首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture.  相似文献   

2.
With pending regulation of mercury emissions in United States power plants, its control at every step of the combustion process is important. An understanding of the amount of mercury in coal at the mine is the first step in this process. The Springfield coal (Middle Pennsylvanian) is one of the most important coal resources in the Illinois Basin. In Indiana and western Kentucky, Hg contents range from 0.02 to 0.55 ppm. The variation within small areas is comparable to the variation on a basin basis. Considerable variation also exists within the coal column, ranging from 0.04 to 0.224 ppm at one Kentucky site. Larger variations likely exist, since that site does not represent the highest whole-seam Hg nor was the collection of samples done with optimization of trace element variations in mind. Estimates of Hg capture by currently installed pollution control equipment range from 9–53% capture by cold-side electrostatic precipitators (ESP) and 47–81% Hg capture for ESP + flue-gas desulfurization (FGD). The high Cl content of many Illinois basin coals and the installation of Selective Catalytic Reduction of NOx enhances the oxidation of Hg species, improving the ability of ESPs and FGDs to capture Hg.  相似文献   

3.
揭示煤层气排采储层非饱和流阶段煤粉与气体相互作用机理,对制定排采制度和提高产气量具有重要意义。通过气泡–煤粉微观作用实验装置,系统开展了不同直径大小的气泡对不同粒度和密度煤粉的作用实验,分析了气泡对煤粉运移轨迹和速度的影响及捕获煤粉特征。结果表明,气泡产出能够影响煤粉的运移轨迹,甚至能够捕获煤粉;煤粉通过气泡时会产生3种运动类型:沿着气泡表面运移到气泡底部最后被捕获、沿着气泡表面运移到气泡底部最后脱落及接近气泡时被排斥而轨迹发生偏转。煤粉若被气泡捕捉,则运动速度呈现出减小–增大–减小的变化特征;若未被气泡捕获,速度呈现出减小–增大–减小–增大的变化特征。不同条件下气泡对煤粉的捕获效率高达64.38%~86.64%;在气泡表面最高点附近发生碰撞煤粉被捕获的概率最大,并且随着偏离角度的增大,气泡捕获效率均呈现出逐渐减小的趋势;在相同的碰撞位置下,气泡对煤粉的捕获效率随着煤粉密度、煤粉粒径的增大而减小,随着气泡直径的增大而增大。煤层气产气初期应根据储层的实际导流能力合理控制降压速率,若储层导流能力较强,应加大排采速率,增大气体解吸对煤粉的扰动和捕获作用,促使大量煤粉随地下水或气泡产出;若储层...  相似文献   

4.
煤炭地下气化为我国清洁、低碳、安全、高效现代能源建设开辟新的途径。为研究华亭烟煤地下气化污染物的富集、分布规律,以评估华亭烟煤地下气化的环境影响因素,采用地下气化模拟实验平台系统,通过不同富氧—水气化实验、不同尺度煤样的热解实验,研究煤层气化过程中焦油及气化残留物中重金属元素的富集规律。结果表明:随着烟煤的尺度(块体大小)增加,烟煤热解焦油呈增加趋势,而焦油产率呈先增加后减小的趋势;烟煤在N2、CO2气氛中热解时,热解焦油中主要成分为酚类、萘类以及烃类污染物;气化后残留重金属Ni、Cr、Zn、Cu、As这5种元素在氧化区最为富集、还原区次之、干馏干燥区最不富集,而Hg在氧化区富集程度最高、干馏干燥区次之、还原区最次,Pb在还原区富集程度最高、氧化区次之、干馏干燥区最次;重金属元素残留程度由高到低依次为Zn、As、Hg、Cr、Ni、Cu、Pb。针对华亭矿区,煤层气化后应重点检测重金属元素Zn、As、Hg。在后期实际煤层气化生产阶段,应结合华亭矿区煤层特征及地下水特征,在项目选址、气化工艺等方面进行污染物防控。在当前生态环境保护形势严峻的当下,研究成果对煤炭地下气化开采的污染物处置和减排具有一定的指导意义。   相似文献   

5.
Mercury (Hg) is an element of environmental and geological significance. Quantification of different Hg-binding forms is crucial to understand geological Hg provenances and associated geochemical processes during coal formation. In this study, seven coal samples were selected, according to coal rank (i.e., middle volatile bituminous, C-3; low volatile bituminous, C-2; anthracite, C-1), chemical anomalies (high S coal, IBC-105; high Cl coal, C22650) and sampling environment (fresh coal, LH; weathered coal LHW), to determine their Hg-binding forms using well-established sequential extraction procedures coupled with sink–float experiment. In the thermally metamorphosed samples C-1 and C-2, a comparative enrichment of total Hg relative to C-3 is observed. Silicate- and organic-bound Hg are the dominant Hg-binding forms in C-1, suggesting possible Hg sources from magma silicate and secondary Hg enrichment by adsorption. Sulfide- and organic-bound Hg are the most abundant Hg-binding forms in IBC-105, whereas only organic-bound Hg dominates in CC22650. Weathering processes are suggested to transform the abundant sulfide-bound Hg in LH to silicate- and organic-bound Hg in its weathering product LHW.  相似文献   

6.
煤基碳排放构成了中国碳排放总量中最重要的部分,做好煤基碳减排和煤炭高效洁净低碳化利用是实现“碳中和”国家目标的重要途径,碳中和背景下的煤地质学发展值得关注。系统评述与碳中和相关的煤地质学研究领域,分析煤地质学在碳中和研究与工程实践中的作用和应用前景,探讨碳中和背景下煤地质学的重要发展方向。取得以下认识:推进清洁煤地质研究、服务煤的高效洁净化燃烧,勘探开发煤系天然气低碳燃料、优化一次能源结构和化石能源结构,开展煤化工资源勘查与开发地质保障研究、推动煤炭的低碳能源转化和新型煤化工产业发展,深化瓦斯地质研究、提高煤矿瓦斯(井下)抽采率、控制煤矿瓦斯的大气排放和泄漏,研究煤层甲烷天然逸散和煤层自燃排放、控制煤层露头的天然排放,发展煤层CO2地质封存与煤层气强化开发(CO2-ECBM)技术、推动碳捕获、利用与封存(CCUS)技术发展及其在火力电厂烟气碳减排中的商业化应用,研究煤炭勘查企业的碳足迹、实现企业净零排放,是与煤地质学紧密相关的碳减排技术路径;其中煤层甲烷与煤系气高效勘探开发、深部煤层CO2-ECBM、煤层露头气体逸散与自燃发火控制、洁净煤地质与煤炭精细勘查是碳中和背景下煤地质学优先发展的重要领域。   相似文献   

7.
Gas emission prediction and recovery in underground coal mines   总被引:2,自引:0,他引:2  
Strata gas can be released and captured from non-active and active gas resources either from virgin or relaxed strata, both prior to and when mining activities take place. The high and irregular gas emissions associated with high production longwall mining have provided a need to optimise the methods used to predict these gas levels and the ventilation requirements for gas dilution. A forecast of gas emissions during development drivage and longwall mining indicated possible gas and ventilation problems requiring the introduction of various gas drainage techniques and in maintaining the necessary air quantities in ventilation systems to satisfy the statutory gas limitations for various coal production rates. Although there are sound principles used in world-recognised methods of gas emission prediction, a new approach developed from long-term practical experience in underground gassy coal mine practices and gas-rock mechanics studies appear most suitable for local conditions and mining systems in use. The Lunagas ‘Floorgas' and ‘Roofgas' geomechanical and gas emission models offer an effective solution to these problems. Both programs are the most advanced engineering, numerical tools available to calculate gas source contributions to total gassiness and improve the accuracy and quality of gas control, gas capture technologies and ventilation system design.  相似文献   

8.
国务院关于加强地质工作决定发布以来,中国煤炭地质勘查技术研究与找矿取得了重大成就,保障了国家对能源资源的需求。但当前符合科学绿色开发的煤炭产能比例仍然偏低,在开发条件较好、已经逐渐成为煤炭主力产区的西部地区,水资源破坏和地表生态损伤严重仍制约着西部煤炭资源的绿色开发。煤炭利用面临着大气污染控制、温室气体减排和生态环境保护的多重压力。煤炭地质科学研究仍然存在着8个方面的研究重点亟待提升。  相似文献   

9.
This paper investigates changes in the high-volatile bituminous Lower Block Coal Member from Indiana owing to moisture availability and oxidation in air at ambient pressure and temperature over storage time. Specifically, it investigates changes in chemistry, in surface area, and pore structure, as well as changes in methane and carbon dioxide adsorption capacities. Our results document that the methane adsorption capacity increased by 40%, whereas CO2 adsorption capacity increased by 18% during a 13-month time period. These changes in adsorption are accompanied by changes in chemistry and surface area of the coal.The observed changes in adsorption capacity indicate that special care must be taken when collecting samples and preserving coals until adsorption characteristics are measured in the laboratory. High-pressure isotherms from partially dried coal samples would likely cause overestimation of gas adsorption capacities, lead to a miscalculation of coal-bed methane prospects, and provide deceptively optimistic prognoses for recovery of coal-bed methane or capture of anthropogenic CO2.  相似文献   

10.
Fly ashes from two stoker boilers burning Pennsylvanian Eastern Kentucky high volatile A bituminous coal blends were examined for their petrology and chemistry. The source coals have similar trace element contents. One of the ash collection systems was retrofitted with a baghouse (fabric filter) system, collecting a finer fly ash at a cooler flue gas temperature than the plant that has not been reconfigured. The baghouse ash has a markedly higher trace element content than the coarser fly ash from the other plant. The enhanced trace element content is most notable in the As concentration, reaching nearly 9000 ppm (ash basis) for one of the collection units. Differences in the ash chemistry are not due to any substantial differences in the coal source, even though the coal sources were from different counties and from different coal beds, but rather to the improved pollution control system in the steam plant with the higher trace element contents.  相似文献   

11.
《Applied Geochemistry》2005,20(7):1309-1319
Petroleum coke has been used as a supplement or replacement for coal in pulverized-fuel combustion. At a 444-MW western Kentucky power station, the combustion of nearly 60% petroleum coke with moderate- to high-sulfur Illinois Basin coal produces fly ash with nearly 50% uncombusted petroleum coke and large amounts of V and Ni when compared to fly ash from strictly pulverized coal burns. Partitioning of the V and Ni, known from other studies to be concentrated in petroleum coke, was noted. However, the distribution of V and Ni does not directly correspond to the amount of uncombusted petroleum coke in the fly ash. Vanadium and Ni are preferentially associated with the finer, higher surface area fly ash fractions captured at lower flue gas temperatures. The presence of uncombusted petroleum coke in the fly ash doubles the amount of ash to be disposed, makes the fly ash unmarketable because of the high C content, and would lead to higher than typical (compared to other fly ashes in the region) concentrations of V and Ni in the fly ash even if the petroleum coke C could be beneficiated from the fly ash. Further studies of co-combustion ashes are necessary in order to understand their behavior in disposal.  相似文献   

12.
Moisture content is the main factor affecting the occurrence and flow of gas in bituminous coal and restricts the gas permeability of the coal seam, which affects the effectiveness of gas extraction from the coal seam directly. In order to study the influence of moisture content on the gas seepage characteristics of bituminous coal, this paper focused on bituminous coal from the Xutuan coal mine and used a bespoke laboratory unit called a Gas Flow and Displacement Testing Apparatus (GFDTA). The moisture content of bituminous coal was measured, and the axial and radial gas seepage experiments of bituminous coal under different moisture content conditions were carried out. The average original moisture content (1.3%) and the average saturated moisture content (2.4%) of the bituminous coal sample were obtained. It was observed that, with the increase of time, the original moisture content of the coal decreased with a negative exponential function and the wetting moisture content increased with an Exponential Association function. The gas axial seepage experimental results showed that when the moisture content was lower, the coal adsorbed CH4; when the moisture content was higher than Mad, the two fields of gas and liquid are coupled and affect the axial flow of the CH4, decreasing the moisture content. With higher moisture content, the interaction between the two is more readily evident and the diffusion behavior of the CH4 has a greater impact on the moisture content. Axial and radial gas seepage experiments, under the same gas pressure, axial pressure, and confining pressure, revealed that with the increase of moisture content, the axial and radial permeability of bituminous coal first increased and then decreased. This phenomenon is analyzed by the water lock effect, the effects of sorption on gas seepage and moisture content on gas adsorption effects. Among them, critical moisture content of approximately 1% exists when the axial and confining pressures are loaded or unloaded at the same time as well as the axial pressure loading or unloading alone. However, the critical moisture content is about 0.5% under confining pressure loading or unloading alone. In addition, in radial seepage experiments, it was observed that the volumetric strain of the coal decreased with the increase in the moisture content.  相似文献   

13.
This paper presents reviews of studies on properties of coal pertinent to carbon dioxide (CO2) sequestration in coal with specific reference to Victorian brown coals. The coal basins in Victoria, Australia have been identified as one of the largest brown coal resources in the world and so far few studies have been conducted on CO2 sequestration in this particular type of coals. The feasibility of CO2 sequestration depends on three main factors: (1) coal mass properties (chemical, physical and microscopic properties), (2) seam permeability, and (3) gas sorption properties of the coal. Firstly, the coal mass properties of Victorian brown coal are presented, and then the general variations of the coal mass properties with rank, for all types of coal, are discussed. Subsequently, coal gas permeability and gas sorption are considered, and the physical factors which affect them are examined. In addition, existing models for coal gas permeability and gas sorption in coal are reviewed and the possibilities of further development of these models are discussed. According to the previous studies, coal mass properties and permeability and gas sorption characteristics of coals are different for different ranks: lignite to medium volatile bituminous coals and medium volatile bituminous to anthracite coals. This is important for the development of mathematical models for gas permeability and sorption behavior. Furthermore, the models have to take into account volume effect which can be significant under high pressure and temperature conditions. Also, the viscosity and density of supercritical CO2 close to the critical point can undergo large and rapid changes. To date, few studies have been conducted on CO2 sequestration in Victorian brown coal, and for all types of coal, very few studies have been conducted on CO2 sequestration under high pressure and temperature conditions.  相似文献   

14.
The review presented covers: (a) historical introduction; (b) some analytical comments; (c) some peculiarities of the As geochemistry in environment; (d) an estimation of coal Clarke value of As; (e) some coals enriched in As; (f) mode of As occurrence in coal; (g) factors influencing the As distribution in coal matter and coal bed; (h) genetic topics; (i) some topics related to environmental impact of As by the coal combustion.The World average As content in coals (coal Clarke of As) for the bituminous coals and lignites are, respectively, 9.0±0.8 and 7.4±1.4 ppm. On an ash basis, these contents are higher: 50±5 and 49±8 ppm, respectively. Therefore, As is a very coalphile element: it has strong affinity to coal matter — organic and (or) inorganic but obligatory authigenic. The coalphile affinity of As is like that for Ge or S.There is strong regional variability of As distribution due to geologic variability of the individual coal basins. For example, bituminous coals in Eastern Germany, Czech Republic and SE China are enriched in As, whereas the coals in South Africa or Australia are very depleted compared to coal Clarke of As. In general, some relationship exists between As content and its mode of occurrence in coals. Typically, at high As content, sulphide sites dominate (pyrite and other more rare sulphides), whereas at low As content, Asorg dominates, both being authigenic. A contribution of the terrigenic As (in silicates) is usually minor and of the biogenic Asbio (derived from coal-forming plants) is poorly known.Both organic and inorganic As can exist not only as chemically bound form but also in the sorbed (acid leacheable) arsenate form. With increasing coal rank, sorbed exchangeable arsenate content decreases, with a minimum in the coking coals (German data: the Ruhr coals).Relations of As content in coal to ash yield (or its partitioning in sink–float fractions) and to coal petrographic composition are usually complicated. In most cases, these relations are controlled by main site (form) of As — Aspyr or Asorg. If Aspyr dominates, an As accumulation in heavy fractions (or in high-ash coals) is observed, and if Asorg dominates, it is enriched in medium-density fractions (or low- and medium-ash coals). Arsenic is in part accumulated in the inertinite vs. vitrinite (Asorg ?).There are four genetic types of As accumulation on coal: two epigenetic and two syngenetic: (1) Chinese type—hydrothermal As enrichment, sometimes similar to known Carlin type of As-bearing telethermal gold deposits; (2) Dakota type—hypergene enrichment from ground waters draining As-bearing tufa host rocks; (3) Bulgarian type—As enrichment resulting from As-bearing waters entered coal-forming peat bogs from sulphide deposit aureoles; (4) Turkish type—volcanic input of As in coal-forming peat bog as exhalations, brines and volcanic ash.During coal combustion at power plants, most of the initial As in coal volatilizes into the gaseous phase. At the widely used combustion of pulverized coal, most of Asorg, Aspyr and “shielded” As-bearing micromineral phases escape into gaseous and particulate phase and only minor part of Asclay remains in bottom ash. The dominant fraction of escaping As is in fly ash. Because 97–99% of the fly ash is collected by electrostatic precipitators, the atmospheric emission of As (solid phase and gaseous) is usually assumed as rather minor (10–30% from initial As in coal). However, fly ash disposal creates some difficult environmental problems because it is potentially toxic in natural waters and soils. The As leaching rate from ash disposal is greatly controlled by the ash chemistry. In natural environment, As can be readily leached from acid (SiO2-rich) bituminous coal ashes but can be very difficult from alkali (CaO-rich) lignite ashes.If the Aspyr form dominates, conventional coal cleaning may be an efficient tool for the removing As from coal. However, organic-bound or micromineral arsenic (“shielded” grains of As-bearing sulphides) are not removed by this procedure.Some considerations show that “toxicity threshold” of As content in coal (permissible concentration for industrial utility) may be in the range 100–300 ppm As. However, for different coals (with different proportions of As-forms), and for different combustion procedures, this “threshold” varies.  相似文献   

15.
煤炭与铀两种资源在空间配置和成矿上有关联性,其合理开发利用及污染控制是我国国民经济和社会持续发展的重大需求。基于大量文献调研及前期研究成果,探讨了铀在煤中赋存分布及其在洗选、燃烧、淋滤过程中的迁移特征,取得一些认识:①煤中铀的富集成矿与成煤大地构造演化相关联,西南富铀煤主要与峨眉山玄武岩及断裂构造有关;西北富铀煤一般分布在拗陷和断拗陷盆地开阔地带一侧并与上覆砂岩型铀矿有关。②煤中铀主要与煤中有机质(主要是腐殖酸)结合,富铀煤中铀可以微细粒含铀矿物形式存在,并与有机硫、硫化物紧密共生,故在选煤过程中,无论重选还是浮选,其洗选脱除率均不高(最高为68.3%),部分煤浮选时铀甚至富集到精煤中;在煤燃烧过程中,铀或多或少都会以气相形式挥发到大气中。③富铀煤一般也同时富集V、Mo、Se、Re、Cr等高价态变价元素,这与有机体深埋分解造成的强还原环境有关,对于那些不变价元素如Sc、Y、La等的沉淀富集主要与腐殖酸形成的酸化条件有关;这些共生组合元素,在富铀煤的分选及煤矸石的淋滤过程中表现出一致的迁移行为。④电厂燃煤过程中铀主要富集(呈数量级的增加)到飞灰和底灰中,粉煤灰中铀淋出浓度一般随淋滤液pH的增加呈降低趋势,其萃取率随灰化温度的升高呈现降低趋势。研究结果为铀资源利用和环境污染控制提供参考和依据。   相似文献   

16.
本文选用了镜质组反射率在0.77%-1.88%之间5 种不同成熟度的煤, 将其制成民用蜂窝煤球, 研究民用蜂窝煤燃烧排放颗粒物(PM)的化学组成, 包括元素(C、N、O、S)、有机碳(OC)、元素碳(EC)和水溶性无机离子(WSII), 稳定碳同位素组成特征和质量吸收效率值(MAE), 并讨论了它们与煤成熟度之间的关系.结果表明, 5 种原煤C、N、O、S 元素组成差别不大, 但是燃烧后排放的PM 化学组成差别比较大.无烟煤燃烧排放的PM 粒径分布呈双峰结构, 峰值分别在0.09 μm 和0.25 μm; 而烟煤PM 的峰值为0.58 μm.无烟煤排放PM 的颗粒数远小于烟煤.PM、OC 和EC 的排放受煤成熟度的影响非常大, 无烟煤排放的量最小, 分别为2.21 g/kg、0.22 g/kg 和0.004 g/kg; 成熟度最低的烟煤排放量最大, 分别为70.3 g/kg 、46.1 g/kg 和2.42 g/kg.PM、OC 和EC 的排放因子与煤的成熟度成幂指数关系.EC 的MAE 在0.17-21.9 m^2/g 之间, 与煤成熟度呈指数相关关系.燃煤WSII 的平均排放因子为801 mg/kg, WSII 当中含量最高的是NH4^+ 和24SO4^2- , 平均分别占WSII总量的23.5%和44.4%.燃煤排放PM 的δ^13C 变化范围为–24.5‰-–22.8‰, 平均值为–23.6‰.以上研究有助于人们从原煤性质的角度去考察民用燃煤对人类健康和气候变化的影响, 并为大气污染源解析提供一些科学依据.  相似文献   

17.
构造煤与原生结构煤的热解成烃特征研究   总被引:3,自引:0,他引:3  
通过对平顶山、郑州和南票3大矿区石炭二叠纪含煤岩系中高煤级烟煤和无烟煤的热解成烃潜力分析,探讨了构造煤热解产烃潜力与原生结构煤的不同演化特征及其影响因素。结果表明,构造应力,尤其是剪切应力对煤大分子聚合物的侧链及官能团,具有一定的降解能力,促进了成烃的演化速率。   相似文献   

18.
北京市土壤Hg污染的区域生态地球化学评价   总被引:8,自引:1,他引:7  
城市土壤Hg异常/污染是中国普遍存在的重大生态环境问题。文章对北京市近1000km2范围内的地表土壤、壤中气、大气干湿沉降、大气颗粒物、大气中的Hg含量水平和空间分布模式进行了系统研究,查明北京地表土壤Hg平均含量为0.41mg/kg,大气干湿沉降物中的Hg平均含量为0.194mg/kg,壤中气Hg的平均含量为559.65ng/m3,大气颗粒物PM10和PM2.5中的Hg含量分别为0.59和0.67ng/m3,大气中的Hg平均含量为3.13ng/m3。北京市自2000年起实现了由燃煤转变为燃气的减排措施,导致干湿沉降物中的Hg沉降通量显著减少,2006年大气干湿沉降物中Hg的沉降通量1.837mg·m-2·a-1,北京市城区(近1000km2)Hg全年沉降为1837kg,空气中总Hg浓度由1998年的8.3~24.7ng/m3下降到2006年的3.13ng/m3,大气颗粒物中Hg含量由2003年的1.18ng/m3下降到2006年的0.59ng/m3(PM10)和0.67ng/m3(PM2.5),表明北京市煤改气减排措施的实施显著改善了大气环境质量。通过对土壤中Hg的存在形式研究,发现土壤中有硫化物(辰砂)及各种Hg盐(HgCl2)的含Hg矿物,Hg也可以各种吸附方式或壤中气方式存在。研究证实北京壤中气Hg与大气Hg存在显著的相关性(n=131,R=0.267,p<0.01),表明壤中气Hg是大气Hg的重要来源之一。利用2005年地表土壤总Hg与Hg释放速率的线性方程估算,土壤Hg平均释放速率为102.42ng·m-2·h-1,2005年土壤释放进大气的Hg通量为936.70kg。在查明土壤中存在大量辰砂矿物的同时,还分布有大量具有高温熔融特征的金属微球粒和玻璃质微球粒,证明燃煤和冶金烟尘是地表土壤Hg的主要来源。土壤中Hg、S、pH和辰砂颗粒浓度在空间上的高度耦合性表明,碱性条件下,土壤中高含量的S和Hg是辰砂形成的重要原因。按国家土壤环境质量标准,北京市I级土壤Hg环境质量的面积为176km2,Ⅱ级为808km2,Ⅲ级为24km2,超Ⅲ为36km2。Ⅲ级、超Ⅲ级主要分布在二环路以内的中心城区。城南(长安街为界)大气Hg环境质量明显优于城北,在北四、北五环之间的部分地区,大气颗粒Hg的环境质量为Ⅲ级或超Ⅲ级。在地表土壤Hg含量较高的中心城区,居民每天因呼吸摄入的Hg高达364ng,对人体健康构成潜在风险。根据我国"十一五"规划中每年实现10%节能减排的目标,对北京市未来50年土壤Hg含量的时空演变趋势预测,预测2050年北京因干湿沉降带来的Hg输入量为16.03kg,地表土壤释放Hg的输出量为37.36kg,明显大于Hg的输入通量,土壤Hg的环境质量将得到根本改善。预测到2040年Ⅲ级土壤Hg环境质量的区域将完全消失,到2060年以Ⅰ级土壤为主。  相似文献   

19.
半干喷雾法脱除燃煤锅炉烟气中硫、氮技术及装置   总被引:3,自引:0,他引:3  
通过理论分析和试验研究发现,利用锅炉碱性排污水或化学碱性水对锅炉尾部烟道进行喷雾,可以达到脱除烟气中SOx、MOx的目的,并取得了良好效果。其技术关键是喷淋雾化方式、喷雾水量、喷雾水的碱度及烟道结构对气-汽两相流之间混合湍动的影响。该方法具有投资少、运行费用低、运行简单可靠、脱硫脱氮效果好、不产生二次污染和烟道阻力及腐蚀小等特点。针对我国燃煤锅炉量大、面广、分散的特点,该方法具有广阔的应用前景。  相似文献   

20.
通过对河北省宣化原煤及燃煤污染区表土和近地降尘的野外调查和样品分析,查明了表土及降尘中Hg、Cd、V、Zn、Mo、U、Mn、Cr等13种重金属元素及16种多环芳烃(PAHs)的地球化学特征。结果表明,原煤区土壤以Hg、Cd污染为主,污染区在煤带两侧约100 m范围内,燃煤区土壤以Hg、Cd、V污染为主,污染范围在燃煤企业下风口超过2 km。原煤区表土中Hg、Cd、Zn、Mo、U及PAHs与燃煤区表土中Hg、V、Mo、U、Mn、Cr及PAHs主要通过大气沉降带入。区内土壤中脲酶、碱性磷酸酶及β-葡萄糖苷酶活性均受到不同程度抑制,其中以β-葡萄糖苷酶最为明显,且燃煤区较原煤区抑制更为显著,反映了煤污染对土壤碳循环过程影响较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号