首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We surveyed the occurrence of tropical cyclone(TC) tornadoes in China from 2006 to 2018. There were 64 cataloged TC tornadoes, with an average of five per year. About one-third of the landfalling TCs in China were tornadic. Consistent with previous studies, TC tornadoes preferentially formed in the afternoon shortly before and within about 36 h after landfall of the TCs. These tornadoes mainly occurred in coastal areas with relatively flat terrains. The maximum number of TC tornadoes occurred in Jiangsu and Guangdong provinces. Most of the TC tornadoes were spawned within 500 km of the TC center. Two notable characteristics were found:(1) TC tornadoes in China mainly occurred in the northeast quadrant(Earth-relative coordinates) rather than the right-front quadrant(TC motion-relative coordinates) of the parent TC circulation;and(2) most tornadoes were produced by TCs with a relatively weak intensity(tropical depressions/storms), in contrast with the United States where most tornadoes are associated with stronger TCs. Further analyses showed that TC tornadoes in China tend to be spawned in an environment with large low-level storm relative helicity and large convective available potential energy taking entrainment effects into account. TC tornadoes were particularly active in 2018, with 24 reported tornadoes accounting for 37.5% of the total surveyed samples. The first recorded tornado outbreak in the modern history of China occurred in the envelope of TC Yagi(2018), in which 11 tornadoes were reported in association with significant midlevel intrusions of dry air and the interaction of Yagi with an approaching midlatitude midlevel trough.  相似文献   

2.
This study explores for the first time the impact of assimilating radial velocity (Vr) observations from a single or multiple Taiwan’s coastal radars on tropical cyclone (TC) forecasting after landfall in the Chinese mainland by using a Weather Research and Forecasting model (WRF)-based ensemble Kalman filter (EnKF) data assimilation system. Typhoon Morakot (2009), which caused widespread damage in the southeastern coastal regions of the mainland after devastating Taiwan, was chosen as a case study. The results showed that assimilating Taiwan’s radar Vr data improved environmental field and steering flow and produced a more realistic TC position and structure in the final EnKF cycling analysis. Thus, the subsequent TC track and rainfall forecasts in southeastern China were improved. In addition, better observations of the TC inner core by Taiwan’s radar was a primary factor in improving TC rainfall forecast in the Chinese mainland.  相似文献   

3.
Abstract

Daily flow records, rainfall data and tropical cyclone maps during 1970–1998 are used to document the impact of tropical cyclones (TCs) on floods in the Rewa River system, Viti Levu, Fiji. Floods are large, brief, isolated events caused by TCs and non-TC tropical rainstorms. More floods are caused by tropical rainstorms than by TCs, but TC floods are larger. The log Pearson Type III distribution consistently provided the best fit to partial duration flood series and the widely-recommended generalized Pareto distribution performed very poorly, underscoring the need to test a variety of distributions for a particular geographic location. Tropical cyclones occur more often in Fiji during negative values of the Southern Oscillation Index (SOI) and all TCs that occurred during El Niño conditions caused floods. Peak flood discharges caused by TCs are inversely correlated with the SOI, reflecting possible links with tropical cyclone frequency and precipitation intensity.  相似文献   

4.
利用NASA的MERRA再分析数据、台站降水资料、热带气旋最佳路径数据集和雷达资料初步对比探讨了2014年两次路径相似台风("威马逊"和"海鸥")的降水特征及其成因.结果表明,两者台站过程降水和最大日降水强度差异明显;在华南产生的过程降水和日降水均表现出明显的非对称性,最强均在海南岛;在海南岛产生的过程降水、日降水和最大小时降水最强均在海南岛西部和北部.与"海鸥"相比,在强降水时段,"威马逊"产生更大台站日降水的原因之一是其自身更强的强度和偏慢的移动速度,而且还与高层更强的南亚高压主体、中层偏弱偏东的副热带高压和低层强的低空急流密切相关.在强降水阶段,两者所处的环境风垂直切变均指向西南偏西-西南偏南方向,而强的对流均主要在环境风垂直切变的左侧或前侧.两者强降水主要在海南岛西部和北部的关键原因是五指山山脉和台风路径的相对位置配置类似,强降水区恰好处于向岸风面或五指山的迎风面.  相似文献   

5.
This study carried out a comparative analysis of the changes in tropical cyclone (TC) genesis, TC track, and TC intensity focusing on TCs that affected the Korean peninsula (KP) according to three evolutionary patterns (prolonged, abrupt and symmetric-decay) of the abnormal sea surface temperature in the Central-Pacific (CP) region. As a result of the analysis, the activity pattern of TCs was found to vary depending on the evolution patterns of the CP El Niño, and such changes appeared to result in clear variations in the regional rainfall in Korea. In the prolonged-decaying and symmetric-decaying years, the KP received considerable TC rainfall. On the other hand, in abrupt-decaying years, it was subtly affected by the TC rainfall. Although rather limited conditions and relatively short observation data were used to analyze the effects of the evolution pattern of the CP El Niño on TCs, the results can be used to quantitatively identify the spatial features of TCs affecting the KP. These results are expected to be helpful in managing the disaster risks in vulnerable areas, including plans to secure stable water resources in the basin, and in establishing effective and active measures to cope with natural disasters by extreme events over the KP.  相似文献   

6.
Extreme wet and dry years (± 1 standard deviation, respectively), as well as the top 95 percentile (P95) of daily precipitation events, derived from tropical cyclone (TC) and nontropical cyclone (NTC) rainfall, were analyzed in coastal river basins in Southern Oaxaca, Mexico (Río Verde, Río Tehuantepec, and the Southern Coast). The study is based on daily precipitation records from 47 quality-controlled stations for the 1961 to 1990 period and TC data for the Eastern Tropical Pacific (EPAC). The aim of this study was to evaluate extreme (dry and wet) trends in the annual contribution of daily P95 precipitation events and to determine the relationship of summer precipitation with El Niño Southern Oscillation (ENSO) and the Pacifical Decadal Oscillation (PDO). A regionalization based on a rotated principal component analysis (PCA) was used to produce four precipitation regions in the coastal river basins. A significant negative correlation (significance at the 95% level) was only found with ONI in rainfall Region 3, nearest to the Gulf of Tehuantepec. Wet years, mainly linked to TC-derived P95 precipitation events, were associated with SST anomalies (≥?0.6°C) similar to weak La Niña and Neutral cool conditions, while dry years were associated with SST positive anomalies similar to Neutral warm conditions (≤?0.5°C). The largest contribution of extreme P95 precipitation derived from TCs to the annual precipitation was observed in Region 3. A significant upward trend in the contribution of TC-derived precipitation to the annual precipitation was found only in Region 1, low Río Verde.  相似文献   

7.
Interannual variation of summer precipitation in East China, and frequency of rainstorms during the monsoon season from 1961 to 2010, are analyzed in this study. It is found that the two variables show opposite trends on a decadal time scale: frequency of rainstorms increases significantly after the 1990s, while summer precipitation in East China decreases during the same period. Analysis of the spatial distribution of summer rainstorm frequency from 1961 to 2010 indicates that it decreases from the southeast to the northwest at the east edge of the large-scale topography associated with the plateaus. Spatial distribution of rainstorms with daily rainfall greater than 50 mm is characterized by a “high in the southeast and low in the northwest” pattern, similar to the staircase distribution of the topography. However, the spatial distribution of variation in both summer precipitation and frequency of extreme rainstorms under global warming differs significantly from the three-step staircase topography. It is shown that moisture characteristics of summer precipitation and extreme rainstorms during the monsoon season in East China, including moisture transport pathways, moist flow pattern, and spatial structure of the merging area of moist flows, differ significantly. Areas of frequent rainstorms include the Yangtze River Valley and South China. Column- integrated moisture transport and its spatial structure could be summarized as a “merging” of three branches of intense moist flows from low and middle latitude oceans, and “convergence” of column-integrated moisture fluxes. The merging area for moist flow associated with rainstorms in the high frequency region is located slightly to the south of the monsoonal precipitation or non-rainstorm precipitation, with significantly strong moisture convergence. In addition, the summer moist flow pattern in East China has a great influence on the frequency of extreme rainstorms. Moisture flux vectors in the region of frequent rainstorms correspond to vortical flow pattern. A comparison of moisture flux vectors associated with non-rainstorms and rainstorms indicates that the moist vortex associated with rainstorms is smaller in size and located to the south of the precipitation maximum, while the moist vortex associated with non-rainstorms is larger and located to the north. It is shown that column- integrated moist transport vortices and the structure of moist flux convergence have significant impacts on the north-south oscillation of frequent rainstorm areas in East China, which is synchronized with the maximum vorticity of moisture transport and the minimum of convergence on the decadal time scale. Synthesis of moisture transport pathways and related circulation impacts leads to a conceptual model of moisture flow associated with rainstorms.  相似文献   

8.
Summer drought is one of the main natural disasters in Zhejiang Province, China. To explore the characteristics of summer drought in Zhejiang Province during 1973–2013, the standardized precipitation evapotranspiration index (SPEI) is calculated based on 10-day precipitation and temperature data, and the summer drought index (DI) is defined. The Mann–Kendall test and Sen’s trend test are used to analyze changes of DI and drought area. Temperature is the main effect on changes of summer drought intensity and drought area. Significant increasing trends are observed for drought intensity, drought area, and extreme drought area, and their linear trend rates in northeast Zhejiang Province are larger than that in the southwest Zhejiang Province. DI and drought area time series have significant mutations in 2003. County-average DI and drought area during 2003–2013 are significantly larger than that during 1973–2002. The aforementioned SPEI could quantify, monitor and analyze summer drought onset, extent, and end.  相似文献   

9.
The Regional Integrated Multi-Hazard Early Warning System (RIMES), an international, intergovernmental organization based in Thailand is engaged in disaster risk reduction over the Asia–Pacific region through early warning information. In this paper, RIMES’ customized Weather Research Forecast (WRF) model has been used to evaluate the simulations of cyclone Nargis which hit Myanmar on 2 May 2008, the most deadly severe weather event in the history of Myanmar. The model covers a domain of 35oE to 145oE in the east—west direction and 12oS to 40oN in the north—south direction in order to cover Asia and east Africa with a resolution of 9?km in the horizontal and 28 vertical levels. The initial and boundary conditions for the simulations were provided by the National Center for Environmental Prediction-Global Forecast System (NCEP-GFS) available at 1o lon/lat resolution. An attempt is being made to critically evaluate the simulation of cyclone Nargis by seven set of simulations in terms of track, intensity and landfall time of the cyclone. The seven sets of model simulations were initialized every 12?h starting from 0000 UTC 28 April to 01 May 2008. Tropical Rainfall Measurement Mission (TRMM) precipitation (mm) is used to evaluate the performance of the simulations of heavy rainfall associated with the tropical cyclone. The track and intensity of the simulated cyclone are compared by making use of Joint Typhoon Warning Center (JTWC) data sets. The results indicate that the landfall time, the distribution and intensity of the rainfall, pressure and wind field are well simulated as compared with the JTWC estimates. The average landfall track error for all seven simulations was 64?km with an average time error of about 5?h. The average intensity error of central pressure in all the simulations were found out to be approximately 6?hPa more than the JTWC estimates and in the case of wind, the simulations under predicted it by an average of 12?m?s?1.  相似文献   

10.
11.
本文使用西北太平洋累积气旋能量(ACE)月尺度异常序列,对850 hPa相对涡度、地表纬向风、柱水汽含量、OLR、降水和SST等大尺度环境场变量进行时滞回归分析,讨论了月尺度TC活动对大尺度环境场的影响及其与周尺度的区别和联系.结果表明:(1)月尺度ACE回归出的纬向风无论是强度还是范围都要明显大于周尺度ACE回归结果,TC的频繁发生,尤其是强度大且持续时间长的近赤道TC,对于激发或加强TC活动区域南侧的低纬地区西风异常有一定的积极作用,持续并且强度较大的西风异常可能导致西风的爆发,而西风爆发会在很大程度上影响ENSO事件的发生和演变.(2)在月尺度上,OLR、柱水汽含量、降水和SST等物理量均呈现出较为明显的E1Nino型分布,而在周尺度上,仅SST呈现出明显的El Nino型分布,这在一定程度上反映了月尺度TC活动和太平洋ENSO信号之间存在更密切的关联.(3)在TC发生后1-2月,TC的主要生成区域柱水汽含量减少、OLR增大,这会在一定程度上降低该区域生成TC的潜能.虽然TC所引起SST降低的空间尺度很小,但其通过大气和海洋的传导会扩大到更大尺度上,由于这种反馈具有一定的滞后性,所以月尺度TC对大尺度环境场影响的信号更为显著.  相似文献   

12.
《水文科学杂志》2013,58(2):276-291
Abstract

Climatic changes could alter the frequency and magnitude of rainfall events and the distribution of rainfall with altitude, with important consequences for management of aquatic ecosystems, water resources and flood risk. This study investigates changes in observed rainfall amounts across a range of altitudes in the Lake District region, northwest England, and spatial and temporal changes to the orographic “rainshadow” effect. Between the 1970s and 1990s there have been marked changes to the seasonality of precipitation, such that winters have become wetter, and increasingly dominated by heavy precipitation events. The intensity of these events has increased most markedly at higherelevation sites. Such changes could hinder recovery of sensitive upland sites from acidification and increase the risk of downstream flooding. An inter-decadal weakening of the region's rainshadow suggests a greater proportion of winter precipitation crosses the high-elevation Lake District dome. This is linked to changes in the frequency and character of wet weather patterns.  相似文献   

13.
陈宪  钟中  江静  孙源 《地球物理学报》2019,62(2):489-498
本文利用"模式手术"方法研究了西北太平洋热带气旋(TC)对东亚—西北太平洋区域大尺度环流的影响.结果表明,夏季频繁的西北太平洋TC活动导致东亚夏季风增强,季风槽加深;西太平洋副热带高压东退,位置偏北;东亚副热带高空急流强度增强,北太平洋(东亚大陆)上急流轴偏北(偏南);热带地区(副热带地区)的对流层中低层出现异常上升气流(下沉气流),并且从低纬向高纬呈现异常上升气流和异常下沉气流交替分布特征.在中国东南沿海,TC降水导致夏季降水量明显增加;而在长江中下游和华北地区,TC活动引起的异常下沉气流使夏季降水量显著减少.因此,夏季西北太平洋TC活动对东亚—西北太平洋区域气候有显著影响.  相似文献   

14.
We applied a simple statistical downscaling procedure for transforming daily global climate model (GCM) rainfall to the scale of an agricultural experimental station in Katumani, Kenya. The transformation made was two-fold. First, we corrected the rainfall frequency bias of the climate model by truncating its daily rainfall cumulative distribution into the station’s distribution based on a prescribed observed wet-day threshold. Then, we corrected the climate model rainfall intensity bias by mapping its truncated rainfall distribution into the station’s truncated distribution. Further improvements were made to the bias corrected GCM rainfall by linking it with a stochastic disaggregation scheme to correct the time structure problem inherent with daily GCM rainfall. Results of the simple and hybridized GCM downscaled precipitation variables (total, probability of occurrence, intensity and dry spell length) were linked with a crop model for a more objective evaluation of their performance using a non-linear measure based on mutual information based on entropy. This study is useful for the identification of both suitable downscaling technique as well as the effective precipitation variables for forecasting crop yields using GCM’s outputs which can be useful for addressing food security problems beforehand in critical basins around the world.  相似文献   

15.
The Antarctic ice sheet surface mass balance shows high spatial variability over the coastal area. As state-of-the-art climate models usually require coarse resolutions to keep computational costs to a moderate level, they miss some local features that can be captured by field measurements. The downscaling approach adopted here consists of using a cascade of atmospheric models from large scale to meso-?? scale. A regional climate model (Modèle Atmosphérique Régional) forced by meteorological reanalyses provides a diagnostic physically-based rain- and snowfall downscaling model with meteorological fields at the regional scale. Although the parameterizations invoked by the downscaling model are fairly simple, the knowledge of small-scale topography significantly improves the representation of spatial variability of precipitation and therefore that of the surface mass balance. Model evaluation is carried out with the help of shallow firn cores and snow height measurements provided by automatic weather stations. Although downscaling of blowing snow still needs to be implemented in the model, the net accumulation gradient across Law Dome summit is shown to be induced mostly by orographic effects on precipitation.  相似文献   

16.
We explore the imprint of spatial rainfall patterns on steady‐state landscapes with uniform rock uplift rate. A two‐dimensional (2D) orographic precipitation module is incorporated into the CHILD numerical landscape evolution model to provide a quantitative tool for exploring the co‐evolution of rainfall patterns and fluvial topography. Our results suggest that network organization and planform morphology are strongly impacted by rainfall patterns. Rainfall gradients that are perpendicular to a mountain range front produce narrower watersheds because channels show a tendency to flow along the rainfall gradient, rather than across it. The change in watershed shape is evidenced by smaller values of the exponent on distance in Hack's law and a less peaked width function. Narrower watersheds also lead to an increase in the valley spacing ratio and constrain trunk channels to follow a more direct path to the mountain front. Rainfall gradients also influence the distribution of topography across a watershed. Channel profiles record rainfall patterns in both the channel concavity and the channel steepness index (ksn). Across short tributaries along which rainfall rate changes little, ksn decreases systematically with tributary‐averaged rainfall rate. The hypsometric integral (HI), which increases with the amount of topography that is at relatively high elevations within a watershed, is negatively correlated with the profile concavity of the trunk channel. High rainfall rates at the ridge top lead to mainstem channels that have relatively low concavity, and watersheds with relatively higher HI in comparison with landscapes that have uniform rainfall. Finally, we contrast the impacts of rainfall patterns on landscape morphology with those resulting from a linear rock uplift gradient and uniform rainfall. Uplift patterns may have a similar impact on landscape morphology as rainfall gradients, making it challenging to decipher the relative roles of climate and tectonics on landscape evolution without a quantitative assessment of morphologic parameters. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
变网格大气模式对1998年东亚夏季风异常的模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文利用法国国家科研中心(CNRS)动力气象实验室(LMD)发展的可变网格的格点大气环流模式LMDZ4,对1998年东亚夏季降水进行了模拟,考查了变网格模式对东亚夏季降水的模拟性能.结果表明,模式在一定程度上能模拟出东亚夏季降水的极大值中心、夏季风雨带以及降水由东南向西北递减的空间分布特征.模式基本再现了1998年夏季两次雨带的进退特征,包括降水强度、雨带范围等,从而合理再现了1998年夏季江淮地区的"二度梅"现象.与观测相比,模拟的不足在于:在陡峭地形区附近存在虚假降水;江淮和华北地区以及四川盆地存在水汽输送的气旋式辐合偏差,同时高层环流辐散偏强,使得下层暖湿空气辐合上升、降水偏多;在东南地区存在反气旋式的水汽输送偏差,30°N以南地区降水偏少.对于1998年的"二度梅"现象,模拟偏差主要表现为长江中下游地区两次(特别是第二次)较强降水持续时间偏短,强降水范围偏小,而黄淮和华南地区却降水偏多.分析表明,模式对两次梅雨期降水的模拟偏差直接受环流形势模拟偏差的影响.LMDZ4区域模式版本的特点一是区域加密,二是加密区内预报场每10天向再分析资料恢复一次.敏感试验结果表明,LMDZ4加密区向强迫场的10天尺度恢复总体上有利于提高模式对华北降水的模拟能力,而对长江流域和华南降水的模拟具有不利影响.较之均匀网格模拟试验,加密试验由于在东亚的分辨率大大提高,对东亚夏季降水模拟效果更好.  相似文献   

18.
章纯 《地震》2007,27(3):26-33
利用有限元方法, 研究了台湾地震发生所产生的应力变化对华东南地区应力场调整的影响, 给出了这些地区地震发生后所产生的扰动应力场分布特征, 解释了台湾地震活动与大陆地震活动同步的问题。 研究结果认为, 台湾东部地震带地震发生所产生的应力扰动主要影响福建至广东和广西沿海地区的应力场; 如果地震发生在台湾东南角, 其扰动应力会影响到华东沿海地区; 台湾北部地震带地震发生所产生的扰动应力场除影响福建至广东沿海外, 还会影响到华东沿海地区。  相似文献   

19.
Advances in studying interactions between aerosols and monsoon in China   总被引:1,自引:0,他引:1  
Scientific issues relevant to interactions between aerosols and the Asian monsoon climate were discussed and evaluated at the 33rd “Forum of Science and Technology Frontiers” sponsored by the Department of Earth Sciences at the Chinese Academy of Sciences. Major results are summarized in this paper. The East Asian monsoon directly affects aerosol transport and provides a favorable background circulation for the occurrence and development of persistent fog-haze weather. Spatial features of aerosol transport and distribution are also influenced by the East Asian monsoon on seasonal, inter-annual, and decadal scales. High moisture levels in monsoon regions also affect aerosol optical and radiative properties. Observation analyses indicate that cloud physical properties and precipitation are significantly affected by aerosols in China with aerosols likely suppressing local light and moderate rainfall, and intensifying heavy rainfall in southeast coastal regions. However, the detailed mechanisms behind this pattern still need further exploration. The decadal variation in the East Asian monsoon strongly affects aerosol concentrations and their spatial patterns. The weakening monsoon circulation in recent decades has likely helped to increase regional aerosol concentrations. The substantial increase in Chinese air pollutants has likely decreased the temperature difference between land and sea, which favors intensification of the weakening monsoon circulation. Constructive suggestions regarding future studies on aerosols and monsoons were proposed in this forum and key uncertain issues were also discussed.  相似文献   

20.
High‐elevation tropical grassland systems, called Páramo, provide essential ecosystem services such as water storage and supply for surrounding and lowland areas. Páramo systems are threatened by climate and land use changes. Rainfall generation processes and moisture transport pathways influencing precipitation in the Páramo are poorly understood but needed to estimate the impact of these changes, particularly during El Niño conditions, which largely affect hydrometeorological conditions in tropical regions. To fill this knowledge gap, we present a stable isotope analysis of rainfall samples collected on a daily to weekly basis between January 2015 and May 2016 during the strongest El Niño event recorded in history (2014–2016) in two Páramo regions of Central America (Chirripó, Costa Rica) and the northern Andes (Cajas, south Ecuador). Isotopic compositions were used to identify how rainfall generation processes (convective and orographic) change seasonally at each study site. Hybrid Single Particle Lagrangian Integrated Trajectory model (HYSPLIT) air mass back trajectory analysis was used to identify preferential moisture transport pathways to each Páramo site. Our results show the strong influence of north‐east trade winds to transport moisture from the Caribbean Sea to Chirripó and the South American low‐level jet to transport moisture from the Amazon forest to Cajas. These moisture contributions were also related to the formation of convective rainfall associated with the passage of the Intertropical Convergence Zone over Costa Rica and Ecuador during the wetter seasons and to orographic precipitation during the transition and drier seasons. Our findings provide essential baseline information for further research applications of water stable isotopes as tracers of rainfall generation processes and transport in the Páramo and other montane ecosystems in the tropics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号