首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Applied Geochemistry》2006,21(7):1216-1225
The aim of the study was to determine whether the application of bulk industrial chemicals (potassium permanganate and water-soluble phosphate fertilizer) to partly oxidized, polyminerallic mine wastes can inhibit sulfide oxidation, and metal and metalloid mobility. The acid producing waste rocks were metal (Pb, Zn, Cu) and metalloid (As, Sb) rich and consisted of major quartz, dickite, illite, and sulfide minerals (e.g., galena, chalcopyrite, tetrahedrite, sphalerite, pyrite, arsenopyrite), as well as minor to trace amounts of pre- and post-mining oxidation products (e.g., hydrated Fe, Cu, Pb, and alkali mineral salts). SEM-EDS observations of treated waste material showed that metal, metal–alkali, and alkali phosphate coatings developed on all sulfides. The abundance of phosphate phases was dependant on the fertilizer type and the availability of metal and alkali cations in solution. In turn, the release of cations was dependent on the amount of sulfide oxidation induced by KMnO4 during the experiment and the dissolution of soluble sulfates. Mn, Ca, Fe, and Pb phosphates remained stable during H2O2 leaching, preventing acid generation and metal release. In contrast, the lack of complete phosphate coating on arsenopyrite allowed oxidation and leaching of As to proceed. The mobilized As did not form phosphate phases and consequently, As displayed the greatest release from the coated waste. Thus, the application of KMnO4 and the water-soluble phosphate fertilizer Trifos (Ca(H2PO4)2) to partly oxidized, polyminerallic mine wastes suppresses sulfide oxidation and is most effective in inhibiting Cu, Pb, and Zn (Sb) release. However, the technique appears ineffective in suppressing oxidation of arsenopyrite and preventing As leaching.  相似文献   

2.
Secondary minerals formed in tailings derived from a W-rich deposit were investigated in detail using transmission electron microscopy (TEM). The study focused on secondary minerals that formed in the vicinity of oxidized sphalerite [ZnS] and tennantite [Cu10(Fe,Zn)2As4S13] grains. Samples for TEM analysis were prepared directly from petrographic thin sections using a focused ion beam instrument. This method insured that spatial relationships among primary grains, secondary minerals and the pore spaces were maintained. The results from this study indicate that the secondary coatings associated with sphalerite and tennantite are composed of several discrete phases. The phases identified in this study include an Fe–Zn–As–O phase, secondary sulfides, native Cu, an Fe–Si–O phase, an In–O phase, and wulfenite [PbMoO4]. The Fe–Zn–As–O phase precipitates directly from the pore water and the nearby primary mineral grains act as a source for some of the elements (e.g., Zn from sphalerite, As from tennantite). Secondary Cu sulfides were found at the outer margins of sphalerite and roquesite [CuInS2] grains. It is likely that these Cu sulfides form as a result of interactions between the primary grain and aqueous Cu(II) present in the pore water, similar to what occurs in supergene environments. A secondary sulfide that was composed of variable amounts of Cu, Zn, As, Fe and S was also identified along the outer margins of tennantite. Native Cu was found in association with chalcopyrite [CuFeS2] inclusions that were present in one of the sphalerite grains and probably represents a low-temperature secondary phase. The oxidation of chalcopyrite in the presence of aqueous Si leads to the formation of a nanocrystalline or amorphous Fe–Si–O phase. Roquesite oxidation leads to the formation of a crystalline In–O phase, which is likely dzhalindite [In(OH)3]. Wulfenite was found in the interstitial voids present in the Fe–Zn–As–O phase suggesting that it forms by direct precipitation from the local pore water. The results from this study indicate that secondary coatings consist of complex secondary phases that may only be distinguished at the nanoscale. The TEM investigations reveal details regarding mineralogical sinks and sources for aqueous components that may otherwise be overlooked.  相似文献   

3.
This paper is focused on the new data for geology, mineralogy, and geochemistry of stockworks consisting of steep and gentle quartz veins and veinlets forming a complex multilevel structure at the Rodion deposit. These stockworks range from 25 to 150 m in thickness. Average gold grade is 1.8 g/t. Ore minerals pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, and native gold are predominantly concentrated on the vein and veinlet walls. Thermal metamorphism caused by the intrusion of the Ulakhan granodiorite pluton is the important singularity of the deposit. The deposit ore is enriched in chalcophile microelements Au, Ag, As, Sb, Cu, Pb, Zn, and Bi as compared to the average composition of the upper crust and hosting Permian sequences. The enrichment factors range from a few to hundreds of times. Bi, W, Pb, Ag, and Na2O are positively correlated between each other and with Au. The highest correlation coefficient 0.59 is between Au and Bi. Au is negatively correlated with Ba, Li, Co, Ni, Mn, Ti, and Be. The stockwork ores were formed involving homogeneous low-saline (9.4–4.3 wt % NaCl equiv) substantially aqueous bicarbonate-chloride fluid at 275–330°C and 300–1840 bar fluid pressure. Fluid has a high concentration of CO2 (up to 349 g/kg of water) and is reductive (СО2/СН4 = 17–37.3). Na and Ca are the major cations in the fluid, whereas K and Mg are minor. In addition, many microelements were detected in the fluid: As, Li, Rb, Cs, Mo, Ag, Sb, Cu, Zn, Cd, Pb, U, Ga, Ge, Ti, Mn, Fe, Co, Ni, V, Cr, Y, Zr, Sn, Ba, W, Au, Hg, and REE. The results obtained are consistent with the metamorphic–magmatic formation model of orogenic gold–quartz deposits within the Yana–Kolyma belt.  相似文献   

4.
《Resource Geology》2018,68(3):209-226
Shin‐Otoyo, Suttsu, Teine, Date, Chitose, and Koryu are sites rich in precious and base metal Miocene–Pleistocene epithermal deposits, and located in southwestern Hokkaido, Japan. The deposits are predominantly hosted by the Green Tuff Formation of Middle Miocene age. Ore petrographic study of these deposits shows the occurrence of variable quantities of Cu–As–Sb–Ag–Bi–Pb–Te sulfosalt minerals. Determination of mineralogical and chemical compositions of the sulfosalt minerals was undertaken to elucidate the time and spatial changes of the sulfide‐sulfosalt minerals. Various types of sulfosalt minerals identified from gold–silver and base metal quartz–sulfide veins represented some sulfosalt mineralization phases, such as the Cu–Fe–Sn–S phase of mawsonite and stannite; Cu–(As,Sb)–S phase of tetrahedrite–tennantite and luzonite–famatinite series minerals; (Cu,Ag)–Bi–Pb–S phase of emplectite, pavonite, friedrichite, aikinite, and lillianite–gustavite series minerals; (Ag,Cu)–(As,Sb)–S phase of proustite–pyrargyrite and pearceite–polybasite series minerals; and Bi–Te–S phase of tetradymite and kawazulite minerals. There are some trends in the paragenetic sequence of sulfosalt mineralization in southwestern Hokkaido (in complete or partial) as follows: sulfide → Cu–Fe–Sn–S → (Cu,Ag)–Bi–Pb–S → (Bi–Te–S) → Cu–(As,Sb)–S → ([Ag,Cu]–[As,Sb]–S). The formation of sulfosalt minerals is characterized by the introduction of some elements such as Sn, Bi, and Te at an earlier stage and an increase or decrease of some elements such as As and Sb, followed by the introduction of Ag at the later stage of ore mineral paragenesis sequence. Mineral composition of the Chitose and Koryu deposits are slightly different from those of Shin‐Otoyo, Suttsu, Teine, and Date due to their lack of Sn (tin) and Bi (bismuth) mineralization. The variable concentrations and relationships are not simply with redistributed trace elements from the original sulfide minerals of chalcopyrite, pyrite, galena, and sphalerite. Some heavier elements were also introduced during the replacement reaction, which is consistent with the occurrence of their associated minerals.  相似文献   

5.
The results of study of the Bobruisk ring structure (Republic of Belarus) containing ~80 rare rockforming and accessory minerals are reported. Among them are native (Fe, Cu, Sn, Zn, Pb, Ag, Mo, W, Al) and intermetallic (Fe, Cr, Ni, Mo, B, N, C, Si) compounds, natural alloys (Fe–Cr, Fe–Cr–Mo–W–B; brass (Cu–Zn–Pb); and bronze (Sn–Pb–Zn–Cu)). They are observed as segregations of various shapes and sizes, as well as their aggregates. The formation of mineralization is controlled by reduced mantle fluids enriched in H2, CH4, CO, Si, N, and O and stimulating accumulation of rare elements as native and intermetallic phases, alloys, rather than isomorphic impurities in minerals.  相似文献   

6.
The Tianbaoshan deposit, located in the southwestern part of the Yangtze Block, is a representative Pb–Zn deposit in the Sichuan–Yunnan–Guizhou Pb–Zn metallogenic province. The Pb–Zn orebodies are hosted in the upper Sinian Dengying Formation dolostone. The predominant minerals are sphalerite, galena, pyrite, chalcopyrite, quartz, and calcite with minor arsenopyrite, fahlore, and dolomite. The deposit is characterized by relatively strong Cu mineralization. However, the relationship between Pb–Zn and Cu mineralization is unknown. We analyzed the mineralogy and composition of fahlore, chalcopyrite, arsenopyrite, sphalerite, and galena using scanning electron microscopy–energy dispersive spectroscopy, with the aim of providing new evidence for the genesis of the Pb–Zn–(Cu) ore. The results show that the Cu ore in the deposit is dominated by chalcopyrite and fahlore, both of which formed before or during the Pb–Zn ore-forming stage. The fahlore showed dramatic compositional variation and was characterized by negative correlations between Ag and Cu, and between As and Sb, suggesting substitution of Ag for Cu, and that As and Sb substitute in the same site in the fahlore lattice. Based on backscattered electron images and composition, the fahlore was divided into two types. Type I fahlore crystallized early and is characterized by enrichment of Cu and depletion in Ag and Sb. Type II fahlore formed after Type I, and is rich in Ag and poor in Cu and As. Moreover, galena and fahlore are the host minerals of Ag. The variation of valence state with As host mineral—from fahlore to arsenopyrite—indicates the metallogenic environment changed from relatively oxidizing to reducing with a high pH. In the light of Gibbs energies of reciprocal reactions and isotherms for cation exchange, the composition of the fahlore implies its ore-forming temperature was lower than 220 °C, corresponding with typical Mississippi Valley-type (MVT) deposits. Based on the geologic character and geochemical data of this deposit, we suggest that the Tianbaoshan deposit belongs to the MVT deposit category.  相似文献   

7.
In the oxidation zone of the Berezovskoe gold deposit in the middle Urals, Russia, minerals of the beudantite–segnitite series (idealized formulas PbFe3 3+ AsO4)(SO4)(OH)6 and PbFe3 3+ AsO4)(AsO3OH)(OH)6, respectively) form a multicomponent solid solution system with wide variations in the As, S, Fe, Cu, and Sb contents and less variable P, Cr, Zn, Pb, and contents K. The found minerals of this system correspond to series from beudantite with 1.25 S apfu to S-free segnitite, with segnitite lacking between 1.57 and 1.79 As apfu. Segnitite at the Berezovskoe deposit contains presumably pentavalent Sb (up to 15.2 wt % Sb2O5 = 0.76 Sb apfu, the highest Sb content in the alunite supergroup minerals), which replaces Fe3+. The Sb content increases with increasing As/S value. On the contrary, beudantite is free of or very poor in Sb (0.00–0.03 Sb apfu). Many samples of segnitite are enriched in Cu (up to 8.2 wt% CuO = 0.83 Cu apfu, uncommonly high Cu content for this mineral) and/or in Zn (up to 2.0 wt% ZnO = 0.19 Zn apfu). Both Cu and Zn replace Fe. The generalized formula of a hypothetic end member of the segnitite series with 1 Sb apfu is Pb(Fe3+ M 2+Sb5+)(AsO4)2(OH)6, where M = Cu, Zn, Fe2+. The chemical evolution of beudantite–segnitite series minerals at the Berezovskoe deposit is characterized by an increase in the S/As value with a decrease in the Sb content from early to late generations.  相似文献   

8.
The Dachang tin-polymetallic district, Guangxi, China, is one of the largest tin ore fields in the world. Both cassiterite-sulfide and Zn–Cu skarn mineralization are hosted in the Mid-Upper Devonian carbonate-rich sediments adjacent to the underlying Cretaceous Longxianggai granite (91–97 Ma). The Lamo Zn–Cu deposit is a typical skarn deposit in the district and occurs at the contact zone between the Upper Devonian limestone and the granite. The ore minerals mainly consist of sphalerite, arsenopyrite, pyrrhotite, galena, chalcopyrite, and minor molybdenite. However, the age of mineralization and source of the metals are not well constrained. In this study, we use the molybdenite Re–Os dating method and in-situ Pb isotopes of sulfides from the Lamo deposit for the first time in order to directly determine the age of mineralization and the tracing source of metals. Six molybdenite samples yielded a more accurate Re–Os isochron age of 90.0 ± 1.1 Ma (MSWD = 0.72), which is much younger than the reported garnet Sm–Nd isochron age of 95 ± 11 Ma and quartz fluid inclusions Rb–Sr isochron age of 99 ± 6 Ma. This age is also interpreted as the age of Zn–Cu skarn mineralization in the Dachang district. Further, in this study we found that in-situ Pb isotopes of sulfides from the Lamo deposit and feldspars in the district’s biotite granite and granitic porphyry dikes have a narrow range and an overlap of Pb isotopic compositions (206Pb/204Pb = 18.417–18.594, 207Pb/204Pb = 15.641–15.746, and 208Pb/204Pb = 38.791–39.073), suggesting that the metals were mainly sourced from Cretaceous granitic magma.  相似文献   

9.
 Mining activity in the Boccheggiano-Fontalcinaldo area (Southern Tuscany) dates back at least to the 16th century AD and lasted up to very recent times. Copper-rich hydrothermal veins, massive pyrite deposits, and their gossans were exploited. Two mine waste dumps (Fontalcinaldo, Fontebona), one flotation tailings impoundment (Gabellino), and one roasting/smelting waste dump (Merse-Ribudelli) in the study area were selected to ascertain the environmental effects of such protracted mining activity. Primary waste mineralogy is mainly characterized by pyrite, gypsum, quartz, carbonates, chlorites, and micas. Secondary oxidation mineralogy includes Fe and Cu sulfates and hydroxy sulfates, Cu carbonates, Fe and Al oxyhydroxides, and other phases [neogenic cassiterite at Fontalcinaldo; probable calkinsite, (Ce,La)2(CO3)3· 4H2O, at Fontebona]. Mine waste samples show extremely variable contents of toxic elements (Cu, Pb, Zn, Bi, Cd, As), with average values in the order of hundreds to thousands of parts per million (except for Bi and Cd). In some samples, the abundance of proper minerals of these metals cannot account for the entire metal load. Conceivably, either solid solution substitutions or adsorption processes contribute to the intake of released metals into newly formed minerals. Release and transport of pollutants was affected to variable degrees by acid-neutralization processes. The highest metal and acid concentrations occur close to the investigated wastes and rapidly decrease moving downstream some hundreds of meters or less, with the partial exception for Mn and Fe. Other than dilution effects, this phenomenon may be ascribed to metal adsorption and precipitation of solid phases. Received: 16 April 1995 · Accepted: 14 December 1995  相似文献   

10.
Six epizonal gold deposits in the 30-km-long Yangshan gold belt, Gansu Province are estimated to contain more than 300 t of gold at an average grade of 4.76 g/t and thus define one of China's largest gold resources. Detailed paragenetic studies have recognized five stages of sulfide mineral precipitation in the deposits of the belt. Syngenetic/diagenetic pyrite (Py0) has a framboidal or colloform texture and is disseminated in the metasedimentary host rocks. Early hydrothermal pyrite (Py1) in quartz veins is disseminated in metasedimentary rocks and dikes and also occurs as semi-massive pyrite aggregates or bedding-parallel pyrite bands in phyllite. The main ore stage pyrite (Py2) commonly overgrows Py1 and is typically associated with main ore stage arsenopyrite (Apy2). Late ore stage pyrite (Py3), arsenopyrite (Apy3), and stibnite occur in quartz ± calcite veins or are disseminated in country rocks. Post-ore stage pyrite (Py4) occurs in quartz ± calcite veins that cut all earlier formed mineralization. Electron probe microanalyses and laser ablation-inductively coupled plasma mass spectrometry analyses reveal that different generations of sulfides have characteristic of major and trace element patterns, which can be used as a proxy for the distinct hydrothermal events. Syngenetic/diagenetic pyrite has high concentrations of As, Au, Bi, Co, Cu, Mn, Ni, Pb, Sb, and Zn. The Py0 also retains a sedimentary Co/Ni ratio, which is distinct from hydrothermal ore-related pyrite. Early hydrothermal Py1 has high contents of Ag, As, Au, Bi, Cu, Fe, Sb, and V, and it reflects elevated levels of these elements in the earliest mineralizing metamorphic fluids. The main ore stage Py2 has a very high content of As (median value of 2.96 wt%) and Au (median value of 47.5 ppm) and slightly elevated Cu, but relatively low values for other trace elements. Arsenic in the main ore stage Py2 occurs in solid solution. Late ore stage Py3, formed coevally with stibnite, contains relatively high As (median value of 1.44 wt%), Au, Fe, Mn, Mo, Sb, and Zn and low Bi, Co, Ni, and Pb. The main ore stage Apy2, compared to late ore stage arsenopyrite, is relatively enriched in As, whereas the later Apy3 has high concentrations of S, Fe, and Sb, which is consistent with element patterns in associated main and late ore stage pyrite generations. Compared with pyrite from other stages, the post-ore stage Py4 has relatively low concentrations of Fe and S, whereas As remains elevated (2.05~3.20 wt%), which could be interpreted by the substitution of As? for S in the pyrite structure. These results suggest that syngenetic/diagenetic pyrite is the main metal source for the Yangshan gold deposits where such pyrite was metamorphosed at depth below presently exposed levels. The ore-forming elements were concentrated into the hydrothermal fluids during metamorphic devolatilization, and subsequently, during extensive fluid–rock interaction at shallower levels, these elements were precipitated via widespread sulfidation during the main ore stage.  相似文献   

11.
In this paper we present titanite U–Pb (both single crystal CA ID‐TIMS and in situ LA ICP‐MS) data, coupled with ore and gangue mineralogy and geochemical (both lithogeochemistry and microanalysis) data from the Nucleus Au–Ag–Bi–Cu deposit, in the Yukon (Canada) portion of the Tintina Au province. Arsenic‐bearing Au–Ag–Bi–Cu mineralization at Nucleus consists of two distinct styles of mineralization including: (i) reduced Au skarn and sulfide replacement; and (ii) a relatively shallow‐emplaced (as supported by textures and temperature of formation), vein‐controlled mineralization occurring mainly as veins and veinlets of various shapes (sheeted, single, stockworks, and crustiform), breccias, and disseminations. Whereas Au, Bi, and Cu mineralization from skarn is associated with hydrous retrograde alteration phases (actinolite, ferro‐actinolite, hastingsite, cannilloite, and hornblende), numerous alteration types are associated with the vein‐controlled style of mineralization and these include: biotite, phyllic, argillic, propylitic, carbonate, and quartz (silicification) alterations. The mineralization–alteration processes took place over a wide temperature range that is bracketed between 340 and 568°C, as indicated by chlorite and arsenopyrite geothermometers. The Au‐rich Nucleus deposit is characterized by anomalously high content of As and Bi (as much as 1 %), and whereas Au moderately correlates with Bi (r = 0.40) in the skarn mineralization style (where native Au is spatially associated with native Bi and Bi‐bearing sulfides), the two elements correlate poorly (r = 0.14) in the vein‐controlled type, in which native Bi‐ and Bi‐sulfide‐bearing veins are locally observed. Sphalerite from the vein‐controlled mineralized type is Fe‐rich (9.92–10.54 mol % FeS) indicative of low sulfidation conditions, as well as high temperature, with the latter further supported by arsenopyrite geothermometry (up to 491°C), low Ag content (3–7 wt.%) in Au, and the high gold fineness (926–964). Whereas molybdenite Re–Os ages from quartz‐molybdenite veins range from 75.8 to 76.2 ± 0.3 Ma, titanite from the skarn type mineralization recorded CA ID‐TIMS and LA ICP‐MS U–Pb ages of 182.6 ± 2.4 Ma and 191.0 ± 1.5 Ma, respectively, thus precluding any genetic link between the two spatially associated styles of mineralization from the Nucleus deposit area. The Au–Ag–Bi–Cu Nucleus deposit is therefore regarded as a superposed system in which two mineralization types, without any petrogenetic relationship, overlapped, possibly with remobilization of early‐formed mineralization.  相似文献   

12.
The Rio Tinto in SW Spain drains Cu and pyrite mines which have been in operation since at least the Bronze Age. Extensive metal mining, especially from 1873 to 1954, has resulted in contamination of the Rio Tinto alluvium with As, Cu, Pb, Ag and Zn. X-ray diffraction (XRD), wavelength-dispersive X-ray mapping, scanning electron microscope petrography and X-ray energy-dispersive (EDX) analysis has revealed that 4 major groups of contaminant metal and As-bearing minerals, including sulphides, Fe-As oxides, Fe oxides/hydroxides/oxyhydroxides, and Fe oxyhydroxysulphates, occur in the alluvium. Sulphide minerals, including pyrite, chalcopyrite, arsenopyrite and sphalerite, occur in alluvium near the mining areas. Iron hydroxides and oxyhydroxides such as goethite and possibly ferrihydrite occur in cements in both the mining areas and alluvium downstream, and carry minor amounts of As, Cu and Zn. Iron oxyhydroxysulphates, including jarosite, plumbojarosite and possibly schwertmannite, are the most common minerals in alluvium downstream of the mining areas, and are major hosts of Cu, Pb, Zn and of As, next to the Fe-As minerals. This work, and other field observations, suggest that (1) the extreme acidity and elevated metal concentrations of the river water will probably be maintained for some time due to oxidation of pyrite and other sulphides in the alluvium and mine-waste tips, and from formation of secondary oxide and oxyhydroxysulphates; (2) soluble Fe oxyhydroxysulphates such as copiapite, which form on the alluvium, are a temporary store of contaminant metals, but are dissolved during periods of high rainfall or flooding, releasing contaminants to the aqueous system; (3) relatively insoluble Fe oxyhydroxysulphates and hydroxides such as jarosite and goethite may be the major long-term store of alluvial contaminant metals; and (4) raising river pH will probably cause precipitation of Fe oxyhydroxides and oxides/hydroxides/oxyhydroxides and thus have a positive effect on water quality, but this action may destabilise some of these contaminant metal-bearing minerals, releasing metals back to the aqueous system.  相似文献   

13.
The Ta Nang gold deposit is localized in Middle Jurassic black shales. The ore zone is a series of layer-by-layer crush zones and zones of hydrothermal rock alteration, < 10 m in thickness and > 2 km in length. It consists of quartz-sulfide veins, sulfidized black shales, and their hydrothermally altered varieties. Sulfide mineralization occurs as two assemblages: early pyrite-arsenopyrite and late chalcopyrite-sphalerite- galena. The pyrite-arsenopyrite assemblage is composed of different morphogenetic varieties. Coarse-crystalline arsenopyrite and pyrite aggregates and metacrystals of different orientations, 0.1 to 10 mm in size, are the most widespread. The chalcopyrite-sphalerite-galena assemblage is scarce. Along with the main ore minerals, it includes more rare minerals: pyrrhotite, lead sulfosalts (tsugaruite), and gold, which form a spatial assemblage with the main minerals or small inclusions in them. Gold occurs mainly as fine dissemination in cracks in pyrite, arsenopyrite, chalcopyrite, and quartz. Gold content in sulfidized carbonaceous shales is no more than tenths of ppm, averaging 0.38 ppm. This content in the quartz veins is considerably higher, averaging 3.92 ppm. Silver contents in the shales and quartz veins are similar and equal to 2.68 and 5.30 ppm, respectively. Also, the sulfidized rocks and veins have elevated contents of Fe, As, Pb, Zn, Cu, Cd, Ni, and Co; most of these elements (Fe, As, Pb, Zn, and Cu) make up their own sulfide minerals, and the others are trace elements. According to 39Ar/40Ar dating of sericite from the quartz-sulfide veins, their age is 129.3 ± 5.6 Ma, which is close to the age of the Cretaceous granite intrusions of the Deo Ca complex. These veins formed from moderately strong solutions (11.7-6.4 wt.% NaCl equiv) with the CH4 + N2 + CO2 gas phase at 340–130 °C. Judging from the S isotope composition (534S = 1.6-4.3%c), predominantly deep-seated endogenic sulfur participated in the formation of ore sulfide associations. Analysis of the distribution of gold shows that it was deposited together with sulfide minerals (galena, sphalerite, and chalcopyrite) at a later stage.  相似文献   

14.
Abstract: A spectrum of intrusion-related vein gold deposits is recognized. Representative examples are described of the following geochemical associations: Au-Fe oxide–Cu, Au–Cu–Mo–Zn, Au–As–Pb–Zn–Cu, Au–Te–Pb–Zn–Cu and Au–As–Bi–Sb. The associated intrusions range from small outcropping stocks to complex batholiths. The different vein associations are believed to reflect the compositions of related intrusions, which themselves characterize distinct tectonic settings. The Au-Fe oxide–Cu and Au–Cu–Mo–Zn associations belong to two broad groups of deposits, Fe oxide–Cu–Au and porphyry Cu–Au, both of which are related to highly oxidized calc-alkaline intrusions emplaced in sub–duction–related arcs. The Au–As–Pb–Zn–Cu association seems to be linked to somewhat less oxidized intrusions emplaced in a similar setting. The Au–Te–Pb–Zn–Cu association, which possesses well-known epithermal counterparts, is also found with highly oxidized intrusions, but of alkaline composition and back-arc location. In contrast, the Au–As–Bi–Sb association, part of a newly recognized class of intrusion-hosted Au–Bi–W–As deposits, is related to relatively reduced intrusions, spanning the boundary between the magnetite– and ilmenite–series. Such intrusions, which may host major bulk-mineable gold deposits, were emplaced along the landward sides of arcs, possibly during lulls in subduction, as well as in continental collision settings. Therefore, a variety of geological environments is prospective for vein and, by extrapolation, other styles of gold mineralization, not all of them fully appreciated in the past. Several features of vein gold deposits, including imprecise relationships to individual intrusive phases, poorly developed mineral and metal zoning, apparent time gaps between intrusion and mineralization and presence of low–salinity, CO2–rich fluid inclusions, are commonly taken to indicate a non-igneous origin and to be more typical of orogenic (mesothermal) gold deposits generated during accretionary tectonic events. However, several or all of these features apply equally to some intrusion– related vein gold deposits and, therefore, do not constitute distinguishing criteria. The currently popular assignment of most gold-rich veins to the orogenic category requires caution, because of the geological convergence that they show with some intrusion-related deposits. A proper distinction between intrusion-related and orogenic gold deposits is crucial for exploration planning.  相似文献   

15.
Tailings generated during processing of sulfide ores represent a substantial risk to water resources. The oxidation of sulfide minerals within tailings deposits can generate low-quality water containing elevated concentrations of SO4, Fe, and associated metal(loid)s. Acid generated during the oxidation of pyrite [FeS2], pyrrhotite [Fe(1−x)S] and other sulfide minerals is neutralized to varying degrees by the dissolution of carbonate, (oxy)hydroxide, and silicate minerals. The extent of acid neutralization and, therefore, pore-water pH is a principal control on the mobility of sulfide-oxidation products within tailings deposits. Metals including Fe(III), Cu, Zn, and Ni often occur at high concentrations and exhibit greater mobility at low pH characteristic of acid mine drainage (AMD). In contrast, (hydr)oxyanion-forming elements including As, Sb, Se, and Mo commonly exhibit greater mobility at circumneutral pH associated with neutral mine drainage (NMD). These differences in mobility largely result from the pH-dependence of mineral precipitation–dissolution and sorption–desorption reactions. Cemented layers of secondary (oxy)hydroxide and (hydroxy)sulfate minerals, referred to as hardpans, may promote attenuation of sulfide-mineral oxidation products within and below the oxidation zone. Hardpans may also limit oxygen ingress and pore-water migration within sulfide tailings deposits. Reduction–oxidation (redox) processes are another important control on metal(loid) mobility within sulfide tailings deposits. Reductive dissolution or transformation of secondary (oxy)hydroxide phases can enhance Fe, Mn, and As mobility within sulfide tailings. Production of H2S via microbial sulfate reduction may promote attenuation of sulfide-oxidation products, including Fe, Zn, Ni, and Tl, via metal-sulfide precipitation. Understanding the dynamics of these interrelated geochemical and mineralogical processes is critical for anticipating and managing water quality associated with sulfide mine tailings.  相似文献   

16.
The paper presents pioneering data on the composition, texture, and crystal structure of molybdenite from various types of molybdenum mineralization at the Bystrinsky Cu–Au–Fe porphyry–skarn deposit in the eastern Transbaikal region, Russia. The data were obtained using electron microprobe analysis (EMPA), laser ablation–inductively coupled plasma mass spectrometry (LA-ICP-MS), and high-resolution transmission electron microscopy (HRTEM). Molybdenite found at the deposit in skarn, sulfide-poor quartz veins, and quartz–feldspar alteration markedly differs in the concentrations of trace elements determined by their species in the mineral, as well as in its structural features. Molybdenite-2H from skarn associated with phyllosilicates occurs as ultrafine crystals with uniform shape and texture; no dislocations or inclusions were found but amorphous silica was. The molybdenite composition is highly contrasting in the content and distribution of both structure-related (Re, W, and Se) and other (Mn, Co, Ni, Cu, Zn, As, Ag, Cd, Sb, Te, Ag, Pd, Au, Hg, Pb, and Bi) metals. In the sulfide-poor quartz veins, highly structurally heterogeneous (2H + 3R) molybdenite microcrystals with abundant defects (dislocations and volumetrically distributed inclusions) are associated with illite, goethite, and barite. Some single crystals are unique three-phase (2H + 3R polytypes + amorphous MoS2). The mineral has a low concentration of all trace elements, which are uniformly distributed. However, individual domains with uniquely high Pd, Te, Ni, Hg, and W concentrations caused by mineral inclusions are found in some grains. Molybdenite from quartz–feldspar alteration is characterized by low concentrations of all trace elements except for Re and Se, which enrich some domains of the grains. Our data indicate that the compositional and structural heterogeneity of molybdenite from the Bystrinsky deposit are its crucial features, which obviously correlate with the types of Mo mineralization.  相似文献   

17.
The concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb, Cd, As, Hg, and Fe) in sediments of the Yangtze River, China, were investigated to evaluate levels of contamination and their potential sources. The lowest heavy metal concentrations were found in the source regions of the river basin. Relatively high concentrations of metals, except Cr, were found in the Sichuan Basin, and the highest concentrations were in the Xiangjiang and Shun’anhe rivers. All concentrations, except Ni, were higher than global averages. Principal component analysis and hierarchical cluster analysis showed that Zn, Pb, As, Hg, and Cd were derived mainly from the exploitation of various multi-metal minerals, industrial wastewater, and domestic sewage. Cu, Co, and Fe were derived mainly from natural weathering (erosion). Cr and Ni were derived mainly from agricultural activities, municipal and industrial wastewater. Sediment pollution was assessed using the geoaccumulation index (I geo) and enrichment factor (EF). Among the ten heavy metals assessed, Cd and Pb had the highest I geo values, followed by Cu, As, Zn, and Hg. The I geo values of Fe, Cr, Co, and Ni were <0 in all sediments. EF provided similar information to I geo: no enrichment was found for Cr, Co, and Ni. Cu, Zn, As, and Hg were relatively enriched at some sites while Cd and Pb showed significant enrichment.  相似文献   

18.
《Applied Geochemistry》1998,13(2):213-233
Porewater concentration profiles were determined for Fe, trace elements (As, Cd, Co, Cu, Mn, Ni, Pb, Zn), sulfide, SO4 and pH in two Canadian Shield lakes (Chevreuil and Clearwater). Profiles of pyrite, sedimentary trace elements associated with pyrite and AVS were also obtained at the same sites. Thermodynamic calculations are used, for the anoxic porewaters where sulfide was measured, to characterize diagenetic processes involving sulfide and trace elements and to illustrate the importance of sulfide, and possibly polysulfides and thiols, in binding trace elements. The ion activity products (IAP) of Fe sulfide agree with the solubility products (Ks) of greigite or mackinawite. For Co, Ni and Zn, IAP values are close to the KS values of their sulfide precipitates; for Cu and Pb, IAP/Ks indicate large oversaturations, which can be explained by the presence of other ligands (not measured) such as polysulfides (Cu) and thiols (Pb). Cobalt, Cu, Ni and Zn porewater profiles generally display a decrease in concentration with increasing ΣH2S, as expected for transition metals, whereas Cd, Pb and Zn show an increase (mobilisation). The results suggest that removal of trace elements from anoxic porewaters occurs by coprecipitation (As and Mn) with FeS(s) and/or adsorption (As and Mn) on FeS(s), and by formation of discrete solid sulfides (Cd, Cu, Ni, Pb, Zn and Co). Reactive Fe is extensively sulfidized (51–65%) in both lakes, mostly as pyrite, but also as AVS. Similarities between As, Co, Cu and Ni to Fe ratios in pyrite and their corresponding mean diffusive flux ratios suggest that pyrite is an important sink at depth for these trace elements. High molar ratios of trace elements to Fe in pyrite from Clearwater Lake correspond chronologically to the onset of smelting activities. AVS can be an important reservoir of reactive As, Cd and Ni and, to a lesser extent, of Co, Cu and Pb. Overall, the trace elements most extensively sulfidized were Ni, Cd and As (maximum of 100%, 81% and 49% of the reactive fraction, respectively), whereas Co, Cu, Mn, Pb and Zn were only moderately sulfidized (11–16%).  相似文献   

19.
《Ore Geology Reviews》2011,43(1):32-46
Hydrothermal pyrite contains significant amounts of minor and trace elements including As, Pb, Sb, Bi, Cu, Co, Ni, Zn, Au, Ag, Se and Te, which can be incorporated into nanoparticles (NPs). NP-bearing pyrite is most common in hydrothermal ore deposits that contain a wide range of trace elements, especially deposits that formed at low temperatures. In this study, we have characterized the chemical composition and structure of these NPs and their host pyrite with high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), analytical electron microscopy (AEM), and electron microprobe analysis (EMPA). Pyrite containing the NPs comes from two types of common low-temperature deposits, Carlin-type (Lone Tree, Screamer, Deep Star (Nevada, USA)), and epithermal (Pueblo Viejo (Dominican Republic) and Porgera (Papua New-Guinea)).EMPA analyses of the pyrite show maximum concentrations of As (11.2), Ni (3.04), Cu (2.99), Sb (2.24), Pb (0.99), Co (0.58), Se (0.2), Au (0.19), Hg (0.19), Ag (0.16), Zn (0.04), and Te (0.04) (in wt.%). Three types of pyrite have been investigated: “pure” or “barren” pyrite, Cu-rich pyrite and As-rich pyrite. Arsenic in pyrite from Carlin-type deposits and the Porgera epithermal deposit is negatively correlated with S, whereas some (colloform) pyrite from Pueblo Viejo shows a negative correlation between As + Cu and Fe. HRTEM observations and SAED patterns confirm that almost all NPs are crystalline and that their size varies from 5 to 100 nm (except for NPs of galena, which have diameters of up to 500 nm). NPs can be divided into three groups on the basis of their chemical composition: (i) native metals: Au, Ag, Ag–Au (electrum); (ii) sulfides and sulfosalts: PbS (galena), HgS (cinnabar), Pb–Sb–S, Ag–Pb–S, Pb–Ag–Sb–S, Pb–Sb–Bi–Ag–Te–S, Pb–Te–Sb–Au–Ag–Bi–S, Cu–Fe–S NPs, and Au–Ag–As–Ni–S; and (iii) Fe-bearing NPs: Fe–As–Ag–Ni–S, Fe–As–Sb–Pb–Ni–Au–S, all of which are in a matrix of distorted and polycrystalline pyrite. TEM-EDX spectra collected from the NPs and pyrite matrix document preferential partitioning of trace metals including Pb, Bi, Sb, Au, Ag, Ni, Te, and As into the NPs. The NPs formed due to exsolution from the pyrite matrix, most commonly for NPs less than 10 nm in size, and direct precipitation from the hydrothermal fluid and deposition into the growing pyrite, most commonly for those > 20 nm in size. NPs containing numerous heavy metals are likely to be found in pyrite and/or other sulfides in various hydrothermal, diagenetic and groundwater systems dominated by reducing conditions.  相似文献   

20.
The southern Kostomuksha gold-sulfide prospect with a grade of 0.2–30 g/t Au belongs to the gold-pyrrhotite-arsenopyrite mineral type and is localized in the metasomatically altered shear zone at the southern flank of the Kostomuksha iron deposit. The Au-bearing pyrite ore is commonly characterized by a low grade (0.02–1.0 g/t Au). The grade of Au-bearing mineralization composed of arsenopyrite, loellingite, and electrum (4.28–15.31 wt % Ag and up to 0.99–2.16 wt % Hg) is higher; pyrrhotite, chalcopyrite, galena, maldonite, aurostibite, and native bismuth are additional components of this mineral assemblage. The ore mineralization is hosted in the near-latitudinal shear zone close to the contact between the folded and metamorphosed banded iron formation (BIF) and hälleflinta. The early stage of collision-related HP-HT metamorphism resulted in the formation of a garnet-amphibole-biotite assemblage (T = 680-750°C) and microcline. After an abrupt drop m pressure, metasomatic alteration and ore mineralization took place. The ore-forming process started at 510–440°C with deposition of arsenopyrite. Galena and electrum were formed at a lower temperature. The temperature continued to decline down to the stage of ore oxidation and deposition of colloform marcasite. Ore minerals precipitated from acid chloride aqueous solutions admixed with methane at the initial stage and from diluted aqueous solutions at the final stage. The character of wall-rock alteration and the gain of K, Rb, and B show that the ore-forming process postdated the emplacement of potassium granite. The occurrence of Cu, Zn, Pb, As, and Ni and other heterogeneous elements indicates a complex metamorphic-metasomatic source and an additional supply of Au, As, Bi, Sb, and Te under conditions of sulfur deficiency. The gold mineralization at the southern Kostomuksha prospect is classified as gold-sulfide (arsenopyrite) ore type related to shear zones in the BIF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号