首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ayako  Ozawa  Takahiro  Tagami  Masafumi  Sudo 《Island Arc》2004,13(3):466-472
Abstract   A recent K–Ar study elucidated that eruptive style in the eastern Izu peninsula changed from polygenetic to monogenetic volcano at 0.3–0.2 Ma. To narrow down the time of change, we determined 10 K–Ar ages on Togasayama Andesite of Amagi volcano, the youngest polygenetic volcano in the area, and Togasayama Monogenetic Volcano, one of the oldest monogenetic volcanoes in the area, which overlies a part of the Togasayama Andesite. Dating results showed that the Togasayama Andesite effused at least from 0.34 to 0.20 Ma, whereas the Togasayama Monogenetic Volcano erupted at 0.26–0.29 Ma, suggesting that the northern part of the Togasayama Andesite effused after the eruption of the Togasayama Monogenetic Volcano. Considering previous data, it is therefore inferred that change of eruptive style in the eastern Izu area occurred during the period 0.29–0.20 Ma, with considerable overlap of both polygenetic and monogenetic volcanism.  相似文献   

2.
Following the collision along the Bitlis–Zagros suture, a north–south convergence between the Arabian Platform and Laurasia has continued uninterrupted until the present. As a result, the continental crust has been shortened, thickened and consequently elevated to form the Turkish–Iranian high plateau. On the high plateau volcanic activity began during the Neogene, intensified during the late Miocene–Pliocene and continued until historical times. Large volcanic centres have been developed during the Quaternary which form significant peaks above the Turkish–Iranian high plateau. Among the Quaternary volcanoes, the major volcanic centres are Ararat, Tendürek, Suphan and Nemrut. Ararat (Ağri Daği) is the largest volcanic center and is a compound stratovolcano, consisting of Greater Ararat and lesser Ararat. The former represents the highest elevation of Anatolia reaching over 5000 m in height. Tendürek is a double-peaked shield volcano, which produced a voluminous amount of basalt lava as extensive pahoehoe, and aa flows. It has an ill-defined semi-caldera. Suphan is an isolated stratovolcano, capped by silicic dome. It represents the second highest topographic elevation in Anatolia, with a height of over 4000 m. A cluster of subsidiary cones and small domes surrounds the volcano. Nemrut is the largest member of a group of volcanoes, which trend north–south. It is a stratovolcano, having a well-defined collapse caldera and a caldera lake. Various volcanic ejecta have been extruded from these volcanic centres over the last 1 to 2 million years. The Quaternary volcanic centres, although temporally and spatially closely associated, display a wide range of lavas from basalt to rhyolite. The volcanoes have diverse compositional trends; Ararat is distinctly subalkaline, Suphan is mildly subalkaline, Nemrut is mildly alkaline and Tendürek is strongly alkaline. The major and trace element compositions together with the isotope ratios indicate that their magmas were generated from a heterogeneous mantle source. Each of the volcanic centres has undergone a partly different magmatic evolution.  相似文献   

3.
K-Ar ages were measured on Quaternary polygenetic and monogenetic volcanoes in the Higashi-Izu region, Izu peninsula, central Japan, using the unspiked sensitivity method with mass-fractionation correction procedure to investigate when eruptive style changed, whether a hiatus existed between the two types of eruptive activity, and the effect of tectonics on the change in eruptive style. The K-Ar ages range from 0.3-0.08 Ma for monogenetic volcanoes and from 1.8-0.2 Ma for polygenetic volcanoes; thus, no volcanic hiatus was found between the two types of eruptive styles. The transition from polygenetic to monogenetic volcanism occurred during a time of overlap between 0.3 and 0.2 Ma, after collision of the Izu block (the future Izu peninsula) with central Japan, estimated as 1.0-0.8 Ma by previous researchers. Based on the review of several tectonic models of the area, the measured age of transition in eruptive style is interpreted to correspond to the change in the stress field of the Higashi-Izu region.  相似文献   

4.
A new method for obtaining from volcanic surface features the orientations of the principal tectonic stresses is applied to Aleutian and Alaskan volcanoes. The underlying concept for this method is that flank eruptions for polygenetic volcanoes can be regarded as the result of a large-scale natural magmafracturing experiment. The method essentially relies on the recognition of the preferred orientation of radial and parallel dike swarms, primarily using the distribution of monogenetic craters including flank volcanoes. Since dikes tend to propagate in a direction normal to the minimum principal stress (T-axis), the method primarily yields the direction of the maximum horizontal compression (MHC) of regional origin. The direction of the MHC may correspond to either the maximum (P-axis) or intermediate (B-axis) principal stress.The direction of MHC obtained at 20 volcanoes in the Aleutian arc coincides well with the direction of convergence between the Pacific and North American plates. This result provides evidence that in the island arc the inferred direction of MHC is parallel to the maximum principal tectonic stress. In the back-arc region, general E-W trends of MHC are obtained from seven volcanic fields on islands on the Bering Sea shelf and the mainland coast of Alaska. These volcanic fields consist mostly of clusters of monogenetic volcanoes of alkali basalt. In the back-arc region, the trends of MHC may correspond to an E-W intermediate, a vertical maximum, and a N-S minimum principal stress.Implications for the tectonics of island arcs and back-arc regions are: (1) volcanic belts of some island arcs, including the Aleutian arc, are under compressional deviatoric stress in the direction of plate convergence. It is improbable that such arcs would split along the volcanic axis to form actively spreading marginal basins. (2) This compressional stress at the arc, probably generated by underthrusting, appears to be transmitted across the entire arc structure, but is apparently replaced within several hundred kilometers by a stress system characterized by horizontal extension (tensional deviatoric stress) in the back-arc region. (3) The volcanoes associated with these two stress systems differ in type (polygenetic vs. monogenetic) and in the chemistry of their magmas (andesitic vs. basaltic). These differences and the regional differences in orientation of the principal tectonic stresses suggest that the back-arc stress system has its own source at considerable depth beneath the crust.Lamont-Doherty Geological Observatory Contribution No. 2503.  相似文献   

5.
A method is proposed for determining the orientation of average tectonic stress, using surface features indicating radial dike patterns of volcanoes. The approximate pattern of radial dikes is revealed by the distribution of sites of flank eruptions on the slope of polygenetic volcanoes. This conclusion is deduced from the understanding that flank eruptions are caused by the magma that laterally offshoots from the main polygenetic pipe conduit and that conduits of flank volcanoes are most probably fissure-shaped because most of them are monogenetic volcanoes. Radial dikes are more likely to develop in a direction normal to the minimum horizontal compression of the regional stress. Thus, the distribution of flank craters will be elongate in the direction of the maximum horizontal compression of the regional stress.The regional stress can sometimes be ascribed solely to the effect of the gravity rather than tectonic stress. When a number of independent polygenetic volcanoes dotted with more than several flank volcanoes, are distributed in a belt or over a broad area, it is possible to distinguish the tectonic stress from the direct gravitational effect by the regional uniformity in orientation of the zones of flank volcanoes. When the maximum compression of tectonic stress is horizontal, the trends of the zones of flank eruptions on polygenetic volcanoes are more or less linear and parallel, and at a high angle to the trend of the main volcanic belt.  相似文献   

6.
The late Neogene to Quaternary volcanism in Eastern Anatolia is related to the Arabia–Eurasia convergence but a clear deformation pattern has not yet been established in this region. We have used the distribution and shape of volcanoes and fault geometry as indicators of the tectonic regime. Volcanic edifices and related faults were analyzed in vertical view using SAR–ERS, Spot images and a Digital Elevation Model (DEM). In several places, adjacent volcanoes that form linear clusters or elongated volcanoes are clearly rooted on vertical tension fractures. These are compatible with horizontal σ3 striking 90°N, associated with σ1 horizontal (strike-slip regime) or vertical (extensional regime). We mapped the recent faults that are directly associated to volcanoes. Volcanic vents are related to tail-crack, horsetail or releasing bend structures. In this work, it has been possible to define the ESE-striking, 270-km-long Tutak–Hamur–Çaldiran fault that forms a releasing bend testifying to right-lateral motion. Extension is well documented for few places but no recent fold has been observed. Since 8 Ma, the tectonic system is principally strike-slip. Most of the tension fractures being 2 to 10 km in length, so we infer that they affect only part of the crust. Most strike-slip fault zones are of several tens to a few hundred kilometers long and thus not of lithospheric scale. Therefore, the channels used by the magma to reach the surface are crustal structures.  相似文献   

7.
The variation in the activity patterns of the Chichinautzin volcanic rocks is discussed. This sequence of lavas and pyroclastic deposits is located in the central part of the Mexican Volcanic Belt, directly south of Mexico City, and is typical of its Quaternary monogenetic vulcanism. One-hundred and fourty-six volcanoes and their deposits covering 952 km2 were mapped. Cone density is 0.15 km2 with heights ranging from to 315 m and crater diameters from 50 to 750 m. Ratios of cone height/diameter decreased from 0.20 to 0.12 with age. Basal diameters varied from 0.1 km to 2 km. Lavas are mainly blocky andesites but some dacites and basalts were found. Lengths of flows range from 1.0 to 21.5 km with heights of 0.5 to 300 m and aspect rations of 21.4 to 350. Three types of volcanic structures are found in the area: scoria cones, lavas cones and thick flows lacking a cone. Pyroclastic deposits are basically Strombolian although some deposits were produced by more violent activity and lava cones seem to have formed by activity transitional to Hawaiian-type vulcanism. Therre is a dominant E-W trend shown mainly by the orientation of cone clusters. The Chichinautzin volcanic centers are compared to the monogenetic volcanoes of the Toluca and Paricutin areas which are similar.  相似文献   

8.
The Lower Pliocene volcanic rocks occurring in the Gölcük area of SW Turkey exhibit alkaline major element trends with a general potassic character. The development of volcanism can be divided into 2 major stages such as trachytic ancient lavas/domes and tephriphonolitic, trachyandesitic to trachytic Gölcük eruptions (ignimbrites, lava/dome extrusions, phreatomagmatic deposits, and finally, young domes). Volcanic rocks consist primarily of plagioclase, clinopyroxene (which ranges in composition from diopside to augite and are commonly zoned), biotite, and phlogopite. Amphibole phenocrysts are restricted to the pyroclastic deposits. Pseudoleucites are also seen only in the lava/dome extrusions. Oxides and apatites are common accessory phenocryst phases. As would be expected from their potassic–alkaline nature, the volcanic rocks of the Gölcük area contain high amounts of LILE (Ba, Sr, Rb and K), LREE, and Zr. Concentrations of compatible elements such as Cr, Ni and V are very low, possibly indicating fractionation of olivine and clinopyroxene. Correlation of SiO2, Rb/Sr and MgO with 87Sr/86Sr (0.703506–0.704142) exhibit an increasing trend in the direction of crustal contamination. However, the isotopic compositions of Sr are not as high to indicate a high level of crustal contamination. Geochemical data are consistent with the derivation of Gölcük volcanic rocks from a metasomatized and/or enriched lithospheric mantle source during crustal extension in the area. This metasomatism was probably occurred by fluids released from the northward subduction between African and Eurasian plates during Tertiary, as the Gölcük volcanic rocks display features of island-arc magmas with having high Ba/Nb (>28) ratios, and Nb and Ti depletions. Lower Pliocene volcanism in the Gölcük was response to extensional tectonics.  相似文献   

9.
Paricutin volcano is a monogenetic volcano whose birth and growth were observed by modern volcanological techniques. At the time of its birth in 1943, the seismic activity in central Mexico was mainly recorded by the Wiechert seismographs at the Tacubaya seismic station in Mexico City about 320 km east of the volcano area. In this paper we aim to find any characteristics of precursory earthquakes of the monogenetic eruption. Though there are limits in the available information, such as imprecise location of hypocenters and lack of earthquake data with magnitudes under 3.0.The available data show that the first precursory earthquake occurred on January 7, 1943, with a magnitude of 4.4. Subsequently, 21 earthquakes ranging from 3.2 to 4.5 in magnitude occurred before the outbreak of the eruption on February 20. The (S - P) durations of the precursory earthquakes do not show any systematic changes within the observational errors. The hypocenters were rather shallow and did not migrate.The precursory earthquakes had a characteristic tectonic signature, which was retained through the whole period of activity. However, the spectra of the P-waves of the Paricutin earthquakes show minor differences from those of tectonic earthquakes. This fact helped in the identification of Paricutin earthquakes. Except for the first shock, the maximum earthquake magnitudes show an increasing tendency with time towards the outbreak. The total seismic energy released by the precursory earthquakes amounted to 2 × 1019 ergs. Considering that statistically there is a threshold of cumulative seismic energy release (1017–18ergs) by precursory earthquakes in polygenetic volcanoes erupting after long quiescence, the above cumulative energy is exceptionally large. This suggests that a monogenetic volcano may need much more energy to clear the way of magma passage to the earth surface than a polygenetic one.The magma ascent before the outbreak of Paricutin volcano is interpretable by a model of magma-filled crack formation proposed by Weertman, based on seismic data and other field observations.  相似文献   

10.
Fifty-three major explosive eruptions on Iceland and Jan Mayen island were identified in 0–6-Ma-old sediments of the North Atlantic and Arctic oceans by the age and the chemical composition of silicic tephra. The depositional age of the tephra was estimated using the continuous record in sediment of paleomagnetic reversals for the last 6 Ma and paleoclimatic proxies (δ18O, ice-rafted debris) for the last 1 Ma. Major element and normative compositions of glasses were used to assign the sources of the tephra to the rift and off-rift volcanic zones in Iceland, and to the Jan Mayen volcanic system. The tholeiitic central volcanoes along the Iceland rift zones were steadily active with the longest interruption in activity recorded between 4 and 4.9 Ma. They were the source of at least 26 eruptions of dominant rhyolitic magma composition, including the late Pleistocene explosive eruption of Krafla volcano of the Eastern Rift Zone at about 201 ka. The central volcanoes along the off-rift volcanic zones in Iceland were the source of at least 19 eruptions of dominant alkali rhyolitic composition, with three distinct episodes recorded at 4.6–5.3, 3.5–3.6, and 0–1.8 Ma. The longest and last episode recorded 11 Pleistocene major events including the two explosive eruptions of Tindfjallajökull volcano (Thórsmörk, ca. 54.5 ka) and Katla volcano (Sólheimar, ca. 11.9 ka) of the Southeastern Transgressive Zone. Eight major explosive eruptions from the Jan Mayen volcanic system are recorded in terms of the distinctive grain-size, mineralogy and chemistry of the tephra. The tephra contain K-rich glasses (K2O/SiO2>0.06) ranging from trachytic to alkali rhyolitic composition. Their normative trends (Ab–Q–Or) and their depleted concentrations of Ba, Eu and heavy-REE reflect fractional crystallisation of K-feldspar, biotite and hornblende. In contrast, their enrichment in highly incompatible and water-mobile trace elements such as Rb, Th, Nb and Ta most likely reflect crustal contamination. One late Pleistocene tephra from Jan Mayen was recorded in the marine sequence. Its age, estimated between 617 and 620 ka, and its composition support a common source with the Borga pumice formation at Sør Jan in the south of the island.  相似文献   

11.
The volcano-stratigraphic and geochronologic data presented in this work show that the Tenerife central zone has been occupied during the last 3 Ma by shield or central composite volcanoes which reached more than 3000 m in height. The last volcanic system, the presently active Teide-Pico Viejo Complex began to form approximately 150 ka ago. The first Cañadas Edifice (CE) volcanic activity took place between about 3.5 Ma and 2.7 Ma. The CE-I is formed mainly by basalts, trachybasalts and trachytes. The remains of this phase outcrop in the Cañadas Wall (CW) sectors of La Angostura (3.5–3.0 Ma and 3.0–2.7 Ma), Boca de Tauce (3.0 Ma), and in the bottom of some external radial ravines (3.5 Ma). The position of its main emission center was located in the central part of the CC. The volcano could have reached 3000 m in height. This edifice underwent a partial destruction by failure and flank collapse, forming debris-avalanches during the 2.6–2.3 Ma period. The debris-avalanche deposits can be seen in the most distal zones in the N flank of the CE-I (Tigaiga Breccia). A new volcanic phase, whose deposits overlie the remains of CE-I and the former debris-avalanche deposits, constituted a new volcanic edifice, the CE-II. The dyke directions analysis and the morphological reconstruction suggest that the CE-II center was situated somewhat westward of the CE-I, reaching some 3200 m in height. The CE-II formations are well exposed on the CW, especially at the El Cedro (2.3–2.00 Ma) sector. They are also frequent in the S flank of the edifice (2.25–1.89 Ma) in Tejina (2.5–1.87 Ma) as well as in the Tigaiga massif to the N (2.23 Ma). During the last periods of activity of CE-II, important explosive eruptions took place forming ignimbrites, pyroclastic flows, and fall deposits of trachytic composition. Their ages vary between 1.5 and 1.6 Ma (Adeje ignimbrites, to the W). In the CW, the Upper Ucanca phonolitic Unit (1.4 Ma) could be the last main episode of the CE-II. Afterwards, the Cañadas III phase began. It is well represented in the CW sectors of Tigaiga (1.1 Ma–0.27 Ma), Las Pilas (1.03 Ma–0.78 Ma), Diego Hernández (0.54 Ma–0.17 Ma) and Guajara (1.1 Ma–0.7 Ma). The materials of this edifice are also found in the SE flank. These materials are trachybasaltic lava-flows and abundant phonolitic lava and pyroclastic flows (0.6 Ma–0.5 Ma) associated with abundant plinian falls. The CE-III was essentially built between 0.9 and 0.2 Ma, a period when the volcanic activity was also intense in the ‘Dorsal Edifice' situated in the easterly wing of Tenerife. The so called ‘valleys' of La Orotava and Güimar, transversals to the ridge axis, also formed during this period. In the central part of Tenerife, the CE-III completed its evolution with an explosive deposit resting on the top of the CE, for which ages from 0.173 to 0.13 Ma have been obtained. The CC age must be younger due to the fact that the present caldera scarp cuts these deposits. On the controversial origin of the CC (central vertical collapse vs. repeated flank failure and lateral collapse of mature volcanic edifices), the data discussed in this paper favor the second hypothesis. Clearly several debris-avalanche type events exist in the history of the volcano but most of the deposits are now under the sea. The caldera wall should represent the proximal scarps of the large slides whose intermediate scarps are covered by the more recent Teide-Pico Viejo volcanoes.  相似文献   

12.
The data on geology, petrography, mineralogy and petrochemistry for Kamen volcano in the Central Kamchatka Depression are presented. A study of the volcano??s rocks and comparison with rocks of neighboring active volcanoes of the Klyuchevskoy group allow the establishment of some relationships. The rocks and minerals of Kamen and Ploskie Sopky volcanoes show systematic differences in the chemistry of rocks and minerals such that they obviously could not be formed from the same primary melts. The rocks of dykes and Kamen stratovolcano on one hand and the rocks of the Klyuchevskoy Volcano on the other hand form differently directed trends on petrochemical diagrams and differ in their compositions of rock-forming minerals, such they also could not originate from the same primary melts. The lavas of the monogenetic cones of Kamen volcano and moderately magnesian basalts of Klyuchevskoy volcano are derivates of the same melts, i.e., the cones situated on the slopes of Kamen are cones of Klyuchevskoy. The rocks of Kamen and Bezymianny stratovolcanoes form a single narrow trend in all petrochemical diagrams in which the lavas of Bezymianny volcano show a silica-rich part, thus indicating a genetic relationship between these two volcanoes.  相似文献   

13.
Estimation of the time-dependent crustal movements of the zmit Earthquake   总被引:1,自引:0,他引:1  
The 17 August 1999 zmit earthquake significantly deformed the earth's crust in the Marmara Region, especially in the Gölcük–Sapanca Zone, Turkey. It broke a 150-km long segment of the northern branch of North Anatolian Fault Zone. The geodetically determined moment magnitude was Mw=7.5. Global Positioning System (GPS) sites, which are a small subset of the Marmara Continuous GPS Network (MAGNET), and survey sites in the region were studied to estimate coseismic and postseismic deformations, using different methodologies with linear, quadratic and exponential kinematic models. Six GPS epochs for these sites, which were carried out before and after the 17 August 1999 zmit earthquake, were used to define the kinematic models. The quadratic deformation model was also applied to determine the time-dependent crustal movement parameters (velocity and acceleration) of the sites, using the Kalman filter technique. In order to show the differences between the models, the estimated deformation fields on the last epoch were compared. In all models, as expected, the faults near the sites show large coseismic displacements with fault parallel direction, whereas the far sites show small coseismic displacements due to the effects of the zmit earthquake. Each kinematic model, fitted to the epochs after the earthquake, shows different behaviour. While the linear model shows insufficient results, the nonlinear models (quadratic and exponential) give the best fitted to the postseismic deformations. As a result of Kalman filter analysis, the fault near-sites shows significant velocities with fault parallel direction, whereas the far sites have insignificant velocities. All stations have insignificant accelerations in the last epoch.  相似文献   

14.
More than 40 late Cenozoic monogenetic volcanoes formed a volcanic belt striking NNW from Keluo, through Wudalianchi to Erkeshan in NE China. These volcanoes belong to a unified volcano system, namely Wudalianchi volcanic belt(WVB for short). Based on the volcanic evolution history and the nature of monogenetic volcanic system, we estimate that the volcanic system of WVB is still active and has the potential to erupt again. Hence, this paper studied the temporal-spatial distribution and volcanic eruption types to evaluate the possible eruption hazard types and areas of influence in the future. Volcanic field characteristics and K-Ar radiometric data suggest two episodes of volcanism in the WVB, the Pliocene to early Pleistocene volcanism(4.59~1.00MaBP)and the middle Pleistocene to Holocene volcanism(0.79Ma to now). The early episode volcanoes are distributed only in the north of WVB(mainly in Keluo volcanic field), featured by effusive eruption, and mainly formed monogenetic shield, whose base diameter is large and slope is gentle. However, the late episode eruptions occurred over the entire WVB. The explosive eruption in this stage formed numerous relatively intact scoria cones of explosive origin. Meanwhile the effusive eruption formed widely distributed lava flows. Both effusive eruption and explosive eruption are common in WVB. The effusive eruption formed monogenetic shields and lava flows. The resulting pahoehoe lava, aa lava and block lava appeared in WVB. There are three end-member types of explosive eruption driven by magmatic volatile. Violent Strombolian eruption has the highest degree of fragmentation and mass flux, characterized by eruption column. Strombolian eruption has the high degree of fragmentation, but low mass flux, featured by pulse eruption. Hawaiian eruption has low degree of fragmentation, but high in mass flux, generating large scoria cones. In addition, this paper for the first time found phreatomagmatic eruption in WVB, which formed tuff cone. Transitional eruptions are also common in WVB, which have certain characteristics among the end-member eruption types. Besides, certain volcanoes displayed multiple explosive eruption types during the whole eruption span. According to the volcanic temporal-spatial distribution and eruption characteristics in WVB, the potential volcanic hazards in future are constrained. It appears that the violent Strombolian and Strombolian eruption will not have significant impact on aviation safety in the vertical direction. In the radial direction, the ejected volcanic bomb can reach as far as 1km from the vents and the fallout tephra may disperse downwind over a distance ranging from 1~10km. The major hazard of Hawaiian eruption and effusive eruption comes from lava flow, and its migration distance may reach 3.0~13.5km for pahoehoe lava and 2.9~14.9km for aa lava. The base surge in phreatomagmatic eruption can reach a velocity of 200~400m/s, and the migration distance is around 10km. This is a big threat that people should pay more attention to and take precautions in advance. Besides, it is necessary to strengthen the real-time observation of the volcanoes in the WVB, especially those formed in the late episode as well as near the active fault.  相似文献   

15.
The Boconó fault system is a major NE-SW, right-lateral strike-slip tectonic feature whose trace extends northeastward for 500 km, from the Tachira depression at the Colombian-Venezuelan border (near the city of Cúcuta) to the town of Morón (located on the Caribbean coast of Venezuela), within the Venezuelan (or Mérida) Andes, and slightly oblique to its main axis. The Boconó fault is morphologically expressed by a continuous straight alignment of longitudinal valleys, linear depressions, pull-apart basins, fault scarps, trenches, sag-ponds, linear ridges and saddles that suggest that this major tectonic feature is active. Moreover, several destructive earthquakes (e.g., 1610, 1812, 1894, 1932 and 1950) affecting the Andean region have been usually attributed to it, without any geological confirmation. Therefore, exploratory trenching on this major fault, the only reliable means of corroborating seismotectonic associations, were carried out at two different sites: slightly north of La Grita and few kilometres north of Cordero (Fundo Mis Delirios); both villages being located between the cities of Mérida and San Cristobal, in the southern part of the Venezuelan Andes. Both trenches revealed that the Boconó fault system has been active during Holocene time. On the one hand, the La Grita trench has particularly demonstrated that: a) the 1610 and 1894 earthquakes occurred along the single trace of the Boconó fault in this region; b) the magnitude of those two earthquakes can be estimated between M = 7.1 and 7.3; c) their return period is about 300 yr; and d) the Holocene oblique-slip rate ranges between 4.3 and 6.1 mm/yr (5.2 ± 0.9 mm/yr) along this segment of the fault system. On the other hand, the Boconó fault at the Mis Delirios trench does not show any deformation associated with the 1610, 1894 or any other historical earthquakes. The complexity of the Boconó fault trace—three active strands have been mapped around the Mis Delrios trench—may account for the lack of such recent ruptures on the excavated strand. However, the occurrence of two to three previous Holocene earthquakes on this fault strand is recorded in the alluvial deposits dug at the trench site.  相似文献   

16.
We describe two small scoria cone volcanoes, Hidden Cone and Little Black Peak (ages between ~320–390 ka), in the Southwestern Nevada Volcanic Field and discuss their eruption mechanisms and inferences about their plumbing systems. Cone-forming pyroclastic deposits are consistent with eruptive styles ranging from Strombolian to violent Strombolian, and lavas emanated from near the bases of the cones. The volcanoes are monogenetic (rather than polycyclic, as allowed by previous geomorphic interpretations). Vents at each volcano appear to coincide with pre-existing normal faults, consistent with observations at older, deeply eroded volcanoes in the region. The existence of these two volcanoes on a topographically high area (particularly Hidden Cone) provides evidence for short feeder dike lengths (~500 m at the surface). We infer that this short length reflects the small length scale of the mantle source region that was tapped to feed each volcano. Editorial responsibility: J Stix  相似文献   

17.
Postglacial Icelandic shield volcanoes were formed in monogenetic eruptions mainly in the early Holocene epoch. Shield volcanoes vary in their cone morphology and in the areal extent of the associated lava flows. This paper presents the results of a study of 24 olivine tholeiite and 7 picrite basaltic shield volcanoes. For the olivine tholeiitic shields the median slope is 2.7°, the median height 60 m, the median diameter 3.6 km, the median aspect ratio (height against diameter) 0.019, and the median cone volume 0.2 km3. The picritic shield volcanoes are considerably steeper and smaller. A shield-volcano cone forms from successive lava lake overflows which are of shelly-type pahoehoe. A widespread apron surrounding the cone forms from tube-fed P-type pahoehoe. The slopes of the cones have (a) a planar or slightly convex form, (b) a concave form, or (c) a convex-concave form. A successive stage of a shield volcano is determined on the basis of cone morphology and lava assemblages. A shield-producing eruption has alternating episodes of lava lake overflows and tube-fed delivery to the distal parts of the flow field. In the late stages of eruption, the cone volume increases in response to the increased amount of rootless outpouring on the cone flanks. Normally, only a small percentage of the total erupted volume of a shield volcano, sometimes as little as 1–3%, is in the shield volcano cone itself, the main volume being in the apron of the shield.  相似文献   

18.
19.
In Anatolia (Turkey), extensive calc-alkaline volcanism has developed along discontinuous provinces from Neogene to Quaternary times as a consequence of plate convergence and continental collision. In the Nevsehir plateau, which is located in the Central Anatolian Volcanic Province, volcanism consists of numerous monogenetic centres, several large stratovolcanoes and an extensive, mainly Neogene, rhyolitic ignimbrite field. Vent and caldera locations for the Neogene ignimbrites were not well known based on previous studies.In the Neogene ignimbrite sequence of the Nevsehir plateau, we have identified an old group of ignimbrites (Kavak ignimbrites) followed by five major ignimbrite units (Zelve, Sarimaden Tepe, Cemilköy, Gördeles, Kizilkaya) and two smaller, less extensive ones (Tahar, Sofular). Other ignimbrite units at the margin of the plateau occur as outliers of larger ignimbrites whose main distributions are beyond the plateau. Excellent exposure and physical continuity of the units over large areas have allowed establishment of the stratigraphic succession of the ignimbrites as, from bottom to top: Kavak, Zelve, Sarimaden Tepe, Cemilköy, Tahar, Gördeles, Sofular, Kizilkaya. Our stratigraphic scheme refines previous ones by the identification of the Zelve ignimbrite and the correlation of the previously defined ‘Akköy’ ignimbrite with the Sarimaden Tepe ignimbrite. Correlations of distant ignimbrite remnants have been achieved by using a combination a field criteria: (1) sedimentological characterisitics; (2) phenocryst assemblage; (3) pumice vesiculation texture; (4) presence and characteristics of associated plinian fallout deposits; and (5) lithic types. The correlations significantly enlarge the estimates of the original extent and volume of most ignimbrites: volumes range between 80 km3 and 300 km3 for the major ignimbrites, corresponding to 2500–10,000 km3 in areal extent.The major ignimbrites of the Nevsehir plateau have an inferred source area in the Derinkuyu tectonic basin which extends mainly between Nevsehir and the Melendiz Dag volcanic complex. The Kavak ignimbrites and the Zelve ignimbrite have inferred sources located between Nevsehir and Derinkuyu, coincident with a negative gravity anomaly. The younger ignimbrites (Sarimaden Tepe, Cemilköy, Gördeles, Kizilkaya) have inferred sources clustered to the south between the Erdas Dag and the Melendiz Dag volcanic complex. We found evidence of collapse structures on the northern and southern flanks of the Erdas Dag volcanic massif, and of a large updoming structure in the Sahinkalesi Tepe massif. The present-day Derinkuyu tectonic basin is mostly covered with Quaternary sediments and volcanics. The fault system which bounds the basin to the east provides evidence that the ignimbrite volcanism and inferred caldera formation took place in a locally extensional environment while the basin was already subsiding. Drilling and geophysical prospecting are necessary to decipher in detail the presently unknown internal structure of the basin and the inferred, probably coalesced or nested, calderas within it.  相似文献   

20.
The Igwisi Hills volcanoes (IHV), Tanzania, are unique and important in preserving extra-crater lavas and pyroclastic edifices. They provide critical insights into the eruptive behaviour of kimberlite magmas that are not available at other known kimberlite volcanoes. Cosmogenic 3He dating of olivine crystals from IHV lavas and palaeomagnetic analyses indicates that they are Upper Pleistocene to Holocene in age. This makes them the youngest known kimberlite bodies on Earth by >30?Ma and may indicate a new phase of kimberlite volcanism on the Tanzania craton. Geological mapping, Global Positioning System surveying and field investigations reveal that each volcano comprises partially eroded pyroclastic edifices, craters and lavas. The volcanoes stand <40?m above the surrounding ground and are comparable in size to small monogenetic basaltic volcanoes. Pyroclastic cones consist of diffusely layered pyroclastic fall deposits comprising scoriaceous, pelletal and dense juvenile pyroclasts. Pyroclasts are similar to those documented in many ancient kimberlite pipes, indicating overlap in magma fragmentation dynamics between the Igwisi eruptions and other kimberlite eruptions. Characteristics of the pyroclastic cone deposits, including an absence of ballistic clasts and dominantly poorly vesicular scoria lapillistones and lapilli tuffs, indicate relatively weak explosive activity. Lava flow features indicate unexpectedly high viscosities (estimated at >102 to 106?Pa?s) for kimberlite, attributed to degassing and in-vent cooling. Each volcano is inferred to be the result of a small-volume, short-lived (days to weeks) monogenetic eruption. The eruptive processes of each Igwisi volcano were broadly similar and developed through three phases: (1) fallout of lithic-bearing pyroclastic rocks during explosive excavation of craters and conduits; (2) fallout of juvenile lapilli from unsteady eruption columns and the construction of pyroclastic edifices around the vent; and (3) effusion of degassed viscous magma as lava flows. These processes are similar to those observed for other small-volume monogenetic eruptions (e.g. of basaltic magma).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号