首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extraction and analysis of organic pollutants from matrices such as sediment constitute an essential step in environmental research. However, the extraction for quantitative analysis can turn out to be difficult because these compounds are present in trace levels and can be strongly bound to the sorbent matrix. Consequently, accuracy of environmental analyses mainly depends on the efficiency and the robustness of the extraction step. In this work, a sequential ASE extraction procedure was applied to the extraction of polycyclic aromatic and aliphatic hydrocarbons (PAHs, Me-PAHs and n-alkanes) in sediment samples. The extraction protocol was developed for 26 PAHs, including the 16 PAHs of the United-States Environmental Protection Agency (EPA) priority list, for 17 alkylated PAHs homologues and for 29 n-alkanes (from n-C12 to n-C40). A set of 30 experiments was carried out for the determination of the optimal extraction conditions. The four parameters studied were pressure, temperature, extraction time and nature of the solvent. Extracts were analyzed by gas chromatography (GC-MS and GC-FID) after clean-up and concentration. The optimal extraction conditions selected for pressure, temperature, extraction time and nature of solvent were respectively 14 MPa, 160 °C, 24 min and hexane/acetone (1/1 v/v). The analytical procedure was validated by comparing predicted and experimental values of sediment samples and by analyzing standard reference material. The validated method was then applied to establish a depth profile contamination in the sediment of the Deûle River in Northern France.  相似文献   

2.
Hydrogen isotopic composition of n-alkanes was measured in sediments from an excavated profile of the Early Cretaceous Yixian Formation in Liaoning Province, NE China, aiming to assess the significance of the δD value of n-alkanes in ancient lacustrine sediments as the indicator for determining the source inputs of organic matters and paleoclimatic conditions. The δD values of n-alkanes are in the range of − 250‰ to − 85‰ and display an obvious three-stage variation pattern through the profile, which is consistent with the distribution of the dominated n-alkanes and the profile of their δ13C values. The δD and δ13C values of n-alkanes suggest that short-chain n-alkanes are primarily derived from photosynthetic bacteria and algae; n-C29 and n-C31 are mainly originated from terrestrial higher plants; n-C28 and n-C30 may be derived from the same precursor but via the different biological mechanism of hydrogen isotopic fractionation; while the source inputs of medium-chain n-alkanes are more complicated, with n-C23 being derived from some specific algae or biosynthesized by various aquatic organisms. The paleoclimatic conditions are reconstructed via two approaches. The reconstructed hydrogen isotopic values of lake water and meteoric water (expressed as δDLW and δDMW, respectively) were at the intervals of − 51.8‰ to 17.0‰ and − 118.1‰ to − 43.5‰, respectively, indicating a general climate transition from semi-arid to arid. The calculated ΔδDLW-MW values vary from 37.0‰ to 89.1‰ and display a similar but a significant large-scale variation trend with the ΔδDC23  long (− 28.8‰ to 85.0‰; long represents long-chain n-alkanes) and ΔδDmid-long (− 15.4‰ to 43.4‰; mid represents medium-chain n-alkanes) values. The discrepancy may be attributed to the source input overlap for n-alkanes and the uncertainties of εwater/lipid values. The coupling of ΔδDC23  long, ΔδDmid-long and ΔδDLW-MW values with the paleoclimatic evidence indicates that the δD values of n-alkanes could be more sensitive to the change of paleoclimatic conditions.  相似文献   

3.
Novel ecosystem development is occurring within the western boreal forest of Canada due to land reclamation following oil sand surface mining. Sphagnum peat is the primary organic amendment used to reconstruct soil in these novel ecosystems. We hypothesised that ecosystem recovery would be indicated by an increasing similarity in the biomolecular characteristics of novel soil organic matter (SOM) derived from peat to those of natural boreal ecosystems. We evaluated the use of the homologous series of long chain (⩾ C21) n-alkanes with odd/even predominance to monitor the re-establishment of boreal forest on these anthropogenic soils. The lipids were extracted from dominant vegetation inputs and SOM from a series of natural and novel ecosystem reference plots. Twice the concentration of n-alkanes was extracted from natural than from novel ecosystem SOM (p < 0.01). We observed unique n-alkane signatures for the source vegetation, e.g. peat material was dominated by C31, and aspen (Populus tremuloides Michx.) leaves by C25. The n-alkane distribution differed between the two systems (p < 0.001) and reflected the dominant vegetation input, i.e. peat or tree species. Our results indicate that further research is required to clarify the influence of vegetation or disturbance on the signature of n-alkanes in SOM; however, the use of n-alkanes as biomarkers of novel ecosystem development is a promising application.  相似文献   

4.
This study contributes to the paleoenvironmental reconstruction of the loess–paleosol sequence of Nussloch, Germany, by using n-alkanes as plant leaf-wax-derived lipid biomarkers. We found that n-alkane patterns and concentrations in the Saalian loess and the last interglacial Eemian paleosol of Nussloch point to very strong degradation and prevailing deciduous vegetation. Degradation effects in the overlying paleosols and loess layers are less pronounced and allow for the application of an end-member mixing model to estimate vegetation changes semi-quantitatively. Our findings highlight the potential for the interpretation of degradation-corrected n-alkane ratios. n-Alkane modelling results for loess layers, paleosols and an in-filled paleochannel dated to ~ 60–32 ka suggest that up to ~ 50% of the n-alkanes were derived from deciduous trees or shrubs. This finding is in agreement with the abundant occurrence of wood fragments and indicates a highly variable and dynamic landscape dominated by tundra shrubland. On the other hand, deciduous trees or shrubs did not contribute significantly to the soil organic matter in the late Weichselian loess layers and the intercalated Gelic Gleysols (~ 32–18 ka).  相似文献   

5.
The Mundaú–Manguaba estuarine–lagoon system (MMELS) constitutes one of the most representative ecosystems in the state of Alagoas, NE Brazil. Approximately 30% or 60,000 ha of the lower surrounding drainage basin of the MMELS are covered by sugar cane and a total of 250,000 inhabitants contribute untreated effluent to the system. Short sediment cores from MMELS were collected in 2007 at three sites: Manguaba Lagoon (C03), Mundaú Lagoon (C07) and Mundaú River (C08) in order to characterize the delivery and deposition of n-alkanes over the past 40 yr. The n-alkanes ranged from C15 to C35, with total aliphatic hydrocarbon (TAH) concentration in the range 27.8–139.5 μg g−1. An unresolved complex mixture (UCM) was observed in all sediments. The terrigenous/aquatic ratio (TAR), carbon preference index (CPI) and average chain length (ACL) showed that the terrigenous input dominated. The (δ13C) values of individual n-alkanes (C16–C33) varied between −22.6‰ and −34.2‰, suggesting a dominance of 12C-enriched n-alkanes that originated from C3 plants and lacustrine algae. The data reflect how anthropogenic input (via sewage, industrial pollution and agriculture) has influenced the organic content of the system through time.  相似文献   

6.
Future climatic conditions may coincide with an increased potential for wildfires in grassland and forest ecosystems, whereby charred biomass would be incorporated into soils. Molecular changes in biomass upon charring have been frequently analysed with a focus on black carbon. Aliphatic and aromatic hydrocarbons, known to be liberated during incomplete combustion of biomass have been preferentially analysed in soot particles, whereas determinations of these compounds in charred biomass residues are scarce. We discuss the influence of increasing charring temperature on the aliphatic and aromatic hydrocarbon composition of crop grass combustion residues. Straw from rye, representing C3 grasses and maize, representing C4 grasses, was charred in the presence of limited oxygen at 300, 400 and 500 °C. Typical n-alkane distribution patterns with a strong predominance of long chain odd-numbered n-alkanes maximising at C31 were observed in raw straw. Upon combustion at 300 °C aliphatic hydrocarbons in char were dominated by sterenes, whereas at 400 °C sterenes disappeared and medium chain length n-alkanes, maximising around n-C20, with a balanced odd/even distribution were present. At a charring temperature of 500 °C n-alkane chain length shifted to short chain homologues, maximising at C18 with a pronounced predominance of even homologues. Even numbered, short chain n-alkanes in soils may thus serve as a marker for residues of charred biomass. Aromatic hydrocarbons indicate an onset of aromatization of biomass already at 300 °C, followed by severe aromatization upon incomplete combustion at 400–500 °C. The diagnostic composition of aliphatic and aromatic hydrocarbons from charred biomass affords potential for identifying residues from burned vegetation in recent and fossil soils and sediments.  相似文献   

7.
Precise indices based on n-alkane signatures were developed in order to determine the sources and composition of sedimentary organic matter (SOM) in coastal systems. The Arcachon Bay (France), a well-studied temperate lagoon, was used as an example of a complex coastal system sheltering a wide diversity of OM sources. Three main groups of sources were well discriminated from their n-alkane signatures: seagrass (Zostera sp.) produced mainly n-C17, n-C19, n-C21, n-C23 and n-C25 alkanes, algae (Rhodophyta, Chlorophyta) produced n-C15 and n-C17 and the terrigenous input [Quercus sp., Spartina sp. and river suspended particulate OM (SPOM)] was characterized by n-C25, n-C27, n-C29, n-C31 and n-C33. From the above and literature n-alkane fingerprints, we developed a set of indices (n-alkane ratios) to quantify the contribution of these three major sources of the SOM. At the Arcachon Bay scale, they indicated that SOM was composed mainly of seagrass (ca. 53 ± 19%) and terrestrial (ca. 41 ± 17%) material, followed by algae (ca. 6 ± 9%). Moreover, the new n-alkane indices exhibited more relevant spatial patterns than classical ones – the TAR (C27 + C29 + C31/C15 + C17 + C19; terrestrial to aquatic ratio) and the Paq (C23 + C25/C23 + C25 + C29 + C31; aquatic plant %) – with a greater contribution from marine sources in the central part of the lagoon where a high density of Zostera seagrass was observed. Therefore, the development of precise indices adapted to the local diversity of OM sources is needed when using n-alkanes for quantifying the source composition of SOM in complex coastal systems.  相似文献   

8.
We investigated the effect of ionizing radiation on organic matter (OM) in the carbonaceous uranium (U) mineralization at the Mulga Rock deposit, Western Australia. Samples were collected from mineralized layers between 53 and 58.5 m depths in the Ambassador prospect, containing <5300 ppm U. Uranium bears a close spatial relationship with OM, mostly finely interspersed in the attrinite matrix and via enrichments within liptinitic phytoclasts (mainly sporinite and liptodetrinite). Geochemical analyses were conducted to: (i) identify the natural sources of molecular markers, (ii) recognize relationships between molecular markers and U concentrations and (iii) detect radiolysis effects on molecular marker distributions. Carbon to nitrogen ratios between 82 and 153, and Rock–Eval pyrolysis yields of 316–577 mg hydrocarbon/g TOC (HI) and 70–102 mg CO2/g TOC (OI) indicate a predominantly lipid-rich terrigenous plant OM source deposited in a complex shallow swampy wetland or lacustrine environment. Saturated hydrocarbon and ketone fractions reveal molecular distributions co-varying with U concentration. In samples with <1700 ppm U concentrations, long-chain n-alkanes and alkanones (C27–C31) reveal an odd/even carbon preference indicative of extant lipids. Samples with ⩾1700 ppm concentrations contain intermediate-length n-alkanes and alkanones, bearing a keto-group in position 2–10, with no carbon number preference. Such changes in molecular distributions are inconsistent with diagenetic degradation of terrigenous OM in oxic depositional environments and cannot be associated with thermal breakdown due to the relatively low thermal maturity of the deposits (Rr = 0.26%). It is assumed that the intimate spatial association of high U concentrations resulted in breakdown via radiolytic cracking of recalcitrant polyaliphatic macromolecules (spores, pollen, cuticles, or algal cysts) yielding medium chain length n-alkanes (C13–C24). Reactions of n-alkenes with OH radicals from water hydrolysis produced alcohols that dehydrogenated to alkanones or through carbonylation formed alkanones. Rapid reactions with hydroxyl radicals likely decreased the isomerization of n-alkenes and decreased alkanone diversity, such that the alkan-2-one isomer is predominant. This specific distribution of components generated by natural radiolysis enables their application as “radiolytic molecular markers”. Breaking of C–C bonds through radiolytic cracking at temperatures much lower than the oil window (<50 °C) can have profound implications on initiation of petroleum formation, paleoenvironmental reconstructions, mineral exploration and in tracking radiolysis of OM.  相似文献   

9.
The Southern Alps are an ideal locality for studying patterns of isotopic fractionation associated with orographic precipitation. We have evaluated whether altitudinal change is reflected in the stable hydrogen isotopic composition (δ2H) of stream water, plant stem water and leaf wax lipids (n-alkanes) from living plants and soils, as well as in soil temperature. Samples were collected along an altitudinal transect from the windward side of the Southern Alps to Lake Hawea in the rain shadow. The results indicate that δ2H values of stem water overlap with stream water, demonstrating a gradual decrease with elevation that complied with modeled Rayleigh distillation, reflecting an isotopic lapse rate of −18.0 (± 1.1, 1σ)‰/km. Leaf and soil n-alkanes shared similar δ2H values and were 2H depleted relative to stem/stream waters. The values for soil n-alkanes indicated an isotopic lapse rate of −21.8 (± 2.0, 1σ)‰/km, consistent with precipitation data and long term observations. MBT/CBT derived soil temperature values based on the relative distribution of microbial tetraether lipids were similar to midsummer temperature observations, displaying an elevational decrease rate of −5.6 (± 1.5, 1σ) °C/km, consistent with regional and global observations.The results indicate that sedimentary lipid δ2H and microbial tetraether temperature estimates captured altitudinal trends in the isotopic composition of precipitation and mean temperature and further support their application in the reconstruction of past climate and surface uplift histories. However, notable differences in isotopic composition and temperature estimates between in situ soils and those with downslope transport of material emphasize the importance of facies analysis when interpreting past systems.  相似文献   

10.
A laboratory study has been conducted to determine the best methods for the detection of C10–C40 hydrocarbons at naturally occurring oil seeps in marine sediments. The results indicate that a commercially available method using n-C6 to extract sediments and gas chromatography–flame ionization detection (GC–FID) to screen the resulting extract is effective at recognizing the presence of migrated hydrocarbons at concentrations from 50 to 5000 ppm. When non-biodegraded, the amount of oil charge is effectively tracked by the sum of n-alkanes in the gas chromatogram. However, once the charge oil becomes biodegraded, with the loss of n-alkanes and isoprenoids, the amount of oil is tracked by the quantification of the unresolved complex mixture (UCM). Gas chromatography–mass spectrometry (GC–MS) was also found to be very effective for the recognition of petroleum related hydrocarbons and results indicate that GC–MS would be a very effective tool for screening samples at concentrations below 50 ppm oil charge.  相似文献   

11.
《Organic Geochemistry》2012,42(12):1269-1276
This study sought to characterize hydrogen isotopic fractionation during biosynthesis of leaf wax n-alkanes in succulent plants capable of crassulacean acid metabolism (CAM). The metabolic and physiological features of CAM represent crucial strategies for survival in hot and dry climates and have been hypothesized to impact hydrogen isotope fractionation. We measured the stable carbon and hydrogen isotopic compositions (δ13C and δD, respectively) of individual n-alkanes in 20 species of succulent plants from a global collection of the Huntington Botanical Gardens, San Marino, California. Greenhouse conditions and irrigation with water of constant δD value enabled determination of interspecies differences in net D/H fractionation between source water and leaf wax products. Carbon isotope ratios provide constraints on the extent of CAM vs. C3 photosynthesis and indicate a wide range of CAM use, with δ13C values ranging from −33.01‰ to −18.54‰ (C27–C33 n-alkanes) and −26.66‰ to −17.64‰ (bulk tissue). Despite the controlled growth environment, we observed ca. 90‰ interspecies range in δD values from −193‰ to −107‰. A positive correlation between δ13Cbulk and δDC31 values with R2 = 0.60 (δ13CC31 and δDC31 values with R2 = 0.41) implicates a metabolic isotope effect as the dominant cause of interspecies variation in the hydrogen isotopic composition of leaf wax n-alkanes in CAM-intermediate plants.  相似文献   

12.
To reconstruct past shifts in the upper forest line (UFL) in the Northern Ecuadorian Andes we are studying the applicability of plant-specific patterns of lipids preserved in soils as proxies for past vegetation along an altitudinal transect. Longer chain length n-alkanes, (C19–C35) were previously found to occur in plant-specific patterns in the dominant vegetation in the area as well as in preliminary soil samples, and may serve as such a proxy. In the present study, we assessed the preservation of n-alkane patterns with depth in soils from five excavations along an altitudinal transect 3500–3860 m above sea level (m.a.s.l) in the area. We used the carbon preference index (CPI) as well as chain length distributions of n-alkanes and their most likely degradation products, n-methyl (Me) ketones, n-alcohols and n-fatty acids. Clear n-alkane patterns were found in all the soils and at all depths, while a clear relationship with the observed patterns of n-Me ketones identified them as the primary degradation product of the former. Very low average n-Me ketone/n-alkane ratio values were found, ranging from 0.03 to 0.15 at the top of the mineral soil, to 0.05–0.20 at the interface with an underlying palaeosol several thousand years old. The concurrent high CPI values indicate very limited degradation of n-alkanes with depth. Except for C33, the shifts in n-Me ketone/n-alkane values were similar for all chain lengths investigated, signifying an absence of preferential degradation of individual n-alkanes. With one exception, all the soils showed a similar increase in n-Me ketone/n-alkane values with depth, indicating that the degradation rates were not influenced by altitude. This means that, even if the total concentration of n-alkanes decreases over time, the characteristic pattern remains intact, conserving their potential as a biomarker for past vegetation reconstruction in the area, as well as for investigation of degradation processes of soil organic carbon.  相似文献   

13.
Lipid biomarkers from a peat plateau profile from the Northeast European Russian Arctic were analyzed. The peat originated as a wet fen ca. 9 ka BP and developed into a peat bog after the onset of permafrost ca. 2.5 ka BP. The distributions and abundances of n-alkanols, n-alkanoic acids, n-alkanes, n-alkan-2-ones and sterols were determined to study the effect of degradation on their paleoclimate proxy information. Plant macrofossil analysis was also used in combination with the lipid distributions. The n-alkanol and n-alkanoic acid distributions in the upper part of the sequence generally correspond to compositions expected from plant macrofossil assemblages. Their carbon preference index (CPI) values increase with depth and age, whereas those of the n-alkanes decrease. The different CPI patterns suggest that n-alkanoic acids and n-alkanols deeper in the sequence may be produced during humification through alteration of other lipids. Excursions in the n-alkanoic acid content also suggest an important contribution of invasive roots to the lipid biomarker composition. The CPIs associated with these compounds show that under permafrost conditions organic material from Sphagnum is better preserved than material from vascular plants. Increasing stanol/stenol ratio values and decreasing n-alkane CPI values indicate progressive degradation of organic matter (OM) with depth. The n-alkan-2-one/n-alkane and n-alkan-2-one/n-alkanoic acid ratios were shown to be useful proxies that can reflect the degree of OM preservation and suggest that both microbial oxidation of n-alkanes and decarboxylation of n-alkanoic acids produce n-alkan-2-ones in this peat sequence.  相似文献   

14.
Narraguinnep Reservoir in southwestern Colorado is one of several water bodies in Colorado with a mercury (Hg) advisory as Hg in fish tissue exceed the 0.3 μg/g guideline to protect human health recommended by the State of Colorado. Concentrations of Hg and methyl-Hg were measured in reservoir bottom sediment and pore water extracted from this sediment. Rates of Hg methylation and methyl-Hg demethylation were also measured in reservoir bottom sediment. The objective of this study was to evaluate potential sources of Hg in the region and evaluate the potential of reservoir sediment to generate methyl-Hg, a human neurotoxin and the dominant form of Hg in fish. Concentrations of Hg (ranged from 1.1 to 5.8 ng/L, n = 15) and methyl-Hg (ranged from 0.05 to 0.14 ng/L, n = 15) in pore water generally were highest at the sediment/water interface, and overall, Hg correlated with methyl-Hg in pore water (R2 = 0.60, p = 0007, n = 15). Net Hg methylation flux in the top 3 cm of reservoir bottom sediment varied from 0.08 to 0.56 ng/m2/day (mean = 0.28 ng/m2/day, n = 5), which corresponded to an overall methyl-Hg production for the entire reservoir of 0.53 g/year. No significant point sources of Hg contamination are known to this reservoir or its supply waters, although several coal-fired power plants in the region emit Hg-bearing particulates. Narraguinnep Reservoir is located about 80 km downwind from two of the largest power plants, which together emit about 950 kg-Hg/year. Magnetic minerals separated from reservoir sediment contained spherical magnetite-bearing particles characteristic of coal-fired electric power plant fly ash. The presence of fly-ash magnetite in post-1970 sediment from Narraguinnep Reservoir indicates that the likely source of Hg to the catchment basin for this reservoir has been from airborne emissions from power plants, most of which began operation in the late-1960s and early 1970s in this region.  相似文献   

15.
Analysis of sediments deposited at different latitudes around the world during the Palaeocene–Eocene Thermal Maximum (PETM; ∼56 Ma) have revealed a globally profound warming phase, regionally varying from 5–8 °C. Such records from Europe have not yet been obtained. We studied the variations in sea surface and continental mean annual air temperatures (SST and MAT, respectively) and the distribution patterns and stable carbon isotopes of higher plant derived n-alkanes in two proximal PETM sections (Fur and Store Bælt, Denmark) from the epicontinental North Sea Basin. A negative carbon isotope excursion (CIE) of 4–7‰ was recorded in land plant derived n-alkanes, similar to what has been observed for other PETM sections. However, differences observed between the two proximal sites suggest that local factors, such as regional vegetation and precipitation patterns, also influenced the CIE. The presence of S-bound isorenieratene derivatives at the onset of the PETM and increased organic carbon contents points to a rapid shift in depositional environment; from well oxygenated to anoxic and sulfidic. These euxinic conditions are comparable with those during the PETM in the Arctic Ocean. SSTs inferred from TEX86 show relatively low temperatures followed by an increase of ∼7 °C across the PETM. At the Fur section, a remarkably similar temperature record was obtained for MAT using the MBT′/CBT proxy. However, the MAT record of the Store Bælt section did not reveal this warming.  相似文献   

16.
Based on paleoclimatic reconstructions using various proxies, the Holocene Climate Optimum (10.5–6 ka) has been characterized as a warmer and wetter period in most of East Asia. The summer monsoons associated with the East Asian Monsoon evidently intensified and extended further inland from the Pacific Ocean, a source region of moisture. A notable exception to this general pattern exists in northeast China, where less wet conditions are recorded. We determined molecular compositions of individual plant wax hydrocarbons and their hydrogen isotope compositions (δD values) in a radiocarbon-dated peat core recovered from the Hani marsh in Jilin Province (China) and confirmed that the temperature-dependent effective precipitation in northeast China decreased during the Holocene Climate Optimum. A combination of Paq, an indicator of the relative contribution of aquatic to terrestrial plants, and the difference in δD between low (C23, C25 and C27) and high molecular weight (C31) n-alkanes in the Hani peat bog indicates a dramatic change in vegetation from the deglaciation to the Holocene. No significant differences were observed between the δD values of low and high molecular weight n-alkanes with relatively high δD values and low Paq during the early Holocene, indicating that all n-alkanes were produced by evapotranspiration-sensitive terrestrial plants during that time. However, lower δD values of mid-chain n-alkanes (C23, C25 and C27) relative to the long chain n-alkane (C31), together with higher Paq values during the deglaciation (14–11 ka), suggest an increase in the contribution of aquatic plants and a higher water level during the period. The study demonstrates that northeast China was under a markedly wetter climate condition during the late deglaciation. For the 16 kyr record in the Hani peat sequence, we infer that moisture delivery by the East Asian Monsoon was relatively invariable in northeast China, but increased evaporation during the warmer Holocene Climate Optimum reduced the effective precipitation, defined by the balance between precipitation and evaporation.  相似文献   

17.
《Precambrian Research》2007,152(1-2):1-26
Thermo-chronologic considerations in the Australo-Antarctic domains suggest that the Prydz Bay Pan-African suture of East Antarctica continues westward into India. However, the location of the suture within Eastern India has so far been uncertain because of a lack of adequate thermo-chronological information. In this study, electron microprobe (EPMA) monazite dates and mineral paragenesis of granulite facies metapelites are reported from two areas of the Shillong–Meghalaya gneissic complex (SMGC), a crustal block located in the extreme northeast of the Indian shield close to the Australo-Antarctic block in Neoproterozoic-Cambrian paleomagnetic reconstructions of the Rodinia supercontinent. In the Garo-Goalpara Hills region, a well constrained Mesoproterozoic age of 1596 ± 15 Ma (n = 103) is correlated with a counterclockwise pressure–temperature path with near peak conditions of 7–8 kbar and 850 °C. Rare matrix monazite rims record younger ages (1032–1273 Ma). At Sonapahar region, 50 km ESE of Garo-Goalpara Hills, homogenous monazite grains in granulite facies metapelites yield EPMA dates tightly clustered at 500 ± 14 Ma (n = 36) irrespective of their textural setting in a well-annealed mineral matrix. In a few zoned monazite grains, the cores yield older ages of 1078 ± 31 Ma (n = 10) and 1472 ± 38 Ma (n = 13). The 500 Ma date corresponds with the ca. 880–480 Ma Rb–Sr dates of porphyritic granites that predominantly intruded the east-central part of the SMGC. We propose that the progressively eastward dominance of Cambro-Ordovician ages in the SMGC indicates a Pan-African final amalgamation of the Indian plate with the Australo-Antarctic plate and a northward extension of the Prydz Bay suture through the SMGC, with the western boundary of the suture possibly located between the Garo-Goalpara Hills and Sonapahar areas.  相似文献   

18.
Three models were examined to predict C aromaticity (fa) of biochars based on either their elemental composition (C, H, N and O) or fixed C (FC) content. Values of fa from solid state 13C nuclear magnetic resonance (NMR) analysis with Bloch-decay (BD) or direct polarisation (DP) techniques, concentrations of total C, H, N, and organic O, and contents of FC of 60 biochars were either compiled from the literature (dataset 1, n = 52) or generated in this study (dataset 2, n = 8). Models were first calibrated with dataset 1 and then validated with dataset 2. All models were able to fit dataset 1 when atomic H to C ratio (H/C) < 1 (except two ash rich biochars) and to estimate fa of HF treated biochars (H/C < 1). Model 1, which was based on values of H/C only and calibrated with a root mean square of error (RMSE) of 0.04 fa-unit (n = 41), could predict the experimental data with a RMSE = 0.02 fa-unit (n = 6). Model 2, which was based on biochar elemental composition data, showed the most accurate prediction, with a RMSE of 0.03 fa-unit (n = 41) for the calibration data, and of 0.02 fa-unit (n = 6, H/C < 1) for the validation data. Model 3, which was based on contents of FC and C, and modified with a correction factor of 0.96, displayed the highest RMSE (0.06 fa-unit, n = 19) among the three models. Models 1 and 2 did not work properly for samples having either an H/C ratio > 1, high concentrations of carbonate or high inorganic H. These models need to be further tested with a wider range of biochars before they can be recommended for classification of biochar stability.  相似文献   

19.
Carbon isotope ratio (δ13C) values of lipid biomarkers from plants can be used to assess water use efficiency and to reconstruct environmental conditions in the past. We assessed the effect of salinity on the δ13C values for leaf wax n-C31 and n-C33 alkanes, bulk leaf matter and leaf total lipid extracts from Avicennia marina (gray mangrove) trees growing along the Brisbane River estuary in Queensland, Australia. We observed an increase in 0.19 ± 0.053‰ (R2 0.61, p 0.008) and 0.16 ± 0.052‰ (R2 0.55, p 0.01) per salinity unit for the two n-alkanes, respectively, and of 0.087 ± 0.028‰ (R2 0.41, p 0.009) for whole leaves per salinity unit, indicating that water use efficiency of A. marina increased with the salt content of water. There was no correlation between δ13C values of total lipid extracts and salinity, perhaps because of a decrease in lipid concentration at higher salinity or because of varying contributions of different lipid classes to the extract. The robust relationship between salinity and δ13C values of leaf wax lipids provides a means of quantitatively reconstructing past salinity from carbon isotope ratios of mangrove lipid biomarkers in sediments. When paired with measurements of the hydrogen isotope ratio values of the same compounds, the approach should facilitate quantitative reconstruction of the hydrogen isotope composition of environmental water. In order for the method to successfully reconstruct past salinity and water isotopes, a mangrove source for leaf wax would need to be confirmed by palynological or other evidence, or the isotopic composition of a more source specific biomarker, such as taraxerol, would need to be measured.  相似文献   

20.
The Bulonggoer paleo-oil reservoir (BPR) on the northwest Junggar Basin is the first Devonian paleo-oil reservoir discovered in North Xinjiang, China. Solid bitumens occur within sandstone pores and as veins filling fractures. Samples of both types were analyzed using stable carbon isotope and reflectance measurements, as well as molecular biomarker parameters.The extremely positive δ13C values and biomarker indicators of depositional environment/lithology, such as pristane/phytane (Pr/Ph), C29/C30 hopane, diasteranes/regular steranes and dibenzothiophene/phenanthrene ratios, indicate a siliciclastic source for the BPR and their deposition in a highly reducing hypersaline environment. The presence of long chain n-alkanes and abundant tetracyclic diterpanes, C20–C21 tricyclic terpanes and perylene are indicators of higher plant organic matter input. Moreover, the bimodal distribution of C27 > C28 < C29 regular steranes and abundant methyltriaromatic steroids also support a contribution of microalgae as well as higher plants organic matter. The similar molecular composition and thermal maturity parameters indicate that the reservoir and veined solid bitumens were altered from a common paleo-petroleum, which originated from peak oil window matured source rocks.All solid bitumens from the BPR are characterized by relatively low bitumen reflectance values (Rb% < 0.7), suggesting that they were generated from low temperature processes rather than oil thermal cracking. Comparatively, the Rb% values for veined bitumens are higher than reservoir bitumens, indicating that the veined bitumens occurred earlier and experienced higher thermal conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号