首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Riverbank sediment cores and pore waters, shallow well waters, seepage waters and river waters were collected along the Meghna Riverbank in Gazaria Upazila, Bangladesh in Jan. 2006 and Oct.–Nov. 2007 to investigate hydrogeochemical processes controlling the fate of groundwater As during discharge. Redox transition zones from suboxic (0–2 m depth) to reducing (2–5 m depth) then suboxic conditions (5–7 m depth) exist at sites with sandy surficial deposits, as evidenced by depth profiles of pore water (n = 7) and sediment (n = 11; diffuse reflectance, Fe(III)/Fe ratios and Fe(III) concentrations). The sediment As enrichment zone (up to ∼700 mg kg−1) is associated with the suboxic zones mostly between 0 and 2 m depth and less frequently between 5 and 7 m depth. The As enriched zones consist of several 5–10 cm-thick dispersed layers and span a length of ∼5–15 m horizontally from the river shore. Depth profiles of riverbank pore water deployed along a 32 m transect perpendicular to the river shore show elevated levels of dissolved Fe (11.6 ± 11.7 mg L−1) and As (118 ± 91 μg L−1, mostly as arsenite) between 2 and 5 m depth, but lower concentrations between 0 and 2 m depth (0.13 ± 0.19 mg L−1 Fe, 1 ± 1 μg L−1 As) and between 5 and 6 m depth (1.14 ± 0.45 mg L−1 Fe, 28 ± 17 μg L−1 As). Because it would take more than a few hundred years of steady groundwater discharge (∼10 m yr−1) to accumulate hundreds of mg kg−1 of As in the riverbank sediment, it is concluded that groundwater As must have been naturally elevated prior to anthropogenic pumping of the aquifer since the 1970s. Not only does this lend unequivocal support to the argument that As occurrence in the Ganges-Brahmaputra-Meghna Delta groundwater is of geogenic origin, it also calls attention to the fate of this As enriched sediment as it may recycle As into the aquifer.  相似文献   

2.
《Applied Geochemistry》2005,20(3):639-659
The oxidation of sulfide minerals from mine wastes results in the release of oxidation products to groundwater and surface water. The abandoned high-sulfide Camp tailings impoundment at Sherridon, Manitoba, wherein the tailings have undergone oxidation for more than 70 a, was investigated by hydrogeological, geochemical, and mineralogical techniques. Mineralogical analysis indicates that the unoxidized tailings contain nearly equal proportions of pyrite and pyrrhotite, which make up to 60 wt% of the total tailings, and which are accompanied by minor amounts of chalcopyrite and sphalerite, and minute amounts of galena and arsenopyrite. Extensive oxidation in the upper 50 cm of the tailings has resulted in extremely high concentrations of dissolved SO4 and metals and As in the tailings pore water (pH < 1, 129,000 mg L−1 Fe, 280,000 mg L−1 SO4, 55,000 mg L−1 Zn, 7200 mg L−1 Al, 1600 mg L−1 Cu, 260 mg L−1 Mn, 110 mg L−1 Co, 97 mg L−1 Cd, 40 mg L−1 As, 15 mg L−1 Ni, 8 mg L−1 Pb, and 3 mg L−1 Cr). The acid released from sulfide oxidation has been extensive enough to deplete carbonate minerals to 6 m depth and to partly deplete Al-silicate minerals to a 1 m depth. Below 1 m, sulfide oxidation has resulted in the formation of a continuous hardpan layer that is >1 m thick. Geochemical modeling and mineralogical analysis indicate that the hardpan layer consists of secondary melanterite, rozenite, gypsum, jarosite, and goethite. The minerals indicated mainly control the dissolved concentrations of SO4, Fe, Ca and K. The highest concentrations of dissolved metals are observed directly above and within the massive hardpan layer. Near the water table at a depth of 4 m, most metals and SO4 sharply decline in concentration. Although dissolved concentrations of metals and SO4 decrease below the water table, these concentrations remain elevated throughout the tailings, with up to 60,600 mg L−1 Fe and 91,600 mg L−1 SO4 observed in the deeper groundwater. During precipitation events, surface seeps develop along the flanks of the impoundment and discharge pore water with a geochemical composition that is similar to the composition of water directly above the hardpan. These results suggest that shallow lateral flow of water from a transient perched water table is resulting in higher contaminant loadings than would be predicted if it were assumed that discharge is derived solely from the deeper primary water table. The abundance of residual sulfide minerals, the depletion of aluminosilicate minerals in the upper meter of the tailings and the presence of a significant mass of residual sulfide minerals in this zone after 70 a of oxidation suggest that sulfide oxidation will continue to release acid, metals, and SO4 to the environment for decades to centuries.  相似文献   

3.
《Applied Geochemistry》2004,19(8):1255-1293
In order to investigate the mechanism of As release to anoxic ground water in alluvial aquifers, the authors sampled ground waters from 3 piezometer nests, 79 shallow (<45 m) wells, and 6 deep (>80 m) wells, in an area 750 m by 450 m, just north of Barasat, near Kolkata (Calcutta), in southern West Bengal. High concentrations of As (200–1180 μg L−1) are accompanied by high concentrations of Fe (3–13.7 mg L−1) and PO4 (1–6.5 mg L−1). Ground water that is rich in Mn (1–5.3 mg L−1) contains <50 μg L−1 of As. The composition of shallow ground water varies at the 100-m scale laterally and the metre-scale vertically, with vertical gradients in As concentration reaching 200 μg L−1 m−1. The As is supplied by reductive dissolution of FeOOH and release of the sorbed As to solution. The process is driven by natural organic matter in peaty strata both within the aquifer sands and in the overlying confining unit. In well waters, thermo-tolerant coliforms, a proxy for faecal contamination, are not present in high numbers (<10 cfu/100 ml in 85% of wells) showing that faecally-derived organic matter does not enter the aquifer, does not drive reduction of FeOOH, and so does not release As to ground water.Arsenic concentrations are high (≫50 μg L−1) where reduction of FeOOH is complete and its entire load of sorbed As is released to solution, at which point the aquifer sediments become grey in colour as FeOOH vanishes. Where reduction is incomplete, the sediments are brown in colour and resorption of As to residual FeOOH keeps As concentrations below 10 μg L−1 in the presence of dissolved Fe. Sorbed As released by reduction of Mn oxides does not increase As in ground water because the As resorbs to FeOOH. High concentrations of As are common in alluvial aquifers of the Bengal Basin arise because Himalayan erosion supplies immature sediments, with low surface-loadings of FeOOH on mineral grains, to a depositional environment that is rich in organic mater so that complete reduction of FeOOH is common.  相似文献   

4.
Uranium and As in deep groundwater of the volcano-sedimentary Villa de Reyes Graben around the city of San Luis Potosí in semi-arid North-Central Mexico (mean U: 7.6 μg L−1, max. 138 μg L−1; mean As: 11.4 μg L−1, max. 25.8 μg L−1) partly exhibit concentrations in excess of the WHO guideline values and thus endanger the quality of the most important drinking water source. To unravel the mechanisms for their enrichment in groundwater, the potential trace element sources, volcanic rocks and basin fill sediments, were characterized. A total of 131 solid and liquid samples were analyzed for major and trace element composition. The As/U hydrogeochemical signatures, their behavior during rock alteration and evidence from other major and trace element distributions, especially rare earth elements, strongly argue for dissolution of acid volcanic glass to be the dominating process of U and As release into groundwater. This natural baseline quality representing water–acid volcanic rock interaction is modified by additional trace element (preferentially As) mobilization from the sedimentary basin fill, representing a secondary source, in the course of decarbonatization of playa lake sediments and desorption from Fe-(hydr)oxide coated clastic material. The common behavior of both elements during magmatic differentiation and growing drift apart in sedimentary environments are important findings of this work. Comparison with recent findings in a similar environment suggests a common primary trace element source identification but significant differences in the evolution of As and U distribution. Geological and climatic similarity to numerous volcano-sedimentary basins makes the findings useful for water management purposes and transferable to other semi-arid regions facing challenges of geogenically impacted drinking water quality.  相似文献   

5.
This study reports on the seepage of metals, metalloids and radionuclides from the Mary Kathleen uranium mill tailings repository. Since rehabilitation in the 1980s, the capped tailings have developed a stratified hydrochemistry, with acid (pH 3.7), saline, metal-rich (Fe, Mn, Ni, U ± As, Pb, Zn), oxygenated (1.05 mg L−1 DO), radioactive waters in the upper tailings pile and near-neutral pH (pH 7.57), metal-poor, reduced (0.08 mg L−1 DO) waters at depth. Seepage (∼0.5 L s−1) of acid (pH 5.5), metal-rich (Fe, Mn ± Ni, U, Zn), radioactive (U-235, U-238, Ra-226, Ra-228, Ac-227) waters occurs from the base of the tailings dam retaining wall into the former evaporation pond and local drainage system. Oxygenation of the seepage waters causes the precipitation of Fe and coprecipitation and adsorption of other metals (U, Y), metalloids (As), rare earth elements (Ce, La) and radionuclides (U-235, U-238). By contrast, alkalis and alkaline–earth elements (Ca, K, Mg, Na, Sr), Mn, sulfate and to some degree metals (U, Zn, Ni), rare earth elements (Ce, La) and radionuclides (U-235, U-238, Ra-226, Ra-228) remain in solution until pH neutralisation and evaporation lead to their precipitation in efflorescences and sulfate-rich evaporative sediments. While the release of contaminant loads from the waste repository through seepage is insignificant (e.g. ∼5 kg of U per year), surface waters downstream of the tailings impoundment possess TDS, U and SO4 concentrations that exceed Australian water quality guideline values in livestock drinking water. Thus, in areas with a semi-arid climate, even insignificant load releases of contaminants from capped tailings repositories can still cause the deterioration of water quality in ephemeral creek systems.  相似文献   

6.
《Applied Geochemistry》2006,21(10):1760-1780
Sulfide-rich mine tailings in Adak that are exposed to weathering cause acid mine drainage characterized by low pH (2–4) and high SO4 (up to 800 mg L−1). Surface water, sediment and soil samples collected in this study contain higher concentrations of As, Cu, Fe and Zn, compared to the target and/or intervention limits set by international regulatory agencies. In particular, high As concentrations in water (up to 2900 μg L−1) and sediment (up to 900 mg kg−1) are of concern. There is large variability in trace element concentrations, implying that both physical (grain size) and chemical factors (pH, secondary phases as sulfides, Al-oxides or clay minerals) play an important role in their distribution. The low pH keeps the trace elements dissolved, and they are transported farther downstream. Trace element partition coefficients are low (log Kd = 0.3–4.3), and saturation indices calculated with PHREEQC are <0 for common oxide and sulfidic minerals. The sediment and soil samples indicate an enhanced pollution index (up to 17), and high enrichment factors for trace elements (As up to 38,300; Zn up to 800). Finally, leaves collected from different plant types indicate bioaccumulation of several elements (As, Al, Cu, Fe and Zn). However, some of the plants growing in this area (e.g., Salix, Equisétum) are generally resistant to metal toxicity, and hence, liming and phytoremediation could be considered as potential on-site remediation methods.  相似文献   

7.
《Applied Geochemistry》1999,14(4):485-498
Fine grained (ca. 15 μm), arsenopyrite-bearing mine tailings have been exposed to drying and oxidation for 4 a pending relocation. The tailings are still partly covered by a pond of decanted pore waters. The water table in drying tailings has lowered by 1–3 m and desiccation cracks up to 2 cm wide have formed on the 1 m scale, extending through the unsaturated zone. Tailings in the unsaturated zone have similar pore water contents to saturated tailings: typically 16–32 wt% water. Saturated tailings retain alkaline pH (ca. 10) from the mine cyanidation plant, but pH lowers progressively towards ca. 7 near the surface, or near desiccation cracks, in the unsaturated zone. The redox state of the tailings changes in parallel with pH, with an empirical relationship: Eh(mV)=−55 pH+290. Water in the remnant decant pond reflects this relationship also. Unsaturated tailings have variable but low permeabilities, typically 10−3 to 10−4 m/day, and more permeable horizons have allowed incursion of oxygenated air and/or rain water from desiccation cracks. Sulphide grains in all tailings examined are unaltered. Sulphides and solutions in the tailings are out of thermodynamic equilibrium predicted from the redox–pH conditions, due to kinetic constraints. Incursion of rain water locally facilitates deposition from pore waters of insoluble Fe oxide and arsenate minerals, thus fixing As in the dry unsaturated tailings.  相似文献   

8.
《Applied Geochemistry》2005,20(1):55-68
In 49 samples of groundwater, sampled in Muzaffargarh District of south-western Punjab, central Pakistan, concentrations of As exceeded the World Health Organisation provisional guideline value, and United States Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL), of 10 μg L−1 in 58% of samples and reached up to 906 μg L−1. In this semi-arid region canal irrigation has lead to widespread water-logging, and evaporative concentration of salts has the potential to raise As concentrations in shallow groundwater well above 10 μg L−1. In fact, in rural areas, concentrations stay below 25 μg L−1 because As in the oxic shallow groundwater, and in recharging water, is sorbed to aquifer sediments. In some urban areas, however, shallow groundwater is found to contain elevated levels of As. The spatial distribution of As-rich shallow groundwater indicates either direct contamination with industrial or agricultural chemicals, or some other anthropogenic influence. Geochemical evidence suggests that pollutant organics from unconfined sewage and other sources drives reduction of hydrous ferric oxide (HFO) releasing sorbed As to shallow groundwater. The situation is slightly less clear for seven wells sampled which tap deeper groundwater, all of which were found with >50 μg L−1 As. Here As concentrations seem to increase with depth and differing geochemical signatures are seen, suggesting that As concentrations in older groundwater may be governed by different processes. Other data on parameters of potential concern in drinking water are discussed briefly at the end of the paper.  相似文献   

9.
This study investigates Sb speciation in sediments along the drainage of the Upper Peter adit at the Bralorne Au mine in southern British Columbia, Canada, and compares the behavior of Sb with that of As. The Upper Peter mineralization consists of native Au in quartz-carbonate veins with 1 wt.% sulfides dominated by pyrite and arsenopyrite although stibnite, the primary Sb-bearing sulfide mineral, can be locally significant. Dissolved Sb concentrations can reach up to 349 μg L−1 in the mine pool. Sediments were collected for detailed geochemical and mineralogical characterization at locations along the 350-m flow path, which includes a 100-m shallow channel within the adit, a sediment settling pond about 45 m beyond the adit portal and an open wetland another 120 m farther downstream. From the mine pool to the wetland outlet, dissolved Sb in the drainage drops from 199 μg L−1 to below the detection limit due to the combined effect of dilution and removal from solution. Speciation analyses using X-ray absorption near-edge structure (XANES) spectroscopy indicate that Sb(III)–S accounts for around 70% of total Sb in the sediments in the main pool at the far end of the adit. At a short distance (24 m) downstream of the main adit pool, however, Sb(III)–O and Sb(V)–O species represent ?50% of total Sb in the bulk sediments, indicating significant oxidation of the primary sulfides inside the adit. Although Sb appears largely oxidized in the bulk samples collected near the portal, Sb(III)–S species are nevertheless present in the <53-μm fraction, suggesting a higher oxidation rate for stibnite in the coarser grains, possibly due to galvanic interaction with pyrite. Secondary Sb species released from the sulfide oxidation are most likely sorbed/co-precipitated with Fe-, Mn-, and Al-oxyhydroxides along the flow channel in the adit and in the sediment settling pond, with the Fe phase being the dominant sink for Sb.  相似文献   

10.
To determine the appropriate allocation of resources for the future restoration of the abandoned mining district of Kangwon in Korea, identification of the main pollutants and the main sources discharging these pollutants is crucial. Therefore, a 2-year study was undertaken to quantify the amount of pollutants in the Uchen stream (a potential sink for contamination), which runs through the district, and to determine the potential sources of these pollutants, including mine drainage and soil. Arsenic (As) was the main pollutant in mine drainage and soils showing concentrations above the Korean regulated standard levels of 50 μg L−1 and 50 mg kg−1 for water and soil, respectively. In addition, the pollution index (PI) showed that mine drainages were polluted by As to a moderate (2 ≤ PI < 3) or strong (4 ≤ PI < 5) degree. Consequently, As load in mine drainage and soil contributed to increased amounts of As in the stream. The As loads in mine drainages (11 and 587 g month−1 for mine adit 1 and 2, respectively) accounted for only 9% of the total As load to the stream (6,378 g month−1); and the influence of mine drainages on As contents in the stream was more reliant on the total volume of mine drainage generated rather than the As concentration in the mine drainage. Approximately 91% of the As in the stream was derived from the soils within the study area.  相似文献   

11.
Windblown and vehicle-raised dust from unvegetated mine tailings can be a human health risk. Airborne particles from As-rich abandoned Au mine tailings from Nova Scotia, Canada have been characterized in terms of particle size, As concentration, As oxidation state, mineral species and texture. Samples were collected in seven aerodynamically fractionated size ranges (0.5–16 μm) using a cascade impactor deployed at three tailings fields. All three sites are used for recreational activities and off-road vehicles were racing on the tailings at two mines during sample collection. Total concentrations of As in the <8 μm fraction varied from 65 to 1040 ng/m3 of air as measured by proton-induced X-ray emission (PIXE) analysis. The same samples were analysed by synchrotron-based microfocused X-ray absorption near-edge spectroscopy (μXANES) and X-ray diffraction (μXRD) and found to contain multiple As-bearing mineral species, including Fe–As weathering products. The As species present in the dust were similar to those observed in the near-surface tailings. The action of vehicles on the tailings surface may disaggregate material cemented with Fe arsenate and contribute additional fine-grained As-rich particles to airborne dust. Results from this study can be used to help assess the potential human health risks associated with exposure to airborne particles from mine tailings.  相似文献   

12.
《Applied Geochemistry》2004,19(11):1785-1800
Historical Au-ore exploitation at the Chéni mine in the Massif Central, France, generated 525,000 tonnes of finely ground mill tailings deposited in a heap that has spread with time into three settling basins. The tailings, which are rich in quartz (80%), mica and clay minerals (10% of illite, smectite, kaolinite and chlorite), feldspars (5%) but poor in carbonates (<1%), also contain sulphides (around 5%, mainly pyrite and arsenopyrite). Arsenic content of the tailings is around 6 g kg. This paper describes the geochemistry of drainage waters, with special attention paid to in situ values of the three major redox couples, namely Fe(II)/Fe(III), As(III)/As(V) and S(IV)/S(VI). The water samples range from acidic and oxidized (pH 2.9, Eh +700 mV) to moderate pH and weakly reducing (pH 7.6, Eh 15 mV). The waters are rich in SO4 and Ca and have variable As (0.05–95 mg L−1) and Fe concentrations (0.07–141 mg L−1). Reduced As(III) species predominate over As(V) species (As(III)/As(V) up to 21), whereas oxidized forms of Fe and S are favoured (Fe(II)/Fe(III) up to 0.5, and S(IV)/S(VI) up to 1).Thermodynamic calculations were performed with the PHREEQC and EQ3NR codes based on a revised As database to evaluate saturation indices (SI) of the waters in relation to the main minerals and define which redox couples control the redox state of the system. The important role of carbonates, though only present in small amounts, explains the acid buffering generated by the oxidation of sulphides for waters in the pH 7–7.5 range. Measured Eh appears to fall between the calculated Eh of the Fe(II)/Fe(III) couple and that of the As(III)/As(V) couple, illustrating redox disequilibrium.  相似文献   

13.
《Applied Geochemistry》2006,21(10):1799-1817
Release of acid drainage from mine-waste disposal areas is a problem of international scale. Contaminated surface water, derived from mine wastes, orginates both as direct surface runoff and, indirectly, as subsurface groundwater flow. At Camp Lake, a small Canadian Shield lake that is in northern Manitoba and is ice-covered 6 months of the year, direct and indirect release of drainage from an adjacent sulfide-rich tailings impoundment has severely affected the quality of the lake water. Concentrations of the products from sulfide oxidation are extremely high in the pore waters of the tailings impoundment. Groundwater and surface water derived from the impoundment discharge into a semi-isolated shallow bay in Camp Lake. The incorporation of this aqueous effluent has altered the composition of the lake water, which in turn has modified the physical limnology of the lake. Geochemical profiles of the water column indicate that, despite its shallow depth (6 m), the bay is stratified throughout the year. The greatest accumulation of dissolved metals and SO4 is in the lower portion of the water column, with concentrations up to 8500 mg L−1 Fe, 20,000 mg L−1 SO4, 30 mg L−1 Zn, 100 mg L−1 Al, and elevated concentrations of Cu, Cd, Pb and Ni. Meromictic conditions and very high solute concentrations are limited to the bay. Outside the bay, solute concentrations are lower and some stratification of the water column exists. Identification of locations and composition of groundwater discharge relative to lake bathymetry is a fundamental aspect of understanding chemical evolution and physical stability of mine-impacted lakes.  相似文献   

14.
Natural oyster shells (NOS) and calcined oyster shells (COS) were used to immobilize arsenic (As) from contaminated mine tailings. In addition, a blend of Portland cement (PC)/cement kiln dust (CKD) was used as a stabilizing agent. The Korean Standard Test (KST) method (1 N HCl extraction) was used to evaluate the effectiveness of the treatment. The experimental results showed that COS effectively immobilized As in treated mine tailings. Specifically, an As concentration less than 1 mg L−1 was obtained following COS treatment at 25 and 30 wt%. However, all the samples subjected to NOS treatments failed the Korean warning standard of 1.2 mg L−1 after 28 days of curing. All of the COS-PC treatments were successful meeting the Korean warning standard after 7 days of curing. However, the PC-only treatment failed to meet the Korean warning standard. Similarly, the CKD-only treatment was failed to meet the Korean warning standard after 7 days of curing. However, the COS-CKD treatment showed that when the COS content was greater than 20 wt%, less than 1 mg L−1 of As leachability was obtained. Scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM–EDX) showed needle-like and torpedo-like Ca–As phases in the COS-treated samples suggesting that As was strongly associated with Ca and O. X-ray absorption near edge structure (XANES) analyses confirmed that As(V) was prevalent in the tailings and that there were no changes in As speciation following NOS or COS treatment.  相似文献   

15.
Forests play a primary role in the cycling and storage of mercury (Hg) in terrestrial ecosystems. This study aimed to assess differences in Hg cycling and storage resulting from different vegetation at two adjacent forest stands - beech and spruce. The study site Načetín in the Czech Republic's Black Triangle received high atmospheric loadings of Hg from coal combustion in the second half of the 20th century as documented by peat accumulation rates reaching 100 μg m−2 y−1. In 2004, the annual litterfall Hg flux was 22.5 μg m−2 y−1 in the beech stand and 14.5 μg m−2 y−1 in the spruce stand. Soil concentrations and pools of Hg had a strong positive relation to soil organic matter and concentrations of soil sulfur (S) and nitrogen (N). O-horizon Hg concentrations ranged from 245 to 495 μg kg−1 and were greater in the spruce stand soil, probably as a result of greater dry Hg deposition. Mineral soil Hg concentrations ranged from 51 to 163 μg kg−1 and were greater in the beech stand soil due to its greater capacity to store organic carbon (C). The Hg/C ratio increased with depth from 0.3 in the O-horizon to 3.8 μg g−1 in the C horizon of spruce soil and from 0.7 to 2.7 μg g−1 in beech soil. The Hg/C ratio was greater at all mineral soil depths in the spruce stand. The organic soil Hg pools in beech and spruce stands (6.4 and 5.7 mg m−2, respectively) were considerably lower than corresponding mineral soil Hg pools (39.1 and 25.8 mg m−2). Despite the important role of S in Hg cycling, differences in soil Hg distribution at both stands could not be attributed to differences in soil sulfur speciation.  相似文献   

16.
17.
The present study demonstrates the importance of hydrogeochemical characteristics (groundwater flow and recharge) of an aquifer in the release of As to groundwater. The study area (∼20 km2) is located in Chakdaha block, Nadia district, West Bengal, which hosts groundwaters of variable As content. The spatial distribution pattern of As is patchy with areas containing groundwater that is high in As (>200 μg L−1) found in close vicinity to low As (<50 μg L−1) groundwaters (within 100 m). The concentration of groundwater As is found to decrease with depth. In addition, the data shows that there is no conspicuous relationship between high groundwater As concentration and high groundwater abstraction, although the central cone of depression has enlarged over 2 a and is extending towards the SE of the study area. The river Hooghly, which forms the NW boundary of the study site, shows dual behaviour (effluent and influent during pre- and post-monsoon periods, respectively), complicating the site hydrogeology. The observed groundwater flow lines tend to be deflected away from the high As portion of the aquifer, indicating that groundwater movement is very sluggish in the As-rich area. This leads to a high residence time for this groundwater package, prolonging sediment–water interaction, and hence facilitating groundwater As release.  相似文献   

18.
Levels of the chalcophile metals Hg, Pb, Cd, Cu and Zn and the metalloid As in soils from rice paddy fields were assessed in two regions impacted by different industrial activities in Guizhou province, China. The two study areas (Wanshan and Qingzhen) have previously received attention in the international literature due to heavy Hg pollution, though levels of other potentially harmful elements have not previously been reported. The regions were selected as representing two important, but categorically different metal(loid) contaminated areas in China: Wanshan has been a major region for Hg production while Qingzhen is an important region for a large range of various heavy industries based on coal as an energy source.Within a limited distance of the Hg mine tailings in Wanshan the rice paddy fields are heavily contaminated by Hg (median concentration 25 μg g−1, maximum 119 μg g−1) and moderately contaminated by Zn and Cd (median concentrations of 86 and 0.9 μg g−1, respectively). Zinc and Cd levels correlate well with Hg contamination, which indicates a similar source and mechanism of transport and accumulation. Other studies have concluded that the main sources of Hg contamination in Wanshan are the numerous Hg mine tailings. This is likely as these metals are all geochemically associated with the mineral cinnabar (HgS). The other chalcophile elements (Pb, Cu and As) are nevertheless found at background levels only. In Qingzhen the soils were found to contain elevated levels of As and Hg (median concentrations of 38 and 0.3 μg g−1, respectively). These are elements that are known to be more associated with coal and released during coal combustion.  相似文献   

19.
The Athabasca Oil Sands contain one of the world's largest oil reserves consisting of approximately 168 billion barrels of currently recoverable bitumen. With 20% recoverable through open pit mining methods, this extraction process produces a considerable amount of fluid fine tailings (FFT) waste material, which must be deposited on site in tailings ponds. These ponds allow the waste sand, clay and residual bitumen to settle out of the water column, allowing for the water to be recycled for use again in the extraction process. It is vital to gain a better understanding of the processes contributing to the development of physicochemical gradients (pH, Eh, Oxygen etc…) that form in these tailings ponds over time, with the goal of remediation and subsequent construction of end-pit lake systems once oil extraction has ceased. To differentiate between the impacts of biotic and abiotic processes in fresh (newly processed material) and mature FFT (∼38 year old tailings) over a 52-week study, a specific experimental design was utilized in accordance with novel microsensor profiling techniques. The sulfide diffusive fluxes within mature biotic systems measured 37.6 μmol m−2 day−1 at the onset of the experiment, decreasing over time, as FeS mineralization progressed. In addition, DO fluxes also showed strong correlation to the physical affects of consolidation, and overall biological consumption of O2 at the FFT-water interface. This holistic study comparing different tailings pond materials provides insight regarding biotransformation and physicochemical controls effecting sediment oxygen demand associated with reclaimed wetlands and end pit lake development.  相似文献   

20.
Many abandoned mine sites in Cornwall, UK, are characterised by elevated concentrations of arsenic (As), which can cause contamination of surrounding soil and water resources. These sites have important historical value that requires access to be maintained, despite exposure of humans to toxins that may lead to health issues including hyperpigmentation keratosis (including skin cancers) and liver fibrosis. The abandoned mine tailings at Wheal Maid has been assessed for As-bearing mineralogy and stability taking into account the public footpaths made by the local council to areas of potential contamination.To assess the potential risk associated with these mine sites, the As concentration in waters along the tailings dam and Carnon River have been measured and range up to 3.6 ppm, which is 2 orders of magnitude above the WHO guideline value of 0.01 ppm for drinking water. Samples of water, rocks and soils from the mine tailings ponds and the Carnon River were analysed using Inductively Coupled Plasma – Optical Emission Spectrometry (ICP-OES) and Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) to determine the concentration of individual elements in each sample followed by mineral identification using X-Ray Diffraction (XRD). Mineralogical evaluation indicated that the majority of mine tailings consist of clay-rich rocks, with few associated As-bearing minerals. Scorodite (FeAsO4·2H2O) is observed in the mine tailings pond and appears critical to the As distribution and storage in this surface environment. Using the analysed water chemistry, a modified version of PHREEQC is used to calculate the saturation index of scorodite as a function of pH conditions. The strong variation of the solubility of this mineral with pH and oxidation state highlights potential risks for using scorodite for As fixation and storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号