首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Following the 2010 VEI 4 eruption of Merapi volcano, more than 250 lahars were triggered during two rainy seasons from October 2010 to March 2012. This high number of post-eruption lahars mainly occurred in the Kali (valley) Putih watershed and was mostly associated with high-magnitude rainstorms. A lahar occurring on January 8, 2011, caused significant damage to homes in several communities, bridges, sabo dams, and agricultural crops. The aims of this contribution are to document the impacts of lahars on the Kali Putih watershed and specifically (1) to analyze the lahar frequency during the period of 1969–2012 on an inter-annual and intra-annual basis and to determine the link between the volume of tephra and the frequency of lahars; (2) to detail the lahar trajectory and channel evolution following the January 8th lahar; (3) to map the spatial distribution of the thickness and geomorphic effects of the lahar deposit; and (4) to determine the impacts of the lahar on the infrastructure (sabo dams and roads) and settlements in the distal area of the volcano. The Kali Putih watershed has experienced 62 lahars, which represent 22% of all lahars triggered on 17 rivers at Merapi between 2010 and 2012. The main geomorphic impacts are: (1) excessive sedimentation in valleys, settlements and agricultural areas; (2) undercutting of the river banks by as much as 50 m, accompanied by channel widening; and (3) abrupt changes in the river channel direction in the distal area (15–20 km downstream of the volcano). About 19 sabo dams were damaged, and 3 were totally destroyed. Over 307 houses were damaged, and the National Road Yogyakarta–Semarang was regularly cut (18 times during approximately 25 days). Although the sabo dams on Kali Putih were originally constructed to protect distal areas from lahar damage, they had little effect on the 2010–2012 rain-triggered lahars. The underlying design of those dams along this river is one of the main reasons for the major destruction in this sector of the volcano’s lower slope. The catch basin capacity of the sabo dam was only 1.75?×?106 m3, whereas the total volume of the 2010–2011 lahars exceeded 5?×?106 m3. In order to prepare for future lahars, the government has invested in significant mitigation measures, ranging from structural approaches (e.g., building new sabo dams and developing an early warning system) to non-structural approaches (e.g., contingency and preparedness planning and hazard education).

  相似文献   

2.
Aguilera  E.  Pareschi  M. T.  Rosi  M.  Zanchetta  G. 《Natural Hazards》2004,33(2):161-189
Cotopaxi volcano (Ecuador) is famous for production of large-scale laharsthrough melting of ice and snow on its summit glacier. The lahar hazard inthe northern valleys of the volcano is assessed through numerical simulationof a maximum expected event. Considerations of past activity suggest that anevent like that of the 1877 eruption is the maximum expected lahar event.Review of the historical records reveals that northerly flowing lahars initiallyfollowed the Rio Pita and Rio Salto; at ``La Caldera', owing to a sharp bendin the channel, the lahar partly overflowed into Rio Santa Clara. The laharsalong Rio Pita and Rio Santa Clara were conveyed to the Los Chillos valley.The simulation, using an initial flow volume of 60 × 106 m3reproduces the maximum heights reached by the 1877 lahar along the northernvalley. The volume of lahar triggered by an eruption similar to that of 1877 isestimated to have a volume about 2/3 of that of 1877. This hypothesized reductionof volume is attributed to shrinkage of the summit glacier over the past century.However, dramatic population growth along valleys exposed to lahar hazard overthe past 100 years makes the present risk from lahars higher than in the past. Thesharp bend of ``La Caldera' represents a crucial site controlling lahar propagation:should a lahar overflow into the Santa Clara valley the risk increases considerablydue to the much higher concentration of human settlements along the valley. Resultsof a lahar simulation in which the entire flow is artificially forced into Rio Pita suggestthat construction of a dyke at ``La Caldera' to prevent overflow would substantiallyreduce the general risk in the area.  相似文献   

3.
Landslides are among the most costly and damaging natural hazards in mountainous regions, triggered mainly under the influence of earthquakes and/or rainfall. In the present study, Landslide Hazard Zonation (LHZ) of Dikrong river basin of Arunachal Pradesh was carried out using Remote Sensing and Geographic Information System (GIS). Various thematic layers namely slope, photo-lineament buffer, thrust buffer, relative relief map, geology and land use / land cover map were generated using remote sensing data and GIS. The weighting-rating system based on the relative importance of various causative factors as derived from remotely sensed data and other thematic maps were used for the LHZ. The different classes of thematic layers were assigned the corresponding rating value as attribute information in the GIS and an “attribute map” was generated for each data layer. Each class within a thematic layer was assigned an ordinal rating from 0 to 9. Summation of these attribute maps were then multiplied by the corresponding weights to yield the Landslide Hazard Index (LHI) for each cell. Using trial and error method the weight-rating values have been re-adjusted. The LHI threshold values used were: 142, 165, 189 and 216. A LHZ map was prepared showing the five zones, namely “very low hazard”, “low hazard”, “moderate hazard”, “high hazard” and “very high hazard” by using the “slicing” operation.  相似文献   

4.
长白山火山灾害及其对大型工程建设的影响   总被引:2,自引:0,他引:2  
刘松雪  刘祥 《世界地质》2005,24(3):289-292
长白山火山是世界著名的活火山,历史时期有过多次喷发,有再次爆发的危险.长白山火山最大的一次爆发发生在公元1199-1200年,这次大爆发的火山灰最远到达距其1 000km远的日本北部.依据这次大爆发由火山喷发空中降落堆积物、火山碎屑流和火山泥流造成的巨大火山灾害,预测了长白山火山未来爆发火山灾害的类型、强度和范围,并编制了长白山火山未来爆发火山喷发空中降落堆积物灾害预测图、火山碎屑流灾害预测图和火山泥流灾害预测图.该研究可预防和减轻火山灾害,指导核电站等大型工程选址.  相似文献   

5.
In contrast to dramatic flow regime changes by less frequent large-scale volcanic eruptions, those caused by more frequent small-scale processes in volcanic landscapes may also drastically change the direction and dynamics of flow in a drainage system formed solely by fluvial processes. During such periods of channel morphology change, it is necessary to frequently update channel flow parameters to assess preventive measures for civil protection purposes. Often aerial photography is impracticable, since parts of the channels are covered by dense vegetation, while total station and laser topographic surveys are often too slow and costly, particularly during a high frequency of events. This article introduces and validates a new methodology for updating the representation of channel morphology in Digital Elevation Models (DEM) used specifically for assessing the dangers of frequently occurring lahars along gorges in volcanic landscapes during eruptive and non-eruptive periods. The updating of channel cross-sections was achieved by inserting more detailed representative profiles of homogeneous channel sectors in DEMs derived from existing less detailed topographic maps. The channel profiles were surveyed along the thalweg in equidistant points according to Universal Transverse Mercator (UTM) (x,y) coordinates and elevation derived from the existing DEM. The proposed technique was applied at Tenenepanco-Huiloac Gorge on Popocatépetl volcano, Mexico, in an area affected by major lahars during the volcano’s most recent eruptive period from 1994 to 2005. The proposed method can reduce the cost and person-hours of a regular channel topographic survey dramatically and the enhanced DEM can determine volume parameters and flood zones associated with the 1 July 1997 and 21 January 2001 lahars, respectively. In addition, the updated DEM with better channel representation allowed a more realistic fluid flow and lahar simulation with the process-based TITAN2D model.  相似文献   

6.
The problems of zonal stratigraphy of the early 21st century are discussed. The great advances achieved in recent years in using zones in geological practice are noted. At the same time, attention is drawn to the controversies existing in the interpretation of the concepts “biostratigraphic zone” and “chronozone,” in the methods of drawing the boundaries of such zones, and in the assessment of the spatial scale of zones and in the understanding of them as stratigraphic units.  相似文献   

7.
The San Martín shield volcano, located in the Los Tuxtlas Volcanic Field, has experienced effusive shield-building activity, as well as explosive eruptions, as evidenced by direct observations during the last eruption in 1793. The threat to the surrounding villages consists principally of lahars, especially because of the tropical climate in the region. Ash fallout and lava flows represent additional hazards. In addition, the surrounding Quaternary monogenetic field includes more than 300 scoria cones and about 40 explosion craters (mainly maars) that also represent a hazard source. In the present study we constructed hazard maps using field data, orthophotos, spatial analysis, and specialized software (LAHARZ and HAZMAP) to deliminate lahar inundation zones, areas that could potentially be affected by ash fallout (including the evaluation of houses prone to roof collapse due to ash load), and the most susceptible areas for hosting future monogenetic vent formation.  相似文献   

8.
The present study explored the effect of assimilation of Advanced TIROS Vertical Sounder (ATOVS) temperature and humidity profiles and Spectral sensor microwave imager (SSM/I) total precipitable water (TPW) on the simulation of a monsoon depression which formed over the Arabian Sea during September 2005 using the Weather Research and Forecast model. The three-dimensional variational (3DVAR) data assimilation technique has been employed for the purpose of assimilation of satellite observations. Statistical scores like “equitable threat score,” “bias score,” “forecast impact,” and “improvement parameter” have been used to examine the impact of the above-mentioned satellite observations on the numerical simulation of a monsoon depression. The diagnostics of this study include verification of the vertical structure of depression, in terms of temperature anomaly profiles and relative vorticity profiles with observations/analysis. Additional diagnostics of the study include the analysis of the heat budget and moisture budget. Such budget studies have been performed to provide information on the role of cumulus convection associated with the depression. The results of this study show direct and good evidence of the impact of the assimilation of the satellite observations using 3DVAR on the dynamical and thermodynamical features of a monsoon depression along with the effect of inclusion of satellite observation on the spatial pattern of the simulated precipitation associated with the depression. The “forecast impact” parameter calculated for the wind speed provides good evidence of the positive impact of the assimilation of ATOVS temperature and humidity profiles and SSM/I TPW on the model simulation, with the assimilation of the ATOVS profiles showing better impact in terms of a more positive value of the “forecast impact” parameter. The results of the study also indicate the improvement of the forecast skill in terms of “equitable threat score” and “bias score” due to the assimilation of satellite observation.  相似文献   

9.
This study presents the results of both field and laboratory tests that have been undertaken to assess liquefaction susceptibilities of the soils in Kütahya city, located in the well-known seismically active fault zone. Liquefaction potentials of the sub-surface materials at Kütahya city were estimated by using the geological aspect and geotechnical methods such as SPT method of field testing. And, the data obtained have been mapped according to susceptibility and hazard. The susceptibility map indicated “liquefable” and “marginally liquefable” areas in alluvium, and “non-liquefable” areas in Neogene unit for the magnitude of earthquake of M=6.5; whereas, liquefaction hazard map produced by using of liquefaction potential index showed the severity categories from “very low” to “high.” However, a large area in the study area is prone to liquefy according to liquefaction susceptibility map; the large parts of the liquefable horizon are mapped as “low” class of severity by the use of the liquefaction potential index. It can be said that hazard mapping of liquefaction for a given site is crucial than producing liquefaction susceptibility map for estimating the severity. Both the susceptibility and hazard maps should be produced and correlated with each other for planning in an engineering point of view.  相似文献   

10.
The glacier-covered Nevado del Tolima in the Colombian Cordillera Central is an active volcano with potential lahars that might be more hazardous than those on Nevado del Ruiz. Furthermore, rainfall-triggered floods and landslides notoriously and severely affect the region. For effective disaster prevention, a risk analysis is of primary importance. We present here a risk analysis methodology that is based on the assessment of lahar and rainfall-related flood hazard scenarios and different aspects of vulnerability. The methodology is applied for populated centres in the Combeima valley and the regional capital Ibagué (~500,000 inhabitants). Lahar scenarios of 0.5, 1, 5, and 15?million m3 volume are based on melting of 1, 2, 10, and 25?% of ice, firn and snow, respectively, due to volcanic activity and subsequent lahar formation. For flood modelling, design floods with a return period of 10 and 100?years were calculated. Vulnerability is assessed considering physical vulnerability, operationalized by market values of dwelling parcels and population density, whereas social vulnerability is expressed by the age structure of the population and poverty. Standardization of hazard and vulnerability allows for the integration into a risk equation, resulting in five-level risk maps, with additional quantitative estimate of damage. The probability of occurrence of lahars is low, but impacts would be disastrous, with about 20,000 people and more directly exposed to it. Floods are much more recurrent, but affected areas are generally smaller. High-risk zones in Ibagué are found in urban areas close to the main river with high social vulnerability. The methodology has proven to be a suitable tool to provide a first overview of spatial distribution of risk which is considered by local and regional authorities for disaster risk reduction. The harmonization of technical-engineering risk analysis and approaches from social sciences into common reference concepts should be further developed.  相似文献   

11.
This study explores the application of interpolating and non-interpolating spatial prediction algorithms to interpreting shear surface geometries. A number of spatial prediction techniques have been tested, and the most appropriate algorithms for the Downie Slide dataset have been selected based on the root mean squared error (RMSE) determined from cross-validation. Visual assessment of reasonable spatial patterns has allowed for final selection of algorithms that produce geologically realistic results. Through this process, the performance of a number of interpolation algorithms has been tested in terms of accuracy and the development of reasonable spatial patterns. The goal of this study has been: (a) to develop a methodology for interpolating three-dimensional shear surface geometries and (b) to assess which interpolation methods are most appropriate for the interpretation of the Downie Slide basal slip surface geometry, based quantitatively on RMSE and qualitatively on the geological “trueness” of the geometric output.  相似文献   

12.
Sustainable development requires the management and preservation of water resources indispensable for all human activities. When groundwater constitutes the main water resource, vulnerability maps therefore are an important tool for identifying zones of high pollution risk and taking preventive measures in potential pollution sites. The vulnerability assessment for the Eocene aquifer in the Moroccan basin of Oum Er-Rabia is based on the DRASTIC method that uses seven parameters summarizing climatic, geological, and hydrogeological conditions controlling the seepage of pollutant substances to groundwater. Vulnerability maps were produced by using GIS techniques and applying the “generic” and “agricultural” models according to the DRASTIC charter. Resulting maps revealed that the aquifer is highly vulnerable in the western part of the basin and areas being under high contamination risk are more extensive when the “agricultural” model was applied.  相似文献   

13.
Lahar-Triggering Mechanisms and Hazard at Ruapehu Volcano,New Zealand   总被引:1,自引:0,他引:1  
Lecointre  Jerome  Hodgson  Katy  Neall  Vincent  Cronin  Shane 《Natural Hazards》2004,31(1):85-109
Late Holocene volcanic activity at Ruapehu has been characterizedby the generation of small (<105 m3) to very large (>107 m3) lahars and repeated,small to medium (VEI 1-3) tephra-producing eruptions. The Onetapu Formation groupsall lahar deposits that accumulated during the last 2,000 years on the southeastern Ruapehu ring plain. The andesitic tephras are grouped within the Tufa Trig Formation and are intercalated within the laharic sequence. By correlating these two formations with new radiocarbon ages obtained on interbedded paleosols, we reconstruct a detailed volcanic history of Ruapehu for this period.Clast assemblages identified in the laharic sequences record thelithologies of synchronous tephras and rocks within the source region. These assemblages suggest a strong genetic link between the development of Crater Lake, the variation in eruptivestyles, and the production of lahars.Lahar-triggering mechanisms include: (1) flank collapse ofhydrothermally altered and unstable portions of the cone; (2) phreatic and phreatomagmatic eruptions favoring the generation of snow-rich slurries and hyperconcentrated stream flows; (3) suddenCrater Lake rim collapse, releasing large amounts of water inducing debris flows; and (4) eruptions that generate large volumes of tephra on snow-covered slopes, later remobilized by heavy rain.Two major lahars in the Onetapu sequence had a volume 4 × 107 m3, roughly 1 to 2 orders of magnitude larger than the 1953event leading to the Tangiwai disaster (151 casualties). One of these lahars crossed over a lowinterfluve currently separating the Whangaehu River from a stream feeding the Tongariro River,sometime since peat accumulated between AD 1400 and AD 1660. A repetition of such a large-scaleevent would have devastating consequences on the infrastructure, economy and environment withinthe distal areas of the two catchments. The 1995–1996 eruptions were a timely reminder ofthe hazards posed by the volcano.  相似文献   

14.
Earthquake hazard zonation of Sikkim Himalaya using a GIS platform   总被引:2,自引:1,他引:1  
An earthquake hazard zonation map of Sikkim Himalaya is prepared using eight thematic layers namely Geology (GE), Soil Site Class (SO), Slope (SL), Landslide (LS), Rock Outcrop (RO), Frequency–Wavenumber (F–K) simulated Peak Ground Acceleration (PGA), Predominant Frequency (PF), and Site Response (SR) at predominant frequencies using Geographic Information System (GIS). This necessitates a large scale seismicity analysis for seismic source zone classification and estimation of maximum earthquake magnitude or maximum credible earthquake to be used as a scenario earthquake for a deterministic or quasi-probabilistic seismic scenario generation. The International Seismological Center (ISC) and Global Centroid Moment Tensor (GCMT) catalogues have been used in the present analysis. Combining b-value, fractal correlation dimension (Dc) of the epicenters and the underlying tectonic framework, four seismic source zones are classified in the northeast Indian region. Maximum Earthquake of M W 8.3 is estimated for the Eastern Himalayan Zone (EHZ) and is used to generate the seismic scenario of the region. The Geohazard map is obtained through the integration of the geological and geomorphological themes namely GE, SO, SL, LS, and RO following a pair-wise comparison in an Analytical Hierarchy Process (AHP). Detail analysis of SR at all the recording stations by receiver function technique is performed using 80 significant events recorded by the Sikkim Strong Motion Array (SSMA). The ground motion synthesis is performed using F–K integration and the corresponding PGA has been estimated using random vibration theory (RVT). Testing for earthquakes of magnitude greater than M W 5, a few cases presented here, establishes the efficacy and robustness of the F–K simulation algorithm. The geohazard coverage is overlaid and sequentially integrated with PGA, PF, and SR vector layers, in order to evolve the ultimate earthquake hazard microzonation coverage of the territory. Earthquake Hazard Index (EHI) quantitatively classifies the terrain into six hazard levels, while five classes could be identified following the Bureau of Indian Standards (BIS) PGA nomenclature for the seismic zonation of India. EHI is found to vary between 0.15 to 0.83 quantitatively classifying the terrain into six hazard levels as “Low” corresponding to BIS Zone II, “Moderate” corresponding to BIS Zone III, “Moderately High” belonging to BIS Zone IV, “High” corresponding to BIS Zone V(A), “Very High” and “Severe” with new BIS zones to Zone V(B) and V(C) respectively.  相似文献   

15.
Tectonics of proterozoic Cuddapah Basin,southern India: A conceptual model   总被引:1,自引:0,他引:1  
A tectonic map of Cuddapah Basin (CB) and its adjacent regions has been compiled using LANDSAT TM data and the available literature on the prominent tectonic features which include Archaean greenstone belts, disposition of Proterozoic mobile belts along with the associated mid-crustal shear zones, and the mafic dyke swarms. The field characteristics of the two major fault zones: Gudur-Cuddapah and the Veldurti-Kalva-Gani fault system that cut across the CB have been re-examined and are re-interpreted as typical of transfer faults, which are generated exclusively by extensional tectonics. The earlier concept that these fault systems form a conjugate set of “Anderson type” causing the ‘Cuddapah salient’, needs to be reviewed.  相似文献   

16.
长白山火山1000年前大喷发,火山泥流堆积物沿松花江中上游分布。距火山较近的是火山泥流的岩屑流堆积,远离火山变为火山泥流的超高密度流堆积。探讨了火山泥流的成因,并指出长白山火山一旦再次爆发,火山泥流将是主要的火山灾害,沿松花江中上游可能造成巨大破坏,并可能危及鸭绿江、图们江中、上游。  相似文献   

17.
Eruption records in the terrestrial stratigraphy are often incomplete due to erosion after tephra deposition, limited exposure and lack of precise dating owing to discontinuity of strata. A lake system and sequence adjacent to active volcanoes can record various volcanic events such as explosive eruptions and subaqueous density flows being extensions of eruption triggered and secondary triggered lahars. A lacustrine environment can constrain precise ages of such events because of constant and continuous background sedimentation. A total of 71 subaqueous density flow deposits in a 28 m long core from Lake Inawashiro‐ko reveals missing terrestrial volcanic activity at Adatara and Bandai volcanoes during the past 50 kyr. Sedimentary facies, colour, grain size, petrography, clay mineralogy, micro X‐ray fluorescence analysis and chemistry of included glass shards characterize the flow event deposits and clarify their origin: (i) clay‐rich grey hyperpycnites, extended from subaerial cohesive lahars at Adatara volcano, with sulphide/sulphate minerals and high sulphur content which point to a source from hydrothermally altered material ejected by phreatic eruptions; and (ii) clay‐rich brown density flow deposits, induced by magmatic hydrothermal eruptions and associated edifice collapse at Bandai volcano, with the common presence of fresh juvenile glass shards and low‐grade hydrothermally altered minerals; whereas (iii) non‐volcanic turbidites are limited to the oldest large slope failure and the 2011 Tohoku‐oki earthquake events. The high‐resolution chronology of volcanic activity during the last 50 kyr expressed by lacustrine event deposits shows that phreatic eruption frequency at Adatara has roughly tripled and explosive eruptions at Bandai have increased by ca 50%. These results challenge hikers, ski‐fields and downstream communities to re‐evaluate the increased volcanic risks from more frequent eruptions and far‐reaching lahars, and demonstrate the utility of lahar and lacustrine volcanic density flow deposits to unravel missing terrestrial eruption records, otherwise the recurrence rate may be underestimated at many volcanoes.  相似文献   

18.
19.
We apply the logic of clinical epidemiological studies to quantify the accuracy of mapping sinkholes by ALSM in the 750 km2 Pinellas County. By such studies, a new diagnostic procedure is tested by comparing the diagnoses in a clinical trial to diagnoses on the same patients from a more reliable, but more elaborate and expensive procedure (“gold standard” in epidemiological context). A relatively undeveloped, 65 km2 focus area where we have aerial photographs that are effectively contemporaneous with the ALSM flights serves as the “clinical trial”. The xy-locations in the focus area are the “patients” in the trial. The “diagnostic test” for having “sinkhole disease” is inclusion in a database of sinkhole polygons delimited by ALSM contours (“ALSM-alone”), as detailed in Part 1. The standard of comparison (“gold standard” would be an overstatement in the absence of geophysical testing) is inclusion in a database of sinkhole outlines derived by best judgment of conjunctive interpretation of ALSM and aerial photography. GIS intersections that indicate the sensitivity and specificity of the test (ALSM-alone) are 43 and 98.3%, respectively, and, in the focus area where the prevalence of “sinkhole disease” is 4.7%, the positive and negative predictive values are 55.5 and 97.2%, respectively. Over much of the rest of the county, where only the test can be applied, the prevalence of sinkholes is sufficiently small that it cannot be determined to be any different from zero given the paucity of interpreted sinkholes (positive diagnoses) and the low specificity of the test method. The conclusion, therefore, is that contemporaneous aerial photography is essential to compile an ALSM-derived database that aims to state that the given xy-points lay inside or outside of topographic depressions in the covered karst of west-central Florida.  相似文献   

20.
The geological-geophysical, methological, and economic aspects of extraction and utilization of petrothermal resources (“hot dry rock thermal”) for thermal and electric energy production were considered. Heat collectors are hydraulic fracturing zones of natural or artificially made cracks in the crystalline rocks of the basement; these rocks have higher temperature and can be a kind of “thermal cauldron.” Detection of such “collectors” can be carried out by geophysical methods. When pumped out of wells and warmed to 100–300°C, waters function as a heat transfer for thermal energy supply and electric energy generation. If the technical problem of the rapid drilling of 6–10 km wells could be solved, then petrothermal energy will become competitive with the traditional types of energy production and supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号