首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Decapod crustaceans occupying seagrass, salt marsh edge, and oyster habitats within the St. Martins Aquatic Preserve along the central Gulf coast of Florida were quantitatively sampled using a 1-m2 throw trap during July–August 1999 and March–April 2000. Relative abundance and biomass were used as the primary measures to compare patterns of occupancy among the three habitat types. Representative assemblages of abundant and common species from each habitat were compared using Schoener's Percent Similarity Index (PSI). In all, 17,985 decapods were sampled, representing 14 families and 28 species. In the summer sampling period, mean decapod density did not differ between oyster and seagrass habitats, which both held greater densities of decapods than marsh-edge. In the spring sampling period oyster reef habitat supported greater mean decapod density than both seagrass and marsh-edge, which had similar densities of decapods. Habitat-specific comparisons of decapod density between the two sampling periods indicated no clear seasonal effect. In summer 1999, when seagrasses were well established, decapod biomass among the three habitats was not significantly different. During spring 2000, decapod biomass in oyster (41.40 gm−2) was greater than in marshedge (4.20 gm−2), but did not differ from that of seagrass (9.73 g m−2). There was no significant difference in decapod biomas between seagrass and marsh-edge habitats during the spring 2000 sampling period. The assemblage analysis using Schoener's PSI indicated that decapod assemblages associated with oyster were distinct from seagrass and marshedge habitats (which were similar). The results of this study suggest that in comparison to seagrass and marsh-edge habitats, oyster reef habitats and the distinct assemblage of decapod crustaceans that they support represent an ecologically important component of this estuarine system.  相似文献   

2.
Estuaries contain mosaic habitats which support fish across different life stages. Artificial reefs represent a form of habitat enhancement which can provide additional structure for fishes and improve fishing opportunities, but the role of artificial reefs within the broader estuarine seascape has not been extensively studied. We used a VEMCO Positioning System (VPS) to monitor the fine-scale movements of yellowfin bream (Acanthopagrus australis, referred to as Bream), an estuarine predator and important recreational species. Fish were implanted with acoustic tags with accelerometer sensors (to measure relative fish activity), and their movements monitored on an artificial reef and adjacent habitats. Elevated activity patterns during crepuscular periods indicated that foraging was likely occurring over a large seagrass bed adjacent to the artificial reef system. Alternatively, lower activity was observed when fish were on the artificial reef, which may reflect the role of this habitat as a refuge, or that alternative foraging strategies were being employed. All fish exhibited a high degree of fidelity to the artificial reef on which they were tagged, and there was minimal movement among other reef groups within the array. There was extensive overlap in space use contours for smaller fish on the seagrass edge, but no overlap for larger fish that also tended to forage further afield. These findings have implications for the way in which artificial reefs support fish production, especially the importance of connectivity with other key habitats within the estuarine seascape.  相似文献   

3.
Many studies compare utilization of different marine habitats by fish and decapod crustaceans; few compare multiple vegetated habitats, especially using the same sampling equipment. Fish and invertebrates in seagrass, mangrove, saltmarsh, and nonvegetated habitats were sampled during May–August (Austral winter) and December–January (Austral summer) in the Barker Inlet-Port River estuary, South Australia. Sampling was undertaken using pop nets in all habitats and seine nets in seagrass and nonvegetated areas. A total of 7,895 fish and invertebrates spanning 3 classes, 9 orders, and at least 23 families were collected. Only one fish species,Atherinosoma microstoma, was collected in all 4 habitats, 11 species were found in 3 habitats (mangroves, seagrass, and nonvegetated), and 13 species were only caught in seagrass and nonvegetated habitats. Seagrass generally supported the highest numbers of fish and invertebrates and had the greatest species richness. Saltmarsh was at the other extreme with 29 individuals caught from two species. Mangroves and nonvegetated habitats generally had more fish, invertebrates, and species than saltmarsh, but less than seagrass. Analyses of abundances of individual species generally showed an interaction between habitat and month indicating that the same patterns were not found through time in all habitats. All habitats supported distinct assemlages although seagrass and nonvegetated assemblages were similar in some months. The generality of these patterns requires further investigation at other estuaries. Loss of vegetated habitats, particularly seagrass, could result in loss of species richness and abundance, especially for organisms that were not found in other habitats. Although low abundances were found in saltmarsh and mangroves, species may use these habitats for varying reasons, such as spawning, and such use should not be ignored.  相似文献   

4.
The functional value of a restored estuarine wetland as a foraging area for juvenile chum salmon (Oncorhynchus keta) and fall chinook salmon (O. tshawytscha) was evaluated during the spring seaward migrations of each species in 1987 and 1988. During both years, fish foraged selectively. While temporarily residing in the restored wetland, both salmon selected primarily chironomid insects (midge larvae, pupae, and adults) over all other organisms considered available prey. A detritus-based food chain (detritus-chironomids-juvenile chum salmon or chinook salmon) suggests that the restored wetland provides productive foraging habitat for migrating juvenile chum and fall chinook salmon during their early residency in the estuary. However, the equivalency of foraging in restored or created estuarine wetlands compared to foraging in altered riverine or natural habitats remains untested.  相似文献   

5.
Oysters can create reefs that provide habitat for associated species resulting in elevated resident abundances, lower mortality rates, and increased growth and survivorship compared to other estuarine habitats. However, there is a need to quantify trophic relationships and transfer at created oyster reefs to provide a better understanding of their potential in creating suitable nekton habitat. Stable isotope analyses (δ13C and δ15N) were conducted to examine the organic matter sources and potential energy flow pathways at a created intertidal oyster (Crassostrea ariakensis; hereinafter, oyster) reef and adjacent salt marsh in the Yangtze River estuary, China. The δ13C values of most reef-associated species (22 of 37) were intermediate between those of suspended particle organic matter (POM) and benthic microalgae (BMI), indicating that both POM and BMI are the major organic matter sources at the created oyster reef. The sessile and motile macrofauna colonizing the reef make up the main prey of transient nekton (e.g., spotted sea bass, Asian paddle crab, and green mud crab), thus suggesting that the associated community was most important in supporting higher trophic levels as opposed to the direct dietary subsidy of oysters. The created oyster reef consistently supported higher trophic levels than the adjacent salt marsh habitat due to the dominance of secondary consumers. These results indicate that through the provision of habitat for associated species, created oyster reefs provide suitable habitat and support a higher average trophic level than adjacent salt marsh in the Yangtze River estuary.  相似文献   

6.
Oyster cultch was added to the lower intertidal marsh-sandflat fringe of three previously createdSpartina alterniflora salt marshes. Colonization of these created reefs by oysters and other select taxa was examined. Created reefs supported numerous oyster reef-associated faunas at equivalent or greater densities than adjacent natural reefs. Eastern oyster (Crassostrea virginica) settlement at one site of created reef exceeded that of the adjacent natural reefs within 9 mo of reef creation. After only 2 yr, harvestable-sizeC. virginica (>75 mm) were present in the created reefs along with substantial numbers ofC. virginica clusters. The created reefs also had a higher number of molluscan, fish, and decapod species than the adjacent natural reefs. After 2 yr the densities ofC. virginica, striped barnacle (Balanus amphitrite), scorched mussel (Brachidontes exustus), Atlantic ribbed mussel (Geukensia demissa), common mud crab (Panopeus herbstii), and flat mud crab (Eurypanopeus depressus) within the created reefs were equivalent to that of adjacent natural reefs. From these data it is evident that created oyster reefs can quickly acquire functional ecological attributes of their natural counterparts. Because the demand for oysters continues to increase in the face of dwindling natural resources, habitat creation techniques need to evolve and these approaches need to consider the ancillary ecological benefits reef creation may provide. Reef function as well as physical and ecological linkages of oyster reefs to other habitats (marsh, submerged aquatic vegetation, and bare bottom) should be considered when reefs are created in order to provide the best use of resources to maintain the integrity of estuarine systems.  相似文献   

7.
The objective of this study was to determine if exploitative competition between between juvenile Chinook salmon (Oncorhynchus tshawytscha) and threespine stickleback (Gasterosteus aculeatus) reduces the foraging opportunity of juvenile Chinook salmon in tidal channels of the Columbia River estuary. We sampled Chinook salmon and stickleback diets monthly and over a diel cycle in spatially distinct emergent marshes of the Columbia River estuary. Diets of the two fish species did not differ among marsh systems, but both fish species exhibited diel and seasonal differences in diet composition. Diet overlap between the two fish species was greatest in March and June. Exploitative competition was unlikely based on a comparison between consumption rates and estimated invertebrate production.  相似文献   

8.
The tidally inundated marsh surface is an importnat site for energy exchanges for many resident and transient species. In many areas along the East Coast of the U.S. the dominant vegetation,Spartina alterniflora, has been replaced by the common reed (Phragmites australis). This shift has caused concern about the impact ofPhragmites on marsh fauna but research in this area has been limited. During 1997 and 1998, we examined the effect ofPhragmites on fish and decapod crustacean use of the marsh surface in the brackish water reaches of the Mullica River, in southern New Jersey, U.S. Fish and decapod crustaceans were sampled with an array of shallow pit traps (rectangular glass dishes, 27.5×17.5×3.7 cm) and with flumes (1.3 m wide×10 m long of 3.2-mm mesh). Fish (2–60 mm TL) dominated pit trap collections withFundulus heteroclitus andFundulus luciae significantly more abundant atSpartina sites.Fundulus heteroclitus was also the dominant fish (15–275 mm TL) collected in flumes but collections with this gear, including a number of species not collected in pit traps, showed no distinct preferences for different marsh vegetation types. Decapod crustaceans (1–48 mm CW) collected in pit traps were generally less abundant than fishes withCallinectes sapidus andPalaemonetes spp. most abundant inSpartina, whileRhithropanopeus harrisii was most abundant inPhragmites. The same decapod crustacean species (2–186 mm CW) dominanted the flume collections and, similar to the pattern of fish collected by the flumes, there were no distinct habitat preferences for different marsh vegetation types. As a result of these observations, with different sampling techniques, it appears there is an overall negative effect ofPhragmites on larval and small juvenile fish but less or no effect on larger fish and decapods crustaceans.  相似文献   

9.
Predation is often the largest source of mortality for juvenile fish and the risk of predation can influence growth rates by either forcing young fish into suboptimal foraging habitats or reducing the amount of time spent foraging. We used field experiments to test effects of predation risk by gulf flounder (Paralichthys albigutta) on juvenile pinfish (Lagodon rhomboides) growth rates by measuring changes in length and weight in three habitats (sand, low density, and high density shoalgrass,Halodule wrightii) in Perdido Key, Florida. Benthic cores, seagrass samples, and stomach contents were also analyzed to examine differences in pinfish prey densities, grass densities and epiphyte coverage, and diet, respectively, among habitat and predator treatments. Both length and weight growth rates were determined and showed similar results. We found that pinfish inhabiting seagrass habitats, particularly low densityHalodule displayed the fastest growth rates in the beginning of the growing season (June) and those in sand had the fastest growth rates later in the season (October). These differences in growth rates did not appear to be influenced by densities of pinfish prey items since the treatment having the highest density of prey was not that in which growth rates were the greatest. This seasonal shift may be attributed to increasing pinfish size. Larger pinfish in October may have been inhibited by high density grass, reducing foraging efficiency. These results demonstrate how occupying a suboptimal foraging habitat can affect juvenile pinfish growth rates. Predation risk significantly reduced length and weight growth rates of pinfish in June, but not October. This suggests that smaller pinfish early in the season traded time spent foraging for predator avoidance, while larger pinfish were likely to have reached a size refuge from predation. This study demonstrates that nonlethal effects from predation are also important influences on juvenile pinfish.  相似文献   

10.
In Grand Bay National Estuarine Research Reserve (Grand Bay NERR), Mississippi, we used quantitative drop sampling in three common shallow estuarine habitats—low profile oyster reef (oyster), vegetated marsh edge (VME), and nonvegetated bottom (NVB)—to address the dearth in research comparing nekton utilization of oyster relative to adjacent habitats. The three habitats were sampled at two distinct marsh complexes within Grand Bay NERR. We collected a total of 633 individual fishes representing 41 taxa in 22 families. The most diverse fish family was Gobiidae (seven species) followed by Blennidae and Poeciliidae (three species each). We collected a total of 2,734 invertebrates representing 24 taxa in 11 families. The most diverse invertebrate family was Xanthidae (six species) followed by Palaemonidae (five species). We used ordination techniques to examine variation in species relative abundance among habitats, seasons, and sampling areas, and to identify environmental gradients correlated with species relative abundances. Our resulted indicated that oyster provided a similarly complex and important function as the adjacent VME. We documented three basic trends related to the importance of oyster and VME habitats: 1) Oyster and VME provide habitat for significantly more species relative to NVB, 2) Oyster and VME provide habitat for rare species, and 3) Several species collected across multiple habitats occurred at higher abundances in oyster or VME habitat. We also found that salinity, temperature, and depth were associated with seasonal and spatial shifts in nekton communities. Lastly, we found that the relative location of the two marsh complexes we studied within the context of the whole estuary may also explain some of the temporal and spatial differences in communities. We conclude that oyster habitat supported a temporally diverse and spatially distinct nekton community and deserves further attention in research and estuarine conservation efforts.  相似文献   

11.
Seasonal and interannual patterns in the spatial distribution of bluefish (Pomatomus saltatrix) within a Middle Atlantic Bight estuary were examined using multipanel gillnets fished biweekly at 14 fixeds stations in the Sandy Hook Bay-N avesink River estuary during May–November of 1998 and 1999. To characterize habitats along the estuarine gradient, we measured several abiotic and biotic variables concurrently with gillnet sampling. Juvenile (age-0 and age-1+) bluefish were captured regularly during both years along with large numbers of Atlantic menhaden (Brevoortia tyrannus), which were confirmed by diet analyses to be bluefish’s primary forage species. The date of initial appearance of age-0 bluefish and menhaden in the estuary varied between years and may have been related to interannual differences in seawater temperatures on the continental shelf during spring. Delayed estuarine arrival of prey fishes may have contributed to variability in bluefish diets between years. Within the estuary, bluefish spatial distribution were consistent across seasons and years: bluefish were most common in areas associated with high concentrations of suspended materials and the presence of menhaden. Community analyses also indicated habitat overlap between bluefish and menhaden. Spatial distribution patterns revealed the consistent occurrence of piscivorous bluefish in shallow estuarine habitats that retained suspended materials and aggregated prey fishes. Foraging success of bluefish and other estuarine piscivores may be closely linked with the availability of these productive habitat, highlighting the need for future study of biological interactions and the governing physical processes.  相似文献   

12.
Small, abundant elasmobranchs use shallow marine areas (<20 m depth) of the US Middle Atlantic coast as nurseries and adult foraging habitat, an area also used by a diverse assemblage of economically important juvenile and adult teleost species. Specimens of three small elasmobranch species (smooth dogfish Mustelus canis, clearnose skate Raja eglanteria, and bullnose ray Myliobatis freminvillii) were collected in August 2007 and 2008 from a study area of ∼150 km2, extending 22 km south from Ocean City, Maryland, USA (38° 19′ N) and offshore from 5- to 20-m depth. Stomach contents indicated that fish were part of the diets of smooth dogfish and clearnose skate at a level comparable with sympatric piscivorous teleosts. However, stable isotope data suggest that piscivory is likely an opportunistic foraging behavior in this habitat. Studied elasmobranchs were secondary-tertiary consumers with diets composed primarily of decapod crustaceans, fish, and mollusks. There was significant overlap in diet composition, spatial distribution, and diel stomach fullness patterns between clearnose skate, southern kingfish Menticirrhus americanus (teleost) and, to a lesser extent, smooth dogfish. Despite this evidence for piscivory, their relatively low densities suggest that predation by these elasmobranchs is unlikely to affect teleost populations in shallow coastal ocean habitats. If shared prey were to become scarce, then competitive interactions are possible.  相似文献   

13.
We evaluated nekton habitat quality at 5 shallow-water sites in 2 Rhode Island systems by comparing nekton densities and biomass, number of species, prey availability and feeding, and abundance of winter flounderPseudopleuronectes americanus. Nekton density and biomass were compared with a 1.75-m2 drop ring at 3 sites (marsh, intertidal, and subtidal) in Coggeshall Cove in Narragansett Bay and two subtidal sites (eelgrass and macroalgae) in Ninigret Pond, a coastal lagoon. We collected benthic core samples and examined nekton stomach contents in Coggeshall Cove. We identified 16 species of fish, 16 species of crabs, and 3 species of shrimp in our drop ring samples. A multivariate analysis of variance indicated differences in total nekton, invertebrates, fish, and winter flounder across the five sites. Relative abundance of benthic invertebrate taxa did not match relative abundance of prey taxa identified in the stomachs. Nonmetric multidimensional scaling plots showed groupings in nekton and benthic invertebrate prey assemblages among subtidal, intertidal, and marsh sites in Coggeshall Cove. Stepwise multiple regression indicated that biomass of macroalgae was the most important variable predicting abundance of nekton in Coggeshall Cove, followed by elevation and depth. In Rhode Island systems that do not experience chronic hypoxia, macroalgae adds structure to unvegetated areas and provides refuge for small nekton. All sites sampled were characterized by high abundance and diversity of nekton pointing to the importance of shallow inshore areas for production of fishes and decapods. Measurements of habitat quality should include assessment of the functional significance of a habitat (this can be done by comparing nekton numbers and biomass), some measure of habitat diversity, and a consideration of how habitat quality varies in time and space.  相似文献   

14.
Zooplankton are an important trophic link and a key food source for many larval fish species in estuarine ecosystems. The present study documents temporal and spatial zooplankton dynamics in Suisun Bay and the Sacramento–San Joaquin Delta—the landward portion of the San Francisco Estuary (California, USA)—over a 37-year period (1972–2008). The zooplankton community experienced major changes in species composition, largely associated with direct and indirect effects of introductions of non-native bivalve and zooplankton species. A major clam invasion and many subsequent changes in zooplankton abundance and composition coincided with an extended drought and accompanying low-flow/high-salinity conditions during 1987–1994. In the downstream mesohaline region, the historically abundant calanoid copepods and rotifers have declined significantly, but their biomass has been compensated to some extent by the introduced cyclopoid Limnothoina tetraspina. The more upstream estuary has also experienced long-term declining biomass trends, particularly of cladocerans and rotifers, although calanoid copepods have increased since the early 1990s due to the introduced Pseudodiaptomus spp. In addition, mysid biomass has dropped significantly throughout the estuary. Shifts in zooplankton species composition have also been accompanied by an observed decrease in mean zooplankton size and an inferred decrease in zooplankton food quality. These changes in the biomass, size, and possibly chemical composition of the zooplankton community imply major alterations in pelagic food web processes, including a drop in prey quantity and quality for foraging fish and an increase in the importance of the microbial food web for higher trophic levels.  相似文献   

15.
Fish and decapod entry into small (1.5 m2) artificial seagrass habitats positioned on an open sand area in a New Jersey estuary was examined to determine if immigration varied between day and night. To encounter the structured habitats, colonizers had to cross an expanse of bare sand, with its presumably higher predation risk. Contrasts in abundance in the artificial seagrass plots between dawn and dusk indicated higher nighttime immigration for four species, including the fishesFundulus heteroclitus andMyoxocephalus aenaeus, and the caridean shrimpsPalaemonetes vulgaris andHippolyte pleuracanthus. Size-frequency distributions of colonizers varied between day and night for two fish species,Menidia menidia andSyngnathus fuscus, with a greater proportion of smaller individuals immigrating to the artificial seagrass at night.Callinectes sapidus also displayed a diel contrast in size distribution but, for this species, proportionately more small individuals colonized the plots during the day. We suggest that diel variability in predation risk and/or diel patterns in motor activity may be responsible for these patterns in immigration.  相似文献   

16.
Little is known about the importance of salmarshes to juvenile and adult fishes in temperate Australia. We assessed diel and feeding patterns of fish inhabiting saltmarsh in a sheltered embayment along the coast of Victoria, Australia, between October 2002 and May 2003. The saltmarsh flat was generally only inundated during low-pressure weather systems (barometric pressure <1,013 hP). Fish were sampled over the saltmarsh flats using fyke and seine nets. A total of 2,047 individuals (10 species, including juveniles and adults) were caught.Atherinasoma microstoma was most abundant (fyke [F], μ=1.6 fish h−1; seine [S], μ=28.2 fish shot−1), followed byFavonigobius, lateralis (F: 0.5; S: 0.6),Galaxias maculatus (F: 0.1),Heteroclinus adelaide (F:<0.1),Kestratherina esox (F: <0.1; S: 1.6),Leptatherina presbyteroides (F: <0.1; S: 7.1) andTetractenos glaber (F: 1). Commercial species, includingAldrichetta forsteri (F: <0.1; S: 3.2),Sillaginodes punctata (F: <0.1; S: 0.9), andRhombosolea tapirina (F: 0.4), were commonly sampled. Variability in species richness or fish abundance was not explained by water temperature, salinity, depth, or barometric pressure. Significantly more species were sampled with the seine during nocturnal periods (p=0.002); fish abundance did not vary between diel periods, nor did fish abundance and species richness in fyke net samples. Diets of the most abundant species (A. microstoma, A. forsteri, andF. lateralis) were primarily composed of gammaridean amphipods and hemipteran insects. There was no correlation between fish diets and the composition of benthic invertebrates as sampled at 3 different regions of the saltmarsh flat. The saltmarsh flats in our study region are inhabited by several species normally associated with alternative habitat types such as seagrass, and the patterns of habitat use observed appear to be partially attributed to foraging behavior.  相似文献   

17.
Human land use activities around estuaries can result in high levels of eutrophication. At Elkhorn Slough estuary, a highly eutrophic California estuary, we investigated the effects of impaired water quality on two stress-tolerant estuarine species, a common fish, the staghorn sculpin, Leptocottus armatus and a foundational invertebrate, the Olympia oyster, Ostrea lurida. We caged the two indicator species at six wetlands with different levels of water quality impairment, four of which had restricted tidal flow. We also recorded water quality parameters simultaneously at all sites using YSI sondes, and sampled nutrients and chlorophyll-a monthly, building on the National Estuarine Research Reserve System-wide Monitoring Program. We found that the monitored environmental variables predicted ecological responses by the indicator species. In particular, we found that the duration and severity of hypoxia were negatively correlated with fish survival and oyster growth. Further, our results corroborate previous studies that artificial tidal restriction leads to increased hypoxia stress. We conclude that large diurnal fluctuations in dissolved oxygen and extended nighttime hypoxia can have lethal and sub-lethal effects even on stress-tolerant organisms in the estuary. While laboratory experiments have often shown such effects, it is relatively rare to demonstrate negative effects of oxygen variation with in situ experiments, which provide stakeholders with concrete evidence for impaired water quality at local wetlands. Tidally restricted sites, which experience the largest fluctuations in dissolved oxygen and longest periods of hypoxia, harbor conditions harmful to vertebrates and invertebrates in the estuary. Reversing the anthropogenically induced low oxygen levels, by restoring more natural tidal exchange and by decreasing agricultural runoff, could improve the survival and growth of important estuarine organisms.  相似文献   

18.
This study investigates the influence ofPhragmites australis (common reed) invasion on the habitat of the resident marsh fish,Fundulus heteroclitus (mummichog) in the Hackensack Meadowlands, New Jersey. These abundant fish play an important role in the transfer of energy from the marsh surface to adjacent subtidal waters and thus estuarine food webs. The objectives of this 2-yr study (1999 and 2000) were to compare the distribution and abundance of the eggs, larvae, juveniles, and adults of mummichog and their invertebrate prey inhabitingSpartina alterniflora-dominated marshes withPhragmites-dominated marshes, and to experimentally investigate the influence of marsh surface microtoprography on larval fish abundance withinPhragmites-dominated marshes. In 2000, we verified that egg deposition does occur inPhragmites-dominated marshes. In both years, the abundance of larvae and small juveniles (4–20 mm TL) inS. alterniflora was significantly greater than inPhragmites-dominated marshes, while larger juveniles and adults (>20 mm TL) were similarly abundant in both habitat types. The overall abundance of larvae and small juveniles was significantly greater in experimentalPhragmites plots in which microtopography was manipulated to resemble that ofSpartina marshes than inPhragmites control plots. Major groups of invertebrate taxa differed between marsh types with potential prey for larval fish being significantly more abundant inS. alterniflora marshes.Phragmites-dominated marshes may not provide the most suitable habitat for the early life-history stages of the mummichog. The low abundance of larvae and small juveniles inPhragmites marshes is likely due to inadequate larval habitat and perhaps decreased prey availability for these early life history stages.  相似文献   

19.
The detection of long-term shifts in species composition and spatial structuring of aquatic communities may be obscured by high levels of interannual variation. Estuarine fish communities are likely to exhibit high levels of variation owing to the influence of riverine forcing and the importance of anadromous and transient species, whose abundances may not be locally controlled. We describe patterns of interannual variation and long-term shifts in the nearshore fish community of the mesohaline Hudson River estuary based on 21 yr of beach seine sampling conducted annually between late August and mid November. Of the 60 species encountered, the most abundant were Atlantic silversides (Menidia menidia), striped bass (Morone saxatilis), white perch (Morone americana), American shad (Alosa sapidissima), and blueback herring (Alosa aestivalis). Relationships between annual community composition and seasonal flow and temperature regimes were examined with canonical correspondence analysis. Annual variation was most closely correlated with river flows in the 3-mo period preceding fish sampling, indicating a persistent effect of environmental conditions on community structure. Despite significant interannual variation in composition, longer-term trends in community structure were observed. These included declines in catch rates of freshwater and estuarine species and a dramatic increase in the catch of Atlantic silversides, an annual marine species. Associated with these changes were declines in community diversity and increased compositional variation. These results indicate that analyses of temporal changes in community structure need to account for the multiple time scales under which forcing factors and community composition vary.  相似文献   

20.
Larval and juvenile Japanese temperate bass (Lateolabrax japonicus) samples were collected from a wide range of spatial gradients (covering a distance of approximately 30 km) in Chikugo estuary, Ariake Bay, Japan over a period of 8 yr (1997–2004) in order to observe changes in diet. Gut contents were studied by separating, identifying, counting, and estimating the dry weight of prey organisms. Copepod samples were collected during each cruise to observe the numerical composition, abundance, and biomass in the estuary. Considerable spatial and temporal variations were observed in copepod distributions in ambient water and the diets of the fish. Two distinctly different copepod assemblages were identified in the estuary: One in the upper estuarine turbidity maximum (ETM), dominated by a single speciesSinocalanus sinensis and the other in the lower estuary consisting of a multispecies assemblage, dominated byOithona davisae, Acartia omorii, Paracalanus parvus, andCalanus sinicus. The gut content composition of the fish in the upper estuary was dominated byS. sinensis, while in the lower estuary, it consisted ofP. parvus, O. davisae, andA. omorii. Within the size group analyzed (13.0–27.0 mm SL), the smaller individuals were found to feed on a mixed diet composed of smaller prey. The diets gradually shifted to bigger prey composed predominantly ofS. sinensis for larger size groups. Greater proportions of empty guts were recorded in the smaller individuals and dropped with increasing fish size. Higher dry biomass of copepods in the environment, as well as higher dry weights of gut contents, were recorded in the upper estuary, indicating that the upper estuarine ETM areas are important nursery grounds for the early life stages of the Japanese temperate bass. The early life stages of the Japanese temperate bass are adapted to use the upstream nursery grounds and ascending to the nursery areas to useS. sinensis is one of the key survival strategies of the Japanese temperate bass in the Chikugo estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号