首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
高岭石和硅/铝-氧化物对腐殖酸的吸附实验研究   总被引:10,自引:6,他引:10       下载免费PDF全文
矿物结合的腐殖质可改变矿物的表面性质,矿物对腐殖酸的吸附强度与矿物的吸附位性质、密度、荷电性及比表面积有关.若按比表面积计算,矿物对腐殖酸的吸附强度顺序为氢氧化铝>高岭石>石英;按单位质量计算,吸附强度顺序为高岭石>氢氧化铝>石英.研究表明,矿物表面活性受水溶液pH值的调控,且当pH值在4~7时,上述3种矿物对腐殖酸的吸附机理为石英主要表现为氢键作用;氢氧化铝主要表现为配体交换表面配位作用;高岭石表现为多种形式并存,包括氢键、配体交换表面配位和疏水性作用以及金属离子桥键作用.  相似文献   

2.
《Applied Geochemistry》2000,15(2):133-139
The sorption of Yb3+, UO2+2, Zn2+, I and SeO2−3 onto Al2O3, Fe2O3 and SiO2 were determined by a batch technique in the presence and absence of fulvic acids. The effects of fulvic acid on sorption were compared. The existing general consensus, that humic substances tend to enhance metal cation sorption at low pH, reduce metal cation sorption at high pH and reduce inorganic anion sorption between pH values 3 to 10, was generally shown to be true. However, in this work many exceptions to the general consensus were found. The study indicated that the effect of humic substances on sorption of inorganic cations or anions depends not only on pH, but also on the nature of the oxide, the nature of humic substance, fractionation of the humic substance by sorption, the relative strength of complexes of both soluble and sorbed humic substances, the extent of surface coverage by humic substance, the initial concentration of humic substance and the inorganic electrolyte composition.  相似文献   

3.
WHAM, incorporating Humic Ion Binding Model VI, was used to analyse published data describing the binding of Hg(II) and methylmercury (CH3Hg) by isolated humic substances. For Hg(II), the data covered wide ranges of pH and levels of metal binding, whereas for CH3Hg the range of metal binding was relatively narrow. Data were fitted by adjustment of a single model parameter, log KMA, the intrinsic equilibrium constant characterising, in the standard version of the model, the binding of metal ions and their first hydrolysis products to humic carboxylic acid groups. Other model parameters, including those characterising the tendency of metal ions to interact with “softer” ligand atoms (N and S), were held at their default values. The importance of the first hydrolysis products in binding was considered, and also the possible influence of competition by residual Fe(III), bound to the humic matter.  相似文献   

4.
为探讨天然黏土矿物及有机质对纳米乳化油在多孔介质中迁移滞留的影响,本文选取高岭石和蒙脱石这两种黏土矿物以及有机质的典型代表腐殖酸,开展了单一矿物、有机质及有机矿质复合物对纳米乳化油的吸持批实验研究,并运用比表面积全分析、扫描电镜(SEM)、傅里叶红外光谱(FTIR)、X射线衍射(XRD)等技术手段探讨了吸持机理。实验结果表明,介质对纳米乳化油的吸持均符合Freundlich模型;单一矿物及腐殖酸对纳米乳化油的吸持能力表现为:蒙脱石>腐殖酸>高岭石,有机矿质复合样品的吸持能力表现为:蒙脱石-腐殖酸>高岭石-腐殖酸,且均大于其对应的单一样品,出现了“1+1>2”的现象,表明介质组成越复杂,对纳米乳化油的吸持滞留程度越大。进一步分析证实,纳米乳化油主要通过氢键和疏水作用吸持在矿物和腐殖酸表面,表面结构性质是高岭石和蒙脱石吸持过程中的主导因素,因此蒙脱石具有更强的吸持能力,而腐殖酸的吸持主要通过颗粒间聚集作用来实现;对于复合样品,吸持主要通过氢键、配体交换和疏水作用结合来实现。腐殖酸与矿物的复合会增加吸持位点并且增强矿物表面疏水性,从而促进吸持。腐殖酸与纳米乳化油的共吸...  相似文献   

5.
The topsoil temperature in arid areas of Xinjiang, China can be up to about 80°C in summer. This may significantly affect the chemical properties of soil humic substances. However, the effects of high temperature on characteristics of soil humic substances and their complexation with toxic metals are still poorly known. In the present study, binding of Hg(II) to unheated soil humic substances and heated soil humic substances from sandy soils was comparatively investigated using three-dimensional excitation?Cemission matrix (EEM) fluorescence spectroscopy. Two fluorescent peaks (peak I at Ex/Em?=?365?C370/470?C474?nm; peak II at Ex/Em?=?270?C275/468?C472?nm) identified as humic-like fluorescence were observed in the EEM spectra of humic substances. Both peaks were clearly quenched by Hg(II), indicating the strong interaction of humic-like substances with Hg(II), and showed blue shifts after heat treatment. Heat treatment caused an increase of the fraction of accessible fluorophore (f a), binding sites number (n) and effective quenching constants (logK a), indicating that more binding sites in humic substances could bind Hg(II) and form more stable humic substances?CHg(II) complexes after heat treatment. However, a decrease of binding constants (logK b) suggested that heat treatment would reduce the binding capacity of each binding site of humic substances to Hg(II). This study implies the transport of Hg(II) may be affected by high temperature in the arid zone due to the modification of the physicochemical properties of humic substances in soil.  相似文献   

6.
为了研究土壤中有机质-矿质复合体结合形式对有机污染物吸附的影响, 利用批实验的方法, 对比研究有机质-矿质复合体与无机矿物和腐殖酸简单的混合物对三氯乙烯的吸附.结果表明, 与腐殖酸相比, 高岭石和石英砂吸附三氯乙烯量很小.模拟有机质-矿质复合体吸附三氯乙烯是线性吸附, Koc值随腐殖酸含量的增加而减小, 并且比纯腐殖酸样品的Koc值小.有机质与矿质的相互作用影响了有机质的吸附性能.对有机质在复合体中的形态变化进行了分析, 提出了有机质-矿质复合体模型, 并对实验结果进行了合理的解释.   相似文献   

7.
The role of organic matter (OM) concentration, structure and composition and how these relate to mineral protection is important for the understanding of long term soil OM dynamics. Various OM–clay complexes were constructed by sequential sorption of lignin and dodecanoic acid to montmorillonite. Humic acid–montmorillonite complexes were prepared at pH 4 and 7 to vary OM conformation prior to sorption. Results obtained with constructed OM–clay complexes were tested with isolated mineral fractions from two soils. Oxidation with an acidic NaClO2 solution was used to chemically oxidize lignin in the OM–clay complexes, sand-, silt- and clay-size soil fractions to test whether or not it can be protected from chemical attack. Gas chromatography–mass spectrometry was used to analyze lignin-derived phenols, cutin OH–acid (after CuO oxidation), fatty acid and n-alkanol concentrations and composition. We found that carbon content was not solely responsible for lignin stability against chemical oxidation. Lignin was protected from chemical oxidation through coating with dodecanoic acid and sorption of humic acid to clay minerals in a stretched conformation at pH 7. Therefore, interactions between OM constituents as well as OM conformation are important factors that protect lignin from chemical oxidation. Lignin-derived phenol dimers in the Grassland-Forest Transition soil fractions were protected from chemical oxidation to a greater extent compared to those in Grassland soil fractions. Therefore, although lignin was protected from degradation through mineral association, the extent of this protection was also related to OM content and the specific stability of lignin components.  相似文献   

8.
南海湖沉积物中Hg的形态分布特征   总被引:2,自引:0,他引:2  
以包头市南海湖为研究对象,采用连续化学提取法,系统开展了沉积物中Hg的形态分布研究。结果表明,表层沉积物中Hg含量的水平分布总体呈现湖心区低,西南和东北部湖区高的趋势。腐殖酸结合态为表层沉积物中Hg的主导形态,次为交换态和水溶态。表层沉积物中生物有效态Hg的含量甚高,占总汞的76%~94%,对整个生态系统具有潜在危害性。沉积柱芯中总Hg表现为表层富集并随深度增加而降低的变化趋势。B、F站位柱状沉积物中腐殖酸结合态Hg随深度有规律的递减,H站位20 cm以上Hg的主导形态为腐殖酸结合态,残渣态次之;20~30 cm的主导形态则为残渣态及可交换态。  相似文献   

9.
In order to examine the transportation and deposition mechanisms of Hg, we investigated the ore and hydrothermal alteration minerals and solid organic matters from Itomuka mercury mine located in the eastern part of central Hokkaido. In addition to the ore minerals, native mercury and cinnabar, quartz, marcasite, alunite, kaolinite, and minor amounts of pyrite and smectite were identified in the Hg ore by powder X‐ray diffraction (XRD) analysis. This mineral assemblage of acid sulfate alteration was likely developed under the conditions of low temperature (≤100°C) and low pH (≤2) in the steam‐heated environment. The H2SO4 was produced above the water table by the oxidation of H2S separated from deep, near‐neutral fluids by boiling. The dominance of native mercury over cinnabar in Hg ore indicates that the greater part of mineralized Hg was transported as Hg0 in aqueous solution and vapor with low sulfur fugacity. The solid organic matters found in the Hg ore were analyzed with SEM‐EDS, micro‐XRD, and micro‐Fourier transform infrared (FTIR) spectroscopy, and these results suggest that the organic matters contributed to keeping the low fO2 of the Hg‐bearing fluid and transportation of Hg as Hg0 in S‐poor condition. Because the solubility of Hg in acidic fluid is low, neutral to alkaline fluid seems to have leached Hg from the basement sedimentary rocks of Hidaka Group which also supplied the organic matters to the fluid. The oxidation and cooling of Hg‐bearing solution and vapor triggered the deposition of liquid Hg as a primary phase.  相似文献   

10.
The 1–2 mm fraction of FeS2, Fe3O4, PbS, PbSO4, ZnS, ZnCO3, Cu2S and Cu2(OH)2CO3 was dissolved in water, dilute HCl and 0.01 m organic acids (tannin, salicylic acid and citric acid) at 1 atm and 20° C. Duplicate samples of one gram each were placed in 50 ml of solvent with shaking once each day for one month at pH's of 2, 4 and 6. The pH of all the solutions was maintained by periodic addition of either HCl or NaOH. Comparing the results at pH 6, a value observed under surface conditions, the organic acids had a higher metal ion concentration because of their complexing ability. Results at pH 6 in ppm of the metal ions are shown below: For example the Fe concentration dissolved from pyrite in water was 0.02 ppm but 2.3–4.3 in the organic acids. From malachite 0.2 ppm Cu were dissolved by water but 25–1550 ppm by the organic acids. In general Cu minerals seem to be more soluble in organic acids than the Pb, Zn and Fe minerals. The different solution power of the organic acids within the experiments seems not to be caused by the crystallography of the minerals tested. Further there apparently is no preferential complexing of an organic acid with respect to a distinct anion or cation of the minerals. The experiments therefore show, that it is difficult to predict exactly which organic acid is most effective in dissolving minerals. However the experiments should apply to natural weathering conditions of ore minerals and may aid in understanding metal ion transport. For example the origin of the high Cu concentration in the sedimentary “Kupferschiefer” are more easily explained by weathering and transport of Cu in the form of organo-metallic complexes than by reaction with only water. The Cu content in organic acids is much higher than in water and the Cu concentration in the solutions now is not so strongly controlled by the solubility of Cu-cabonates and phosphates.  相似文献   

11.
Pharmaceuticals have gained significant attention in recent years due to the environmental risks posed by their versatile application and occurrence in the natural aquatic environment. The transportation and distribution of pharmaceuticals in the environmental media mainly depends on their sorption behavior in soils, sediment?Cwater systems and waste water treatment plants, which varies widely across pharmaceuticals. Sorption of ibuprofen, a non-steroidal anti-inflammatory drug, onto various soil minerals, viz., kaolinite, montmorillonite, goethite, and activated carbon, as a function of pH (3?C11), ionic strength (NaCl concentration: 0.001?C0.5?M), and the humic acid concentration (0?C1,000?mg/L) was investigated through batch experiments. Experimental results showed that the sorption of ibuprofen onto all sorbents was highest at pH 3, with highest sorption capacity for activated carbon (28.5?mg/g). Among the minerals, montmorillonite sorbed more ibuprofen than kaolinite and goethite, with sorption capacity increasing in the order goethite (2.2?mg/g)?<?kaolinite (3.1?mg/g)?<?montmorillonite (6.1?mg/g). The sorption capacity of the selected minerals increased with increase in ionic strength of the solution in acidic pH condition indicating that the effect of pH was predominant compared to that of ionic strength. An increase in humic acid concentration from low to high values made the sorption phenomena very complex in the soil minerals. Based on the experimental observations, montmorillonite, among the selected soil minerals, could serve as a good candidate to remove high concentrations of ibuprofen from aqueous solution.  相似文献   

12.
Mercury contents in Precambrian banded iron formation-hosted hematite ores are virtually unknown. In an attempt to provide information on the abundance and distribution of Hg in Fe ore, we present analyses for Hg in samples of high-grade soft hematite ore from Gongo Soco, Minas Gerais, Brazil. Bulk samples contain from <  5 to 25  ppb Hg without obvious correlation with major elements. Granulometric fractions of follow-up samples have amounts of Hg from 6 to 48  ppb and display positive linear correlations with total Mn as MnO (r = 0.87), LOI (r = 0.87) and SiO2 (r = 0.76), as well as a negative linear correlation with total Fe as Fe2O3 (r = −  0.87). The correlations suggest that Hg is associated with a hydrated ferruginous groundmass bearing residual Mn, Al and Si, which replaced gangue minerals in itabirite in the process of formation of the Gongo Soco soft hematite ore.  相似文献   

13.
红壤中矿物表面对腐殖质吸附萘的影响   总被引:5,自引:1,他引:5  
矿物表面可改变土壤腐殖质对疏水性有机污染物的结合能力。采用红壤和高岭石分别与胡敏酸结合制备得到的两种复合体对萘的吸附等温线非线性显著,其n=0.76或0.74,并且有机碳归一化吸附分配系数的实验值Koacds是采用Kow计算得出的理论值Koc的5倍以上,表明红壤、高岭石均对腐殖质吸附萘有强化作用,且红壤较之高岭石对腐殖质吸附萘的影响稍强些。主要原因是,红壤中除了高岭石外,还有与腐殖质结合力很强的铁氧化物,而且很可能是吸附态腐殖质组成结构形态发生了有利于对萘吸附的改变。  相似文献   

14.
Tidal inundation is a new technique for remediating coastal acid sulfate soils (CASS). Here, we examine the effects of this technique on the geochemical zonation and cycling of Fe across a tidally inundated CASS toposequence, by investigating toposequence hydrology, in situ porewater geochemistry, solid-phase Fe fractions and Fe mineralogy. Interactions between topography and tides exerted a fundamental hydrological control on the geochemical zonation, redistribution and subsequent mineralogical transformations of Fe within the landscape. Reductive dissolution of Fe(III) minerals, including jarosite (KFe3(SO4)2(OH)6), resulted in elevated concentrations of porewater Fe2+ (> 30 mmol L?1) in former sulfuric horizons in the upper-intertidal zone. Tidal forcing generated oscillating hydraulic gradients, driving upward advection of this Fe2+-enriched porewater along the intertidal slope. Subsequent oxidation of Fe2+ led to substantial accumulation of reactive Fe(III) fractions (up to 8000 μmol g?1) in redox-interfacial, tidal zone sediments. These Fe(III)-precipitates were poorly crystalline and displayed a distinct mineralisation sequence related to tidal zonation. Schwertmannite (Fe8O8(OH)6SO4) was the dominant Fe mineral phase in the upper-intertidal zone at mainly low pH (3–4). This was followed by increasing lepidocrocite (γ-FeOOH) and goethite (α-FeOOH) at circumneutral pH within lower-intertidal and subtidal zones. Relationships were evident between Fe fractions and topography. There was increasing precipitation of Fe-sulfide minerals and non-sulfidic solid-phase Fe(II) in the lower intertidal and subtidal zones. Precipitation of Fe-sulfide minerals was spatially co-incident with decreases in porewater Fe2+. A conceptual model is presented to explain the observed landscape-scale patterns of Fe mineralisation and hydro-geochemical zonation. This study provides valuable insights into the hydro-geochemical processes caused by saline tidal inundation of low lying CASS landscapes, regardless of whether inundation is an intentional strategy or due to sea-level rise.  相似文献   

15.
Laboratory studies of the weathering of sulphide ores have centred around using samples of ore as electrodes and accelerating the weathering processes by passing an electric current. The results of reacting 19 different ore types under varying conditions are compared with data from co-precipitating, Fe and Cu, Fe and Ni, Fe and Zn, Fe and Co, and Fe and Pb, over a pH range from 2 to 11. An electrochemical cell specially designed to fit onto an optical microscope has allowed direct observation of the changes in sulphide mineral grains as they are anodically weathered.These experiments are used to demonstrate that the pH of the environment during the weathering of sulphides to sulphates is the most important parameter in determining the initial gossan minerals that form. Factors that will cause the pH to be high are buffering from gangue and wallrock minerals, low iron content in the sulphide and a high metal to sulphur ratio in the sulphide. A low pH is favoured by the converse, namely a sulphide sufficiently massive to override the buffering effects of the wallrocks and any gangue minerals present, a high iron content in the sulphide and a low metal to sulphur ratio in the sulphide.Two mechanisms of iron hydrolysis dominate the weathering processes where iron is a major metal being released from a sulphide.
1. (1) The high pH process. Where there is sufficient buffering for the pH to remain at or above 7, most of the base metals including ferrous iron will be hydrolysed and pyroaurite type of minerals form for Ni, Zn and Co, while mixed Fe-Cu hydroxycarbonates and hydroxysulphates form for Cu, and mixed iron lead hydrocarbonates form for Pb. The iron is located in these initial compounds as a green rust where it is effectively bound as ferrous hydroxide. Subsequent oxidation of this hydroxide produces no further acid. 4Fe(OH)2 + O2 + 2H20 → 4Fe(OH)3
2. (2) The low pH process. Where the buffering is insufficient and the pH is below 7, even though some of the ferrous iron will have precipitated as an equivalent to Fe(OH)2, the solubility is such that sufficient Fe2+ will remain in solution so that further oxidation will produce acid. 4Fe2+ + O2 + 1OH2O → Fe(OH)3 + 8H+ This acid will bring more of the Fe2+ into solution to create more acid and the pH will gradually fall even further, so that the gossan forming environment will be at a pH less than 5 and may be as low as 3. At these low pH values, the base metals are soluble and not prone to co-precipitation or adsorption with the gossan minerals. Only elements present in solution as anions, such as Se, As, Mo and Sb, are likely to be bound into gossans forming at low pH.
The results from weathering tests carried out on gossan minerals formed at higher pH show that these minerals are reasonably stable if treated with solutions that have a pH above 7, but they can break down if treated with a solution of pH 5. Thus they could be expected to be leached by rain water saturated with CO2.When investigating a likely gossan, all aspects — the iron oxides, the silicates, the carbonates and penetrations into the footwall and hanging wall — should be examined carefully, being ever mindful of the effect that pH would have had during the formation and reworking of the minerals. The composition of gossan minerals, their adsorption properties, the solubilities of metal ions, the mechanisms of Fe precipitation, the co-precipitation of other metals with Fe, the stability of carbonates and the binding of humic materials are all pH dependent in the same way. At high pH, metals are immobilized; at low pH, they tend to be in solution.  相似文献   

16.
Mechanistic roles of soil humus and soil minerals and their contributions to soil sorption of nonionic organic compounds from aqueous and organic solutions are illustrated. Parathion and lindane are used as model solutes on two soils that differ greatly in their humic and mineral contents. In aqueous systems, observed sorptive characteristics suggest that solute partitioning into the soil-humic phase is the primary mechanism of soil uptake. By contrast, data obtained from organic solutions on dehydrated soil partitioning into humic phase and adsorption by soil minerals is influenced by the soil-moisture content and by the solvent medium from which the solute is sorbed.  相似文献   

17.
Mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (KFMASHTO) using thermocalc and its internally consistent thermodynamic dataset constrain the effect of TiO2 and Fe2O3 on greenschist and amphibolite facies mineral equilibria in metapelites. The end‐member data and activity–composition relationships for biotite and chloritoid, calibrated with natural rock data, and activity–composition data for garnet, calibrated using experimental data, provide new constraints on the effects of TiO2 and Fe2O3 on the stability of these minerals. Thermodynamic models for ilmenite–hematite and magnetite–ulvospinel solid solutions accounting for order–disorder in these phases allow the distribution of TiO2 and Fe2O3 between oxide minerals and silicate minerals to be calculated. The calculations indicate that small to moderate amounts of TiO2 and Fe2O3 in typical metapelitic bulk compositions have little effect on silicate mineral equilibria in metapelites at greenschist to amphibolite facies, compared with those calculated in KFMASH. The addition of large amounts of TiO2 to typical pelitic bulk compositions has little effect on the stability of silicate assemblages; in contrast, rocks rich in Fe2O3 develop a markedly different metamorphic succession from that of common Barrovian sequences. In particular, Fe2O3‐rich metapelites show a marked reduction in the stability fields of staurolite and garnet to higher pressures, in comparison to those predicted by KFMASH grids.  相似文献   

18.
Sorption of metals on humic acid   总被引:1,自引:0,他引:1  
The sorption on humic acid (HA) of metals from an aqueous solution containing Hg(II). Fe(III), Pb, Cu, Al, Ni, Cr(III), Cd, Zn, Co and Mn, was investigated with special emphasis on effects of pH, metal concentration and HA concentration. The sorption efficiency tended to increase with rise in pH, decrease in metal concentration and increase in HA concentration of the equilibrating solution. At pH 2.4. the order of sorption was: Hg? Fe? Pb? CuAl ? Ni ? CrZnCdCoMn. At pH 3.7. the order was: Hg and Fe were always most readily removed, while Co and Mn were sorbed least readily. There were indications of competition for active sites (CO2H and phenolic OH groups) on the HA between the different metals. We were unable to find correlations between the affinities of the eleven metals to sorb on HA and their atomic weights, atomic numbers, valencies, and crystal and hydrated ionic radii. The sorption of the eleven metals on the HA could be described by the equation Y = 100[1 + exp ? (A + BX)], where Y = % metal removed by HA; X = mgHA; and A and B are empirical constants.  相似文献   

19.
20.
Considerable fractions of the Hg content of lake and river systems in Scandinavia are discharged from the soil of the catchments. An important soil type in Scandinavia is the iron–humus podzol. The sorption characteristics of this soil type for inorganic Hg(II) and monomethyl mercury were investigated by batch experiments. The solubility of Hg2+ and CH3Hg+ in the soil horizons containing organic matter increases with increasing pH of the soil solution by favoring the formation of solute organic matter–mercury complexes. While the solubility of Hg2+ is strongly dependent on complexation to dissolved organic matter, the solubility of CH3Hg+ is more dependent on ion exchange. The concentration of solute inorganic Hg(II) increased with increasing temperature probably because of an increase in the concentration of dissolved organic carbon. There was no effect of temperature on the concentration of solute CH3Hg+. At pH values where inorganic mercury–hydroxo complexes are formed, inorganic Hg(II) is efficiently sorbed to the metal oxides of the mineral soil. The soil–water distributions of inorganic Hg(II) in the different soil horizons were described by Freundlich isotherms or linear isotherms for common and contaminated mercury contents in the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号