clinopyroxene ± Fe-Ti oxides. Biotite and Fe-Ti-oxide are the dominant intercumulus phases. Orthopyroxene occurs not as a cumulus phase but as peritectic overgrowths on cumulus olivine. A detailed petrographic and mineral chemical study of samples from two stratigraphically controlled traverses through the layered gabbro indicates that the stratigraphy cannot be correlated along the 33 km strike of the ring dyke. Mineral compositions show both normal and reversed fractionation trends. These patterns are interpreted to record at least three separate intrusions of magma into restricted dilatant zones within the ring dyke possibly associated with ongoing caldera collapse. Calculations of parental melt composition using mineral — melt equilibria show that even the most primitive gabbros crystallized from an evolved magma with mg# of 0.42-0.49. The presence of orthopyroxene overgrowths on cumulus olivine suggests rising silica activity in the melt during crystallization and implies a subalkaline parentage for the layered gabbro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号