首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The >3·0 Ga chert sequence of the Gorge Creek Group is exposed at Ord Ranges about 50 km east of Port Hedland in the Pilbara Block. The chert sequence examined in this study is 15 m thick and consists of oxide-rich laminated chert, grey chert (silicified clastic rock), carbonaceous black chert and carbonate-rich laminated chert. Although the cherts have undergone postdepositional silica enrichment, such as cementation and metasomatic silicification, primary precipitation of silica at the site of deposition is indicated by abundant microstructures (mosaic and spherulitic structures). Other primary to early diagenetic components were carbonates, sulphates (gypsum and anhydrite) and organic matter. Although these mineral associations, on the whole, correspond to those of modern marine evaporites, they are different from modern equivalents with respect to abundant precipitation of amorphous silica and presumed primary precipitation of iron-carbonate (siderite). This feature is a possible manifestation of peculiar physicochemical conditions in the water mass from which the chemical sediments were precipitated; compared with modern ocean waters, the concentrations of Fe and Si were significantly higher and the pH value might have been lower. These conditions could be obtained by contributions of Fe- and Si-enriched hydrothermal solutions and continental run-off to the site of deposition. Grey cherts contain detrital quartz and altered Fe–Ti oxides and were formed in a period of input of terrigenous detrital materials. They are characterized by higher concentrations of TiO2, Al2O3, Cr, Ni, Zn, Rb and Zr compared with the other types of chert and by very low (< 4) Al2O3/TiO2 values. These features are attributed to the supply of terrigenous detrital materials that contain abundant Fe–Ti oxides (ilmenite and titanomagnetite) and fine TiO2 particles. Such detrital materials might have been formed by extensive chemical alteration of source rocks and residual enrichment of Ti relative to Al.  相似文献   

2.
The characteristic structures of the Precambrian cherts from the Gusui section, Guangdong ,Chi-na, include bedded structure ,laminated structure ,massive structure and pseudobrecciated structure.The chert is characterized by consistently low abundance of TiO2,Al2O3 and most trace elements.Howevver ,it is enriched in Ba,As,Sb,Hg and Se.In Al-Fe-Mn ternary diagrams,it falls into the “hydrothermal field“ .Correspondence analysis and factor analysis show that many elements show up in the factor that represents the leaching of country rocks by hydrothermal solutions,and are the very characteristic element association fo the geochemically anomalous South China basement.Petrologic and geochemical evidence suggests a hydrothermal origin for the chert.The chert may have been formed in a Precambrian fift or an extension zone developed within the Yunkai marginal geosyncline, with a fault system linking it to an unknown heat source at depth.  相似文献   

3.
The photosynthetic fractionation of carbon isotopes by blue-green algae in laboratory culture is dependent in a non-linear fashion on the CO2 concentration in the feed gas. For the three species tested, the minimum fractionation occurred at a CO2 concentration of 0.2% in air and was approximately zero for the two marine species tested. Enrichment of C12 in the reduced carbon is not an inevitable result of photosynthetic carbon fixation. Temperature and pH had no detectable effect on fractionation. The maximum fractionation observed in the laboratory cultures or in recent blue-green algal mats was 18‰. Differences in the isotope ratio of coexisting oxidized and reduced carbon in Precambrian stromatolites are as great as 31‰. Present carbon isotopic evidence is not consistent with the idea that blue-green algae were major contributors to the organic matter in Precambrian sediments.  相似文献   

4.
Abstract. Numerous bedded manganese deposits sporadically distributed throughout the Tamba district, southwestern Japan are intercalated within chert sequence. It is well known that radiolarian remains are commonly included in both bedded manganese deposits and host cherts. The Gen‐otani mine, one of these deposits, is located at Otani, Keihoku‐Shimonaka, northern Kyoto City. Chemical composition and age of the chert sequence at the mine were examined. Mainly according to SiO2 and MnO contents together with lithology, the chert sequence is divided into three sections; lower massive chert, middle bedded manganese deposit and upper bedded chert sections. Radiolarian faunas consisting of middle Jurassic species such as Eucyrtidiellum unumaense, Dictyomitrella(?) kamoensis, Parvicingula dhimenaensis, Sethocapsa aitai, Sethocapsa kodrai, Transhsuum brevicostatum, Tricolocapsa plicarum, Unuma echinatus and others were extracted from both the middle manganese section and overlying bedded chert of the upper section. This examination reveals that the bedded manganese deposit at the Gen‐otani mine formed until Bajocian to early Bathonian (middle Middle Jurassic) in age.  相似文献   

5.
徐跃通 《地质科学》1998,33(1):39-50
在信江盆地中存在数层和石炭纪海相火山岩及其海底块状硫化物矿层相伴生,与石炭纪地层整合产出的层状硅质岩。由对硅质岩常量元素、微量元素、稀土元素、硅和氧同位素等地球化学特征研究表明,本区硅质岩具有一定的热水沉积硅质岩地球化学特征。在Al-Fe-Mn和Fe-Mn-(Ni+Co+Cu)三角图上,本区硅质岩属热水沉积硅质岩。由硅质岩MnO/TiO2比值、δCe值和δ30Si值分析表明,信江盆地石炭纪硅质岩的沉积环境主要为浅海。  相似文献   

6.
Auriferous cherts in the Middle Carboniferous Jinchang Formation are the dominant host rocks of auriferous quartz veins and mixed orebodies comprised of gold-bearing quartz veins and cherts in the Mojiang gold deposit.The rocks exhibit sedimentary texture and structure and are composed of hot-water deposited minerals.The FeO,Fe2O3,Au and Ag contents of the auriferous cherts are high;the Cr,Ni and Co contents are also high but significantly variable;MnO/TiO2 and TFe/TiO2 ratios are relatively higy.As viewed from a few diagrams that distinguish different chert formations,the auriferous cherts are in or near the range of hot-water deposited cherts.Because the correlation coefficients between Au contents and those of Cr, Ni of the rocks are negative,a great Au amount in the cherts might not be brought about by later hydrothermal alterations.The rare-earth elements,O and Si isotopic compositions of the auriferous cherts demonstrate that the cherts belong to hot-water deposited rocks.The later hydrothermal alterations made the petrochemical compositions of the cherts deviate from the characteristics of hot-water deposition.In general,the geological and geochemical features of the auriferous cherts demonstrate that the rocks were formed by hot water deposition.  相似文献   

7.
Hydrogen and oxygen isotopic compositions of cherts (δD for hydroxyl hydrogen in the chert, δ18O for the total oxygen) have been determined for a suite of samples from the central and western United States. When plotted on a δD-δ18O diagram, Phanerozoic cherts define domains parallel to the meteoric water line which are different for different periods of geologic time. The elongation parallel to the meteoric water line suggests that meteoric waters were involved in the formation of many cherts.The existence of different chert δ-values for different geologic times indicates that once the granular microcrystalline quartz of cherts crystallizes its isotopic composition is preserved with time. An explanation for the change with time of the isotopic composition of cherts involving large changes with time in the isotopic composition of ocean water is unlikely since δ18O of the ocean would have had to decrease by about 3‰between Carboniferous and Triassic time and then increase about 5%.` from Triassic to Cretaceous time. Such isotopic changes cannot be accounted for by extensive glaciation, sedimentation of hydrous minerals, or input of water from the mantle into the oceans.The variation with time of the chert δ-values can be satisfactorily explained in terms of past climatic temperature fluctuations if the chert-water isotope fractionation with temperature is approximated by 1000 lnα = 3.09 × 106T?2 – 3.29. Crystallization temperatures so inferred suggest that the average climatic temperatures for the central and western U.S. decreased from about 34 to 20°C through the Paleozoic, increased to 35–40°C in the Triassic, and then decreased through the Mesozoic to Tertiary values of about 17°C. A few data for the Precambrian suggest the possibility that Earth surface temperatures may have reached about 52°C at 1.3 b.y. and about 70°C at 3 b.y.  相似文献   

8.
The Late Cretaceous to Early Eocene, dominantly micritic, Amuri Limestone Group (ALG) was deposited in an approximately NW trending trough, in eastern Marlborough, New Zealand. The ALG comprises: the Mead Hill Formation; the Teredo, Lower and Middle Limestone formations; and the Upper and Lower Marl formations. Chert and dolomite are concentrated in the Mead Hill Formation, which contains five of six recognized diagenetic zones: Zone I at the base of the ALG consists almost entirely of chert; Zone II consists solely of chert and dolomite; Zone III comprises chert and limestone; Zone IV is composed of chert plus dolomite; Zone V is a chertified mudstone; and the minor amounts of chert found in the Middle Limestone Formation comprise Zone VI. With the exception of Zones IV and V, chert decreases stratigraphically upwards and away from the basin centre. All the dolomites are composed of <1 mm diameter rhombohedra in discontinuous beds and lenses. Generally Ca-rich, and non- to slightly ferroan, the dolomite contains approximately 500–900 ppm Mn and 200–400 ppm Sr. δ13C values average 1–2%PDB with δ18O ratios of about -4%PDB. Mass balance calculations indicate that the Mg2+ for dolomitization was derived from sea water. Sr, Fe and Mn concentrations are interpreted as indicating dolomite formation in the marine environment, with no influence from meteoric waters. The intimate association with pyrite implies dolomite formation in association with sulphate reduction, in the upper sediment column. δ18O data show that the bulk of the dolomite formed at temperatures below 50°C. All chert samples contain in excess of 90 wt% SiO2, about 1 wt% Al2O3 and 1 wt% from losses on ignition. Generally all other major elements total less than 2 wt% oxide. δ18O values range from 26·8 to 29·0%SMOW. Chert chemistry is consistent with the replacement of host carbonate and expulsion of carbonate-bound components from the site of chertification, and the effective dilution by SiO2 of non-carbonate-bound insoluble residues. δ18O data indicate that chert formed in fluids of similar composition and temperature as the dolomite. The abundance of disseminated pyrite in cherts implies an association with sulphate reduction. Silica for chertification is thought to have initially come from dissolution of siliceous organisms. However, there is insufficient biogenic silica available to form the volumes of chert observed. It is suggested that the bulk of the silica came from SiO2-rich pore waters generated by clay mineral reactions in the thick underlying mudstones. The ALG compacted down through these pore waters. Chert and dolomite nucleation are considered to have been penecontemporaneous. Dolomitization was initially probably the faster process, continuing as long as sulphate reduction prevailed and there was an adequate supply of Mg2+. The nucleation of chert, although initially slower (probably due to a relatively lower initial SiO2 supply), continued after cessation of dolomitization to the extent of completely chertifying the dolomite intercrystalline matrix. The amount of chertification decreased progressively as SiO2 supplies diminished, both stratigraphically upwards and away from the basin centre.  相似文献   

9.
Stromatolites forming today on a small scale in hydrothermal environments are chemical and biological analogues of much larger Precambrian formations. Carbon isotopic composition varied as a function of CO2 concentration, pH, and species composition. Stratiform, layered stromatolites grew in silica-depositing springs at 55° to 70°C; they consisted mainly of a unicellular alga, Synechococcus, and a filamentous, photosynthetic bacterium, Chloroflexus. These thermophiles become enriched in 12C as the concentration of carbon dioxide in the effluent waters increases. At a concentration of 40 ppm total inorganic C, and δ13C of organic carbon was ~ ?12%., whereas at 900 ppm total inorganic C, the δ13C of similar species was ~ ?25%.. Conical stromatolites or conophytons (principally a filamentous, blue-green alga Phormidium and Chloroflexus) grew at 40°-55°C. In older, broader conophytons, Chloroflexus was the dominant organism. Their δ13C values were ~ ?18%. in a variety of hot springs. In carbonate-depositing springs, i.e., carbon dioxide saturated, conophytons and stromatolites consisting of a variety of blue-green algae and photosynthetic bacteria had the most negative δ13C values (to ?30%.). These carbon isotope ratios are directly comparable to carbon isotope ratios of kerogen from Precambrian stromatolites. The presence and activity of methanogenic bacteria or heterotrophic, aerobic and anaerobic bacteria did not alter significantly the δ13C of the original organic matter.The hydrogen isotopic fractionation between thermophilic organisms and water is 0 to ?74 for temperatures of 85° to 46°C, respectively. Acidophilic algae fractionated hydrogen isotopes to a lesser extent than did the photosynthetic organisms inhabiting neutral pH springs. Because organic matter retains some of its original isotopic signature, relationships of CO2 levels, pH, temperature, and species composition between modern stromatolites and their environment and those of the Precambrian can be inferred.  相似文献   

10.
The broad range of time over which ribbon bedded cherts were deposited does not extend into the present marine environment, and no ribbon cherts have been recovered from the sea floor by the Deep Sea Drilling Project. The depositional environment of bedded cherts is difficult to determine, but extra-silicic impurities in the rock may offer clues about the provenance of the non-biogenic component. To test the usefulness of relative abundances of the extra silicic components in extracting information on the depositional environment of the chert, I analyzed the major element chemistry of chert samples from a broad range of environments including ophiolite-associated chert from the Franciscan Formation of California, deep-sea chert and porcellanite from the northwest Pacific (DSDP Leg 32), shallow pelagic shelf chert nodules from the Chalk of Britain, continental marginal basin chert from the Monterey Formation of California, and continental marginal basin chert from the Pindos Zone of Greece. The ratios FeO/A12O3, TiO2/A12O3 and A1/A1+Fe+Mn were considered in detail. The interpretative logic is simple but empirically supported by observations of these ratio values at different depositional environments in the Pacific: A1 is concentrated most highly in continental material while Fe and Mn are more concentrated in pelagic sediments. FeO/A12O3 can be used to differentiate between ophiolite associated chert and chert associated only with other sediments. TiO2/A12O3 is not a useful indicator, possibly because of the equalizing effect of widespread eolian transport. The A1/A1+Fe+Mn ratio was measured in detail in one stratigraphic section in central continental Greece. This ratio varied with the type of sediment admixture, decreasing in value after the influx of ophiolite debris-bearing sediments, even when their presence was undetectable in hand sample or under petrographic microscope.To help clarify the paleogeography of the main study area, the Pindos Zone, and to identify sources and dispersal patterns of extra-basinal materials, isopach maps of sedimentary facies of the Pindos were constructed. Superimposed directly upon the series of imbricated thrust slices that comprise the Pindos Zone, the maps are at best compressed pictures of the Pindos Sea Floor. Persistent regional variation of facies thicknesses over time suggests the existence of several smaller depressions surrounded by submarine highs in the Pindos Basin.  相似文献   

11.
The upper Qigeblaq Formation (Fm) dolostones and the Yurtus Fm phosphatic cherts, black shales, limestones, and dolostones are widely distributed in the Precambrian/Cambrian transitional succession of the Aksu-Wushi area. Negative δ13C excursion above the Yurtus Fm/ Qigeblaq Fm boundary was determined in this study. The pronounced negative carbon isotope excursion occurs in the phosphatic chert layers at the bottom of the Cambrian Yurtus Fm, below which the first appearance of the Asteridium- Heh'osphaeridium-Comasphaeridium (AHC) acritarch assemblage zone. The δ13C curve of the lower part of the Yurtus Fm in the Aksu-Wushi area was found to be correlated with the early Cambrian δ13C curves of the Zhujiaqing Fm (Daibu Member), the lower part of the Yanjiahe Fm on the Yangtze Platform in China, the lower Tal Fm in India, the Sukharikha Fm in Siberia, and the upper part of the Tsagaan Oloom Fm in Mongolia through biostigraphy. The lower part of the Yurtus Fm in the Tarim Basin is at the Nemakit-Daldynian stage, and the Precambrian/Cambrian boundary of the Aksu-Wushi area may be located in the phosphatic chert unit which just below the first appearance AHC acritarch assemblage zone. The negative δ13C excursion (N1) across the Precambrian/Cambrian boundary in the studied section may have resulted from oceanic overturning and sea level rise.  相似文献   

12.
Graphitic cherts are interbedded within terrigenous sediments in the Cadomian orogenic belt of end-Proterozoic age. In the Armorican Massif (NW France), the graphitic cherts are of two types: massive cherts essentially composed of quartz (SiO2 > 96%) and with rare sedimentary structures; laminated cherts containing up to 3·4% Al2O3 and 92–98% SiO2. Sedimentary structures observed in the laminated cherts are indicative of a restricted hypersaline tidal or supratidal environment. The origins of both types of chert are to be found in the diagenetic processes of silification of terrigenous and mixed terrigenous-evaporitic facies. These processes, which could be mediated by the presence of organic matter, were controlled by the migration of the freshwater/saltwater mixing zone during periods of relative sea-level change. The proposed diagenetic origin for the cherts places a number of constraints on their use in the establishment of stratigraphic correlations.  相似文献   

13.
KAr isochron techniques can provide, in principle, an experimental reconstruction of the time evolution of the atmospheric 40Ar/36Ar ratio if minerals can be found which contain samples of argon from the ancient atmosphere and which have had a simple geologic history. Authigenic sedimentary minerals with low potassium content appear to be the best candidates. An experimental reconstruction of the evolution of the atmospheric 40Ar/36Ar ratio will serve as a test of various models for the chemical and thermal evolution of the Earth.40Ar39Ar studies of five chert samples from the Swaziland sequence and the Bulawayan and Gunflint Formations indicate that lower Precambrian cherts do not contain appreciable samples of the ancient atmospheric argon and have experienced complicated geologic histories. The chert sample from the Kromberg Formation contains excess 40Ar. The other four samples yield age spectra which are complicated but which are interpretable in terms of geologically reasonable ages.The lack of evidence for argon loss in the chert data suggests that some cherts may prove to be datable sedimentary minerals.  相似文献   

14.
The Ediacaran–Cambrian transition was one of the most critical intervals in Earth history. During this interval, widespread chert was precipitated, commonly as a stratal wedge in carbonates, along the southern margin of the Yangtze Platform, South China. The chert wedge passes into a full chert succession further basinward to the south‐east. Four lithotypes of chert are identified across the marginal zone in western Hunan: mounded, vein, brecciated and bedded chert. The mounded chert is characterized by irregular to digitiform internal fabrics, generally with abundant original vesicles and/or channels that mostly are lined by botryoidal chalcedony cements with minor quartz and barite crystals. The host chert (or matrix) of these mounds is dominated by amorphous cryptocrystalline silica, commonly disseminated with pyrite. The vein chert, with minor quartz locally, generally cross‐cuts the overlying dolostone and chert horizons and terminates under the mounded and/or bedded chert bodies. The brecciated chert commonly occurs as splayed ‘intrusions’ or funnel‐shaped wedges and cross‐cuts the topmost dolostones. The bedded chert, the most common type, generally is thin to medium‐bedded and laminated locally; it is composed of amorphous silica with minor amounts of black lumps. Microthermometry of fluid inclusions from vein and void‐lining minerals (mainly quartz and barite) revealed homogenization temperatures from 120 to 180°C for the trapped primary fluids. Compositionally, these chert deposits generally are pure, with SiO2 > 92 wt%, and only minor Fe2O3 and Al2O3 contents, most of which show positive Europium anomalies in rare earth element patterns, especially for the mounded chert. All these data suggest that the marginal zone chert deposits resulted from a low‐temperature, silica‐rich hydrothermal system, in which the mounded chert was precipitated around the releasing vents, i.e. as silica chimneys. The vein and splayed brecciated chert, however, was formed along the syndepositional fault/fracture conduits that linked downward, while the bedded chert was precipitated in the quieter water column from the fallout of hydrothermal plumes onto the sea floor. These petrological and geochemical data provide compelling evidence and a new clue to the understanding of the extensive silica precipitation; rapid tectono‐depositional and oceanic changes during the Ediacaran–Cambrian transition in South China.  相似文献   

15.
湘中南地区奥陶系由"细碎屑岩-硅质岩系-粗碎屑岩"构成,三者厚度变化具有明显的规律性:厚度等值线的展布逐渐趋于北东方向,厚度最大区域向南东方向迁移。区内岭口剖面烟溪组硅质岩SiO_2含量(89.08%~94.32%)和Al/(Al+Fe+Mn)值(0.52~0.79)较高,具有轻稀土略富集、无明显铈异常和铕异常的特点;大桥剖面烟溪组硅质岩SiO_2含量高(91.74%~95.14%),Al/(Al+Fe+Mn)值为0.34~0.56,具有轻稀土富集、无明显铕异常和间歇性铈负异常、Y/Ho比值低(20.65±1.63)的特点。硅质岩地球化学特征及图解说明其主要为正常海相生物成因,形成于开阔的大陆边缘背景。对比邻近地区相应层位数据发现,湘中南及其邻区中—晚奥陶世硅质岩成因与沉积背景相似,指示其形成于统一盆地中,结合地层等厚度图分析认为,盆地经历了被动大陆边缘—前陆盆地的转换,硅质岩系可能是前陆盆地初始阶段的产物,在其展布范围内无明显热液影响,暗示造成华夏地块抬升的地球动力学来源可能还在该套硅质岩系展布范围的更南部或东南部。  相似文献   

16.
Microstructures of probable biologic origin have been described within early diagenetic chert from near the top of the Mescal Formation of Proterozo c (1.2–1.4 b.y.) age, from exposures in the vicinity of Horse Camp, McFadden Peak Quadrangle, Arizona. The structures, nearly all hematite in composition, are interpreted as replacements of microorganisms and have been divided into three categories: Type A, filamentous chains; Type B, discrete and grouped spherules; and Type C, globular aggregates. The Type A structures are interpreted as replacements of filamentous blue-green algae. Type B structures are thought to be replacements of blue-green algae, although the possibility exists that some may represent chlorophycean algae. Type C structures are tentatively interpreted as pyrite framboids subsequently altered to hematite.  相似文献   

17.
18.
Shallowing‐upward, decametre‐scale, Palaeoproterozoic iron formation cycles in northern Wisconsin record the combined effects of tectonism and changing oceanographic conditions on a storm‐dominated shelf. Cycles consist of a lower unit of laminated, Fe‐ and Si‐rich chemical mudstone that is transitional into an upper unit dominated by trough cross‐stratified chert grainstone. Grainstone lenses become progressively thicker upwards in cycles with the largest at cycle tops, where they are sharply overlain by a unit of slumped chemical mudstone. The cycles developed through progradation when offshore‐directed storm currents transported chert sand intraclasts that were formed in nearshore settings into middle and distal shelf environments. Abrupt subsidence events, probably resulting from normal faulting associated with extensional tectonism, repeatedly terminated chert grainstone accumulation and may also have generated the slumped units at cycle boundaries. The episodic storm currents are also interpreted to have transported biologically oxygenated waters from the shallow‐water, inner shelf into otherwise anoxic bottom waters of the strongly stratified distal shelf. The consequence of such transport and mixing was rapid deposition of chemical mud, mainly as precipitated Fe‐oxide. In many cases, the resultant decrease in Fe2+ in the water column, together with pelagic inorganic precipitation of SiO2 and rainout of terrigenous clays, resulted in submillimetre‐ to millimetre‐thick, chemically graded laminae. The concomitant decreasing Fe2+/Mn2+ ratio also led to increasing Mn‐compound precipitation and enrichment in the upper portions of some chemically graded layers.  相似文献   

19.
Geological and geochemical studies and experiments on mineralization indicate that the source bed of the La' erma gold deposit in the south subbelt of the western Qinling Mountains is hydrothermal cherts in the Cambrian Taiyangding Group. Organic geochemical study of the cherts shows that the organic precursors intimately associated with gold are marine bacteria and algae. The gold content in chert,is positively correlated with the amount of bacterial and algal microfossils, and simulation experiments on biomineralization of modern bacteria and algae indicate that bacteria and algae played an important role in the formation of the La' erma gold deposit.  相似文献   

20.
An intriguing example of chert–graywacke olistostrome is exceptionally well preserved within the late Neoproterozoic to early Cambrian Blovice accretionary wedge, Bohemian Massif. The olistostrome exhibits a block-in-matrix fabric defined by chert blocks isolated within the graywacke matrix. The major and trace element composition indicates two distinct types of cherts that formed either in a hydrothermal pelagic or hemipelagic environment supplied with a distal terrigenous material. The former is documented by elevated contents of Fe, Co, Zn, Ni, and Ti whereas the latter by high Al2O3 contents, relatively lower LaN/CeN ratios, and higher Eu/Eu* and Ce/Ce* values. Based on these geochemical data integrated with field observations and detrital zircon U–Pb ages of the host graywackes (determined using laser ablation ICP-MS), a new model for the origin of chert–graywacke association is proposed. The cherts are interpreted as representing pelagic and hemipelagic members of the Ocean Plate Stratigraphy (OPS) that formed in a sedimentary basin, carried on top of a subducting plate towards the trench. While moving over the outer swell (rise), the chert basin was intensely fractured and disrupted into large blocks or slabs. Subsequent motion of the plate brought the blocks onto an outer trench slope where they became gravitationally unstable to slide down and mix in the trench with distal, ca. 580–570 Ma turbidites derived from the overriding plate. Finally, this chert–graywacke olistostrome was covered by younger, ca. 560–547 Ma trench-fill turbidites (devoid of chert blocks) and accreted to the accretionary wedge toe, deformed, buried, and exhumed back to the wedge surface. We propose that such an olistostrome composed of pelagic/hemipelagic chert blocks and terrigenous, arc-derived graywacke matrix represents a rarely documented case of submarine, outer trench slope mass-wasting deposits and may be considered a new type of subduction-related mélanges. We coin the term outer-trench-slope mélange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号