首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
It has been controversial whether the flare-associated hard X-ray bursts are thermal emission or non-thermal emission. Another controversial point is whether or not the associated microwave impulsive burst originates from the common electrons emitting the hard X-ray burst.It is shown in this paper that both the thermal and non-thermal bremsstrahlung should be taken into account in the quantitative explanation of the time characteristics of the hard X-ray bursts observed so far in the photon energy range of 10–150 keV. It is emphasized that the non-thermal electrons emitting the hard X-rays and those emitting the microwave impulsive burst are not common. The model is as follows, which is also consistent with the radio observations.At the explosive phase of the flare a hot coronal condensation is made, its temperature is generally 107 to 108K, the number density is about 1010 cm–3 and the total volume is of the order of 1029 cm3. A small fraction, 10–3–10–4, of the thermal electrons is accelerated to have power law distribution. Both the non-thermal and thermal electrons in the sporadic condensation contribute to the X-ray bursts above 10 keV as the bremsstrahlung. Fast decay of the harder X-rays (say, above 20 keV) for a few minutes is attributed to the decay of non-thermal electrons due to collisions with thermal electrons in the hot condensation. Slower decay of the softer X-rays including around 10 keV is attributed to the contribution of thermal component.The summary of this paper was presented at the Symposium on Solar Flares and Space Research, COSPAR, Tokyo, May, 1968.  相似文献   

2.
A numerical simulation has been made for the dynamics of non-thermal electrons (> 10keV) injected with spatial, temporal and velocity distributions into a model coronal loop. The time variations of the spatial intensity distribution and the spectrum for the expected hard X-rays are computed for many models in order to find the important physical parameters for those characteristics.The most important one is the column density of plasma, CD, along the loop. If CD is smaller than 1020 cm–2, the expected X-rays behave like the solar impulsive hard X-ray bursts, that is the spatial maximum of X-rays shifts to the top of the loop in the later phase of the burst accompanying a spectral softening. On the other hand, if CD is greater than this value, quasi-steady decay appears in the later phase. In this case the intensity distribution of X-rays above about 20 keV along the loop shows a broad maximum away from the loop top giving an extended spatial distribution of hard X-rays, and spectral hardness is kept constant. These characteristics are similar to the solar gradual hard X-ray bursts (the so-called extended burst which is not a hot thermal gradual burst).  相似文献   

3.
Simultaneous X-ray images in hard (20–40 keV) and softer (6.5–15 keV) energy ranges were obtained with the hard X-ray telescope aboard the Hinotori spacecraft of an impulsive solar X-ray burst associated with a flare near the solar west limb.The burst was composed of an impulsive component with a hard spectrum and a thermal component with a peak temperature of 2.8 × 107 K. For about one minute, the impulsive component was predominant even in the softer energy range.The hard X-ray image for the impulsive component is an extended single source elongated along the solar limb, rather steady and extends from the two-ribbon H flare up to 104 km above the limb. The centroid of this source image is located about 10 (7 × 103 km) ± 5 above the neutral line. The corresponding image observed at the softer X-rays is compact and located near the centroid of the hard X-ray image.The source for the thermal component observed in the later phase at the softer X-rays is a compact single source, and it shows a gradual rising motion towards the later phase.  相似文献   

4.
S. W. Kahler 《Solar physics》1984,90(1):133-138
In the second phase acceleration process the close time coincidence between the gradual hard X-ray burst and the type II shock wave is presumed due to shock acceleration of the electrons producing the gradual phase burst. We point out that recent studies of gradual hard X-ray bursts place the source heights well below the heights of 2–10 × 105 km traversed by the shock. Gradual phase energetic electrons therefore cannot be accelerated in the shock but must be produced elsewhere. We propose the loop systems of long decay X-ray events (LDEs) as the sites of the gradual phase electron production.  相似文献   

5.
The UCSD solar X-ray instrument on the OSO-7 satellite observes X-ray bursts in the 2–300 keV range with 10.24 s time resolution. Spectra obtained from the proportional counter and scintillation counter are analyzed for the event of November 16, 1971, at 0519 UT in terms of thermal (exponential spectrum) and non-thermal (power law) components. The energy content of the approximately 20 × 106K thermal plasma increased with the 60 s duration hard X-ray burst which entirely preceded the 5 keV soft X-ray maximum. If the hard X-rays arise by thick target bremsstrahlung, the nonthermal electrons above 10 keV have sufficient energy to heat the thermally emitting plasma. In the thin target case the collisional energy transfer from non-thermal electrons suffices if the power law electron spectrum is extrapolated below 10 keV, or if the ambient plasma density exceeds 4 × 1010 cm–3.Formerly at UCSD.  相似文献   

6.
T. Takakura 《Solar physics》1984,91(2):311-324
In some gradual hard X-ray bursts with high intensity, hard X-ray source (15–40 keV) is steadily located in the corona along with softer X-ray source (5–10 keV).Two stationary models, high density and high temperature models, are proposed to solve the difficult problem of confinement of hot (or nonthermal) plasma in the direction of the magnetic field along the loops in the corona. In both models, an essential point is that the effective X-ray source is composed of fine dense filamentary loops imbeded in a larger rarefied coronal loop, and the electron number density in the filaments is so high as 1011–1012 cm-3. If the density is so high heat conduction can be as reasonably small as of the order of 1027 erg s -1 for the given emission measures of observed X-rays, since the required cross-sectional area is small and also classical conduction is valid. Collisional confinement of thermal tail, and nonthermal electrons if any, up to 50–60 keV in the filaments is also possible, so that the hard X-ray images can be loop like structure instead of double source (foot points).High density model is applicable to the coronal filamentary loops with temperature T m < 5 × 107 K at the loop summit. The heat flow from the summit downwards is lost almost completely by the radiation from the loop during the conduction to the foot points. A continuous energy release is assumed near the summit to maintain the stationary temperature T m, and pressure balance is maintained along the loop. In this model, the number density at the summit is given by n m - 106 T m 2 /sm, where s m is the length of the loop from the summit to the foot point, and the distribution of temperature and density along the loop are given by T = T m(s/sm)1/3 and n = n m(s/sm)-1/3, respectively.High temperature model is applicable to the filamentary loops with higher temperature up to about 108.5 K and comparatively lower number density as 1011 cm-3 for the requirement of magnetic confinement of the hot plasma in radial direction. The radiation from the loop is negligibly small in this model so that the heat flux is nearly conserved down to the foot points. In this case, temperature gradient is smaller than that of the high density model, depending on the tapering of the magnetic bottle.In both models, the differential emission measure is maximum at the highest temperature T m and the brightness distribution along the loop shows a maximum around the summit of the loop if some magnetic tapering is taken into account.  相似文献   

7.
The 2B/X2.8 double-ribbon flare of 30 March, 1982 is investigated using H, white light, X-rays, and microwaves. The X-ray burst seems to consist of two components, i.e., an impulsive component showing a long chain of peaks and a thermal component (T 2 × 107 K).In the early phase, the source images for the impulsive component were available simultaneously at soft (7–14 keV) and hard (20–40 keV) X-rays. Both sources are elongated along a neutral line. The core of the source for the hard X-rays is located at one end which seems to be a footpoint (or a leg) of a loop or arcade, while the core for the soft X-rays is located at the center of the elongated source which would be the center of the loop. The core for the hard X-rays shifted to this center in the main and later phase, accompanied by decrease in the source size in the later phase.A peak of one-directional intensity distribution at 35 GHz always lies on the core of the hard X-ray source, showing a shift of the position synchronous with the hard X-ray core. This may imply a common source for the radio waves and the hard X-rays.The source of the thermal component observed at the soft X-rays (7–14 keV) after the early phase covers a whole H patches. This may imply a physical relation between the thermal X-ray loops and the H brightening.  相似文献   

8.
R. P. Lin 《Solar physics》1982,113(1-2):217-220
We present observations of an intense solar flare hard X-ray burst on 1980 June 27, made with a balloon-borne array of liquid nitrogen-cooled germanium detectors which provided unprecedented spectral resolution (1 keV FWHM). The hard X-ray spectra throughout the impulsive phase burst fitted well to a double power-law form, and emission from an isothermal 108–109K plasma can be specifically excluded. The temporal variations of the spectrum indicate that the hard X-ray burst is made up of two superposed components: individual spikes lasting 3–15 s, whch have a hard spectrum and a break energy of 30–65 keV; and a slowly varying component characterized by a soft spectrum with a constant low-energy slope and a break energy which increases from 25 keV to 100 keV through the event. The double power-law shape indicates that acceleration by DC electric fields parallel to the magnetic field, similar to that occurring in the Earth's auroral zone, may be the source of the energetic electrons which produce the hard X-ray emission. The total potential drop required for flares is typically 102 kV compared to 10 kV for auroral substorms.  相似文献   

9.
Due to the relatively high stream densities involved, collective interactions with the ambient plasma are likely to be important for the electrons producing solar hard X-ray bursts. In thick- and thin-target bremsstrahlung models the most relevant process is limitation of the invoked electron beams by ion sound wave generation in the neutralizing reverse current established in the atmosphere. For the thick target model it is shown that typical electron fluxes are near the maximum permitted by stability of the reverse current so that ion-sound wave generation may be the process which limits the electron injection rate. On the other hand the chromospheric reverse current is sufficient to supply the large total number of electrons which have to be accelerated in the corona. For the thin target the low density of the corona severely limits the possible reverse current so that the maximum upward flux of fast electrons is probably much too small to explain X-ray bursts but compatible with observations of interplanetary electrons.A distinct class of model postulates a small number of electrons confined by resonant scattering in a dense coronal slab surrounding a current sheet with continuous stochastic acceleration offsetting collisional losses. The energetic aspects of such a situation described by Hoyng (1975) are developed here by addition of equations describing the slab geometry in terms of electron diffusion by whistler scattering and of the collisional damping of the accelerating Langmuir waves. Solution of these equations results in values for the fieldB(70–350 G), densityn 0(2–5 × 1012 cm –3), slab dimensions (1018 km2 × 0.3–3 km) and relative Langmuir energy density (10–3 – 10–2) required to produce the observed range of bursts. It is pointed out, however, that there may be no real gain in electron number requirements since the fast electrons in the emitting slab would be constantly swept out along with the frozen-in plasma as dissipation proceeds so that a large total number of electrons is still required. It could in fact be that just such a coronal region is the injection mechanism for the thick-target model.On leave from Department of Astronomy, University of Glasgow, Scotland.  相似文献   

10.
Huang  G.L.  Wu  H.A.  Grechnev  V.V.  Sych  R.A.  Altyntsev  A.T. 《Solar physics》2003,213(2):341-358
A solar radio burst on 25 August 1999 with fine structures (FS) at 4.5–7.5 GHz is studied in this paper. The FS started about one minute prior to the main burst. The maximum emission took place at 4–5 GHz for the FS, and at 10–11 GHz for the main burst, respectively. The time profiles at 4.5–7.5 GHz coincide very well with those of hard X-rays (from 25 keV to >300 keV) in both the main burst and the FS, which shows that the same population of accelerated electrons is responsible for both the microwave and hard X-ray bursts. The source of FS is 20 arc sec away from the main source close to a compact dipolar magnetic field, which is confirmed by different time and polarization profiles in the FS and main sources. It is interesting that the FS at 4.5–7.5 GHz are associated with a series of twisted magnetic loops or ropes, which may be modulated by Alfvén waves with a period of 1 s and a spatial wavelength of 103 km in respect to the typical Alfvén velocity of 103 km s–1 in corona. These magnetic ropes may be rooted in the dipole site, which extended into the corona during the event and retracted after the event. Therefore, the FS in this event may show an important signature or precursor for energy release. The magnetic reconnection may be triggered by the interaction of the magnetic ropes at the height corresponding to 5–6 GHz, followed by cascaded energy release close to the foot-point of the magnetic ropes.  相似文献   

11.
An impulsive burst of 100–400 keV solar X-rays associated with a small solar flare was observed on October 10, 1970 with a large area scintillator aboard a balloon floating at an altitude of 4.2 g cm-2 above the Earth's surface. The X-ray burst was also observed simultaneously in 10–80 keV range by the OGO-5 satellite and in 8–20 Å range by the SOLRAD-9 satellite. The impulsive X-ray emission reached its maximum at 1643 UT at which time the differential photon spectrum in 20–80 keV range was of the form 2.3 × 104 E -3.2 photons cm-2 s-1 keV-1 at 1 AU. The event is attributed to a H-subflare located approximately at S13, E88 on the solar disc. The spectral characteristics of this event are examined in the light of the earlier X-ray observations of small solar flares.  相似文献   

12.
R. Snijders 《Solar physics》1969,6(2):290-293
According to Snijders (1968) the decay profile of an X-ray burst determines the effective temperature describing the distribution of fast electrons in the emitting source. In this paper it is concluded that the observations of the hard X-ray burst of 7 July, 1966; 0038 UT are not in disagreement with the concept of thermal bremsstrahlung from electrons with a Maxwellian distribution of about 108 K. Some physical parameters of the source are determined. The magnetic field strength is found to be about 1200 gauss. The initial temperature kT 0 is approximately 40 keV.  相似文献   

13.
Gopalswamy  N.  Cyr  O.C. St.  Kaiser  M.L.  Yashiro  S. 《Solar physics》2001,203(1):149-163
We report on a coronal shock wave inferred from the metric type II burst of 13 January 1996. To identify the shock driver, we examined mass motions in the form of X-ray ejecta and white-light coronal mass ejections (CMEs). None of the ejections could be considered fast (> 400 km s–1) events. In white light, two CMEs occurred in quick succession, with the first one associated with X-ray ejecta near the solar surface. The second CME started at an unusually large height in the corona and carried a dark void in it. The first CME decelerated and stalled while the second one accelerated, both in the coronagraph field of view. We identify the X-ray ejecta to be the driver of the coronal shock inferred from metric type II burst. The shock speed reported in the Solar Geophysical Data (1000–2000 km s–1) seems to be extremely large compared to the speeds inferred from X-ray and white-light observations. We suggest that the MHD fast-mode speed in the inner corona could be low enough that the X-ray ejecta is supermagnetosonic and hence can drive a shock to produce the type II burst.  相似文献   

14.
The M7.7 solar flare of July 19, 2012, at 05:58 UT was observed with high spatial, temporal, and spectral resolutions in the hard X-ray and optical ranges. The flare occurred at the solar limb, which allowed us to see the relative positions of the coronal and chromospheric X-ray sources and to determine their spectra. To explain the observations of the coronal source and the chromospheric one unocculted by the solar limb, we apply an accurate analytical model for the kinetic behavior of accelerated electrons in a flare. We interpret the chromospheric hard X-ray source in the thick-target approximation with a reverse current and the coronal one in the thin-target approximation. Our estimates of the slopes of the hard X-ray spectra for both sources are consistent with the observations. However, the calculated intensity of the coronal source is lower than the observed one by several times. Allowance for the acceleration of fast electrons in a collapsing magnetic trap has enabled us to remove this contradiction. As a result of our modeling, we have estimated the flux density of the energy transferred by electrons with energies above 15 keV to be ~5 × 1010 erg cm?2 s?1, which exceeds the values typical of the thick-target model without a reverse current by a factor of ~5. To independently test the model, we have calculated the microwave spectrum in the range 1–50 GHz that corresponds to the available radio observations.  相似文献   

15.
We revisit the flare that occurred on 13 January 1992, which is now universally termed the “Masuda flare”. The new analysis is motivated not just by its uniqueness despite the increasing number of coronal observations in hard X-rays, but also by the improvement of Yohkoh hard X-ray image processing, which was achieved after the intensive investigations on this celebrated event. Using an uncertainty analysis, we show that the hard X-ray coronal source is located closer to the soft X-ray loop by about 5000 km (or 7 arcsec) in the re-calibrated Hard X-ray Telescope (HXT) images than in the original ones. Specifically, the centroid of the M1-band (23 – 33 keV) coronal source is above the maximum brightness of the Soft X-ray Telescope (SXT) loop by 5000±1000 km (9600 km in the original data) and above the apex of the SXT loop represented by the 30% brightness contour by 2000±1000 km (∼ 7000 km in the original data). The change is obviously significant, because most coronal sources are above the thermal loop by less than 6 arcsec. We suggest that this change may account for the discrepancy in the literature, i.e., the spectrum of the coronal emission was reported to be extremely hard below ∼ 20 keV in the pre-calibration investigations, whereas it was reported to be considerably softer in the literature after the re-calibration done by Sato, Kosugi, and Makishima (Pub. Astron. Soc. Japan 51, 127, 1999). Still, the coronal spectrum is flatter at lower energies than at higher energies, due to the lack of a similar, co-spatial source in the L-band (14 – 23 keV), for which a convincing explanation is absent.  相似文献   

16.
This study addresses the onset of coronal mass ejections. From examination of sensitive X-ray images from the Solar Maximum Mission around the projected onset time of coronal mass ejections we identify two important new features: (1) there is usually a weak, soft X-ray enhancement 15–30 min prior to the linearly extrapolated chromospheric departure time of the ejection; (2) this activity is generally from two widely separated ( 105 km) parts of the Sun. Possible physical mechanisms for these phenomena are examined and it is concluded that a plausible explanation is that the initial energy release is converted first into kinetic energy of suprathermal protons, 102–103 keV. The protons are trapped in a large magnetic loop which later breaks open as the mass ejection; Coulomb losses are the destabilizing agent but the mass ejection is probably magnetically driven. Protons that escape into the loss cone will impact the loop footpoints to heat the upper chromospheric material to a sufficiently high temperature to generate the weak soft X-ray emission. There will also be an H signature, and this is observed in a number of events. There is in general no radio emission or hard X-ray emission accompanying the soft X-ray precursor. When the coronal mass ejection is followed by a flare, then this is generally from a point close to, but not identical to, one of the points with the earlier soft X-ray enhancement.NCAR is sponsored by the National Science Foundation.  相似文献   

17.
A simple model is presented to account for theYohkoh flare observations of Feldmanet al. (1994), and Masuda (1994). Electrons accelerated by the flare are assumed to encounter the dense, small regions observed by Feldmanet al. at the tops of impulsively flaring coronal magnetic loops. The values of electron density and volume inferred by Feldmanet al. imply that these dense regions present an intermediate thick-thin target to the energised electrons. Specifically, they present a thick (thin) target to electrons with energy much less (greater) thanE c , where 15 keV <E c < 40 keV. The electrons are either stopped at the loop top or precipitate down the field lines of the loop to the footpoints. Collisional losses of the electrons at the loop top produce the heating observed by Feldmanet al. and also some hard X-rays. It is argued that this is the mechanism for the loop-top hard X-ray sources observed in limb flares by Masuda. Adopting a simple model for the energy losses of electrons traversing the dense region and the ambient loop plasma, hard X-ray spectra are derived for the loop-top source, the footpoint sources and the region between the loop top and footpoints. These spectra are compared with the observations of Masuda. The model spectra are found to qualitatively agree with the data, and in particular account for the observed steepening of the loop-top and footpoint spectra between 14 and 53 keV and the relative brightnesses of the loop-top and footpoint sources.  相似文献   

18.
Pohjolainen  S.  Valtaoja  E.  Urpo  S.  Aurass  H. 《Solar physics》1997,173(1):131-149
Two small radio flares following the great gamma-ray burst on 11 June 1991 are studied. We analyse the different association of emission features at microwaves, decimeter waves, and soft and hard X-rays for the events. The first flare has well-defined emission features in microwaves and soft and hard X-rays, and a faint decimetric signature well after the hard X-ray burst. It is not certain if the decimetric event is connected to the burst features. The second event is characterized by an almost simultaneous appearance of hard X-ray burst maxima and decimetric narrowband drift bursts, but soft X-ray emission is missing from the event. With the exception of the possibility that the soft X-ray emission is absorbed along the way, the following models can explain the reported differences in the second event: (1) Microwave emission in the second event is produced by 150 keV electrons spiraling in the magnetic field relatively low in the corona, while the hard X-ray emission is produced at the beginning of the burst near the loop top as thick-target emission. If the bulk of electrons entered the loop, the low-energy electrons would not be effectively mirrored and would eventually hit the footpoints and cause soft X-ray emission by evaporation, which was not observed. The collisions at the loop top would not produce observable plasma heating. The observed decimetric type III bursts could be created by plasma oscillations caused by electron beams traveling along the magnetic field lines at low coronal heights. (2) Microwave emission is caused by electrons with MeV energies trapped in the large magnetic loops, and the electrons are effectively mirrored from the loop footpoints. The hard X-ray emission can come both from the loop top and the loop footpoints as the accelerated lower energy electrons are not mirrored. The low-energy electrons are not, however, sufficient to create observable soft X-ray emission. The type III emission in this case could be formed either at low coronal heights or in local thick regions in the large loops, high in the corona.  相似文献   

19.
Lin  R. P. 《Solar physics》1987,113(1-2):217-220

We present observations of an intense solar flare hard X-ray burst on 1980 June 27, made with a balloon-borne array of liquid nitrogen-cooled germanium detectors which provided unprecedented spectral resolution (≲1 keV FWHM). The hard X-ray spectra throughout the impulsive phase burst fitted well to a double power-law form, and emission from an isothermal 108–109K plasma can be specifically excluded. The temporal variations of the spectrum indicate that the hard X-ray burst is made up of two superposed components: individual spikes lasting ∼3–15 s, whch have a hard spectrum and a break energy of 30–65 keV; and a slowly varying component characterized by a soft spectrum with a constant low-energy slope and a break energy which increases from 25 keV to ≳100 keV through the event. The double power-law shape indicates that acceleration by DC electric fields parallel to the magnetic field, similar to that occurring in the Earth's auroral zone, may be the source of the energetic electrons which produce the hard X-ray emission. The total potential drop required for flares is typically ∼102 kV compared to ∼10 kV for auroral substorms.

  相似文献   

20.
The impulsive phases of three flares that occurred on April 10, May 21, and November 5, 1980 are discussed. Observations were obtained with the Hard X-ray Imaging Spectrometer (HXIS) and other instruments aboard SMM, and have been supplemented with Hα data and magnetograms. The flares show hard X-ray brightenings (16–30 keV) at widely separated locations that spatially coincide with bright Hα patches. The bulk of the soft X-ray emission (3.5–5.5 keV) originates from in between the hard X-ray brightenings. The latter are located at different sides of the neutral line and start to brighten simultaneously to within the time resolution of HXIS. Concluded is that:
  1. The bright hard X-ray patches coincide with the footpoints of loops.
  2. The hard X-ray emission from the footpoints is most likely thick target emission from fast electrons moving downward into the dense chromosphere.
  3. The density of the loops along which the beam electrons propagate to the footpoints is restricted to a narrow range (109 < n < 2 × 1010 cm-3), determined by the instability threshold of the return current and the condition that the mean free path of the fast electrons should be larger than the length of the loop.
  4. For the November 5 flare it seems likely that the acceleration source is located at the merging point of two loops near one of the footpoints.
It is found that the total flare energy is always larger than the total energy residing in the beam electrons. However, it is also estimated that at the time of the peak of the impulsive hard X-ray emission a large fraction (at least 20%) of the dissipated flare power has to go into electron acceleration. The explanation of such a high acceleration efficiency remains a major theoretical problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号