首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The relationship between surface pressure fluctuations and the velocity field associated with turbulent coherent structures is examined for flow within and above a deciduous forest. Measurements were taken with tower-mounted sonic anemometer/thermometers at six heights, Lyman-alpha humidiometers at three heights, and a pressure sensor at the forest floor. We find a strong, near-linear relationship between the mean square turbulent velocity and the standard deviation of the high-pass-filtered pressure fluctuations. Lagged cross-correlations between vertical velocity fluctuations and those of pressure show maximum correlations of ± 0.5 but with a phase offset. Examination of surface pressure during the passage of coherent structures, which are characterized by a transition from ejection to sweep, reveals a period of overpressure about 20 s in duration roughly centered on the time of passage of the scalar microfront at the top of the canopy. Pressure patterns associated with coherent structures appear to be largely responsible for the form of the correlations stated above.Pressure patterns calculated from an integrated Poisson equation, using observed velocity and temperature signals during coherent structures, match the main features of the observed pressure. Retrieval of the pressure fluctuations in this manner reveals that the mean wind shear/turbulence interaction term is dominant, but that important contributions arise from two other terms in the equation. Buoyancy effects are negligible. We show that the surface pressure signal is mainly created by the velocity field near the top of the forest, and present evidence to suggest that features of the sub-crown air movement result directly from this pressure field.  相似文献   

2.
The processes influencing turbulence in a deciduous forest and the relevant length and time scales are investigated with spectral and cross-correlation analysis. Wind velocity power spectra were computed from three-dimensional wind velocity measurements made at six levels inside the plant canopy and at one level above the canopy. Velocity spectra measured within the plant canopy differ from those measured in the surface boundary layer. Noted features associated with the within-canopy turbulence spectra are: (a) power spectra measured in the canopy crown peak at higher wavenumbers than do those measured in the subcanopy trunkspace and above the canopy; (b) peak spectral values collapse to a relatively universal value when scaled according to a non-dimensional frequency comprised of the product of the natural frequency and the Eulerian time scale for vertical velocity; (c) at wavenumbers exceeding the spectral peak, the slopes of the power spectra are more negative than those observed in the surface boundary layer; (d) Eulerian length scales decrease with depth into the canopy crown, then increase with further depth into the canopy; (e) turbulent events below crown closure are more correlated with turbulent events above the canopy than are those occurring in the canopy crown; and (f) Taylor's frozen eddy hypothesis is not valid in a plant canopy. Interactions between plant elements and the mean wind and turbulence alter the processes that produce, transport and remove turbulent kinetic energy and account for the noted observations.  相似文献   

3.
On the basis of improving the algorithm of the mixing length in and above forest canopies, a PBL numerical model including the multi-layer, heterogeneous vegetation is developed. Simulations indicate that different treatments of mixing length can make a great difference in the wind field especially for dense forest, and results from the improved mixing length scheme are in better agreement with observations than those from the original scheme. It may be expected that the improved mixing length scheme can lead to more ra-tional turbulent transfer than the original one. From the sensitivity experiments, we obtain the characteris-tics of both wind and temperature profiles in and above plant canopies, e.g., during the daytime, a stable thermal stratification exists near the surface in the canopies, but a neutral or slightly unstable condition ap-pears above plant canopies, while at night the reverse situations occur; the increase of the temperature of the dense-forest case is less than that of the sparse-forest case; the windspeed is reduced within the canopy lay-er and the large wind shear occurs near the treetop, etc.  相似文献   

4.
Turbulence Statistics Measurements in a Northern Hardwood Forest   总被引:3,自引:0,他引:3  
Tower-based turbulence measurements were collected in and over a mixed hardwood forest at the University of Michigan BiologicalStation (UMBS) UMBSflux site in the northern summerof 2000. Velocity and temperature fluctuations were measured at five levels within the canopy (up to the canopy height, H = 21.4 m), using one- and three-dimensional sonic anemometers and fine-wire thermocouples. Six additional thermocouples were distributed over the canopy-layer depth. Three-dimensional velocities and sonic temperatures were also measured above the canopy at 1.6H and at 2.15H on the AmeriFlux tower located at the UMBSflux site. Vertical profiles of buoyancy flux, mean horizontal velocity, Reynolds stress, and standard deviation and skewness of velocity components were calculated. The analysis of these measurements aims at a multi-layer parameterization framework of turbulence statistics forimplementation in Lagrangian stochastic models. Turbulence profiles and power spectra above the canopy were analyzed in the context of Monin-Obukhov similarity theory (MOST) and Kolmogorov theory, as determined by stability at the top level (2.15H), to assess the extent to which surface scaling is valid as the canopy top is approached. Velocity spectra were computed to explore the potential of estimating the viscous dissipation rate, and results show that the high frequency range of the spectra above the canopy exhibits the roll-off predicted by Kolmogorov theory. Similarly, velocity standard deviations above the canopy converge to MOST predicted values toward the top level, and spectral peaks shift with stability, as expected. Within the canopy, both turbulence statistics profiles and spectral distributions follow the general known characteristics inside forests.  相似文献   

5.
1.IntroductionItiswellknownthattheecosystemcangreatlyinfluencebothlocalclimateandgeneralcirculation.Onthenumericalstudyoftheturbulenceinandaboveforestcanopies,alotofsignificantstudieshavebeendone.Inallthesestudies,modelsaregenerallydividedintotwotypes:oneis'K--theory'type(Waggoner,1975;Gross,1987;Gross,1988,Jietal.,1989;Schilling,I991;Dickinsonetal.,1993;Wang,1996),theotherappliesthehigher--orderclosuremethod(Wilsonetal.,1977,Yamada,1982;Yinetal.,1989)ortheLagrangianmethod(Rampach,1987;R…  相似文献   

6.
Turbulence Spectra And Dissipation Rates Above And Within A Forest Canopy   总被引:4,自引:0,他引:4  
Three velocity componentsand temperature were measured usingthree-dimensional sonic anemometers/thermometers attwo levels, above and within a forest canopy, in theChangbai Mountains of northeast China. Turbulencespectral structure, local isotropy anddissipation rates above and within the forest canopywere calculated using the eddy correlation method.Results show that the normalized turbulent spectralcurves have -2/3 slopes in the inertial subrange.While the shapes of the spectra are in good agreementwith the Kansas flat terrain results, the atmosphericturbulence is anisotropic above the forest canopy. Dueto breaking down of large eddies by the foliage,branches and trunks, the spectral peak frequencies forvelocity and temperature are higher withinthan above the forest canopy. Compared withmeasurements from previous studies over flat terrain,the velocity and temperature spectra above andinside the forest canopy appear to shift toward higherfrequencies. The turbulence is approximately isotropicin the inertial subrange within the forest canopy, and isanisotropic above the forest canopy. The turbulentkinetic energy and heat energy dissipation rates aboveand inside the forest canopy are much larger thanthose obtained by Kaimal and Hogstrom over grasslandand grazing land. The distinct features in the resultsof the present experiment may be attributed to thedynamic forcing caused by the rough surface of the forestcanopy.  相似文献   

7.
Momentum and turbulent kinetic energy (TKE) budgets across a forest edge have been investigated using large-eddy simulation (LES). Edge effects are observed in the rapid variation of a number of budget terms across this vegetation transition. The enhanced drag force at the forest edge is largely balanced by the pressure gradient force and by streamwise advection of upstream momentum, while vertical turbulent diffusion is relatively insignificant. For variance and TKE budgets, the most important processes at the forest edge are production due to the convergence (or divergence) of the mean flow, streamwise advection, pressure diffusion and enhanced dissipation by canopy drag. Turbulent diffusion, pressure redistribution and vertical shear production, which are characteristic processes in homogeneous canopy flow, are less important at the forest transition. We demonstrate that, in the equilibrated canopy flow, a substantial amount of TKE produced in the streamwise direction by the vertical shear of the mean flow is redistributed in the vertical direction by pressure fluctuations. This redistribution process occurs in the upper canopy layers. Part of the TKE in the vertical velocity component is transferred by turbulent and pressure diffusion to the lower canopy levels, where pressure redistribution takes place again and feeds TKE back to the streamwise direction. In this TKE cycle, the primary source terms are vertical shear production for streamwise velocity variance and pressure redistribution for vertical velocity variance. The evolution of these primary source terms downwind of the forest edge largely controls the adjustment rates of velocity variances.  相似文献   

8.
A stochastic trajectory model was used to estimate scalar fluxfootprints in neutral stabilityfor canopies of varying leaf area distributions andleaf area indices. An analytical second-order closure model wasused to predict mean wind speed, second moments and the dissipationrate of turbulent kinetic energy within a forest canopy.The influence of source vertical profile on the flux footprint wasexamined. The fetch is longer for surface sourcesthan for sources at higher levels in the canopy. In order tomeasure all the flux components, and thus the total flux, with adesired accuracy, sources were located at the forest floor in thefootprint function estimation. The footprint functions werecalculated for five observation levels above the canopy top. Itwas found that at low observation heights both canopy density andcanopy structure affect the fetch. The higher abovethe canopy top the flux is measured, the more pronounced is the effectof the canopy structure. The forest fetch for flux measurements isstrongly dependent on the required accuracy: The 90% flux fetchis greater by a factor of two or more compared to the 75% fetch. Theupwind distance contributing 75% of flux is as large as 45 timesthe difference between canopy height and the observation heightabove the canopy top, being even larger for low observationlevels.  相似文献   

9.
Turbulent statistics of neutrally stratified shear-driven flow within and above a sparse forest canopy are presented from a large-eddy simulation (LES) and compared with those from observations within and above a deciduous forest with similar height and foliage density. First- and second-order moments from the LES agree with observations quite well. Third-order moments from the LES have the same sign and similar vertical patterns as those from the observations, but the LES yields smaller magnitudes of such higher-order moments. Turbulent spectra and cospectra from the LES agree well with observations above the forest. However, at the highest frequencies, the LES spectra have steeper slopes than observations. Quadrant and conditional analyses of the LES resolved-scale flow fields also agree with observations. For example, both LES and observation find that sweeps are more important than ejections for the transport of momentum within the forest, while inward and outward interaction contributions are both small, except near the forest floor. The intermittency of the transport of momentum and scalar increases with depth into the forest. Finally, ramp structures in the time series of a passive scalar at multiple levels within and above the forest show similar features to those measured from field towers. Two-dimensional (height-time cross-section) contours of the passive scalar and wind vectors show sweeps and ejections, and the characteristics of the static pressure perturbation near the ground resemble those deduced from field tower-based measurements. In spite of the limited grid resolution (2 m × 2 m × 2 m) and domain size (192 m × 192 m × 60 m) used in this LES, we demonstrate that the LES is capable of resolving the most important characteristics of the turbulent flow within and above a forest canopy.  相似文献   

10.
The dependence on atmospheric stability of flow characteristics adjacent to a very rough surface was investigated in a larch forest in Japan. Micrometeorological measurements of three-dimensional wind velocity and air temperature were taken at two heights above the forest, namely 1.7 and 1.2 times the mean canopy height h. Under near-neutral and stable conditions, the observed turbulence statistics suggest that the flow was likely to be that of the atmospheric surface layer (ASL) at 1.7h, and of the roughness sublayer (RSL) at 1.2h. However, in turbulence spectra, canopy-induced large coherent motions appeared clearly at both heights. Even under strongly stable conditions, the large-scale motions were retained at 1.2h, whereas they were overwhelmed by small-scale motions at 1.7h. This phenomenon was probably due to the enhanced contribution of the ASL turbulence associated with nocturnal decay of the RSL depth, because the small-scale motions appeared at frequencies close to the peak frequencies of well-known ASL spectra. This result supports the relatively recent concept that canopy flow is a superimposition of coherent motions and the ASL turbulence. The large-scale motions were retained in temperature spectra over a wider region of stability compared to streamwise wind spectra, suggesting that a canopy effect extended higher up for temperature than wind. The streamwise spacing of dominant eddies according to the plane mixing-layer analogy was only valid in a narrow range at near neutral, and it was stabilised at nearly half its value under stable conditions.  相似文献   

11.
A parameterization scheme has been developed to describe the effects of a tall forest on the mean structure of the atmospheric boundary layer (ABL). The main advantage of the scheme is that dynamical and thermodynamical effects of a forest surface can be simulated satisfactorily using only a coarse-grid resolution within numerical models. Thereby, the canopy layer is parameterized as a quasi-subgrid phenomenon. This makes it possible to study meteorological phenomena within the ABL in a very economical way (with respect to computational time) whereby, nevertheless, more detailed information concerning the forest surface is taken into account than could be done using the same grid resolution and quite simple assumptions describing the canopy, e.g., the effective roughness.The applicability in numerical models is shown by using a slightly modified two-dimensional version of the mesoscale model FITNAH. For comparison, simulations with a high numerical grid resolution within the canopy have been carried out.Model results reproduce the known meteorological phenomena in forested areas, e.g., a stable thermal stratification near the surface during the day, and at night, a neutral — or slightly unstable condition — and, in general, reduced windspeed within the canopy layer.Diurnal variations and spatial distributions of temperature and humidity are found to be similar for both cases. Also, a thermally-induced local circulation system in the vicinity of a large clearing has been simulated satisfactorily.A comparison of the calculated results verifies that the parameterization scheme is quite suitable for simulating the effects of plant canopies on the distributions of meteorological variables in the ABL.  相似文献   

12.
Two-point space-time correlations ofvelocities, a passive scalar and static pressure arecalculated using the resolvable flow fields computedby large-eddy simulation (LES) of neutrally stratifiedflow within and above a sparse forest. Zero-time-lagspatial auto-correlation contours in thestreamwise-vertical cross-section for longitudinal andlateral velocities and for a scalar are tilted fromthe vertical in the downstream direction, as istypical in near-wall sheared flow. On the other hand,auto-correlations of vertical velocity and of staticpressure are vertically coherent. Zero-time-lagspatial auto-correlations in the spanwise-verticalcross-section show no distinct tilt, and those forboth longitudinal and vertical velocities demonstratedistinct negative side lobes in the middle forest andabove, while longitudinal velocity in the subcrowntrunk space is laterally in-phase. Static pressureperturbations appear to be spatially coherent in thespanwise direction at all heights, especially insidethe forest. Near the forest floor, longitudinalvelocity is found to be in-phase with static pressureperturbation and to be closely linked to theinstantaneous streamwise pressure gradient, supportinga previous proposal that longitudinal velocity in thisregion is dominantly modulated by the pressurepatterns associated with the coherent sweep/ejectionevents. Near treetop height, a lack of linkage betweenthe pressure gradient and the local time derivative ofthe longitudinal velocity supports the hypothesis ofadvection dominating turbulent flow.The major phase characteristics of the two-pointcorrelations essentially remained the same from fourLES runs with different domain size and/or gridresolution. A larger LES domain yielded betteragreement with field observations in a real forest onboth the magnitudes of the correlations and thesingle-point integral time scales. A finer gridresolution in the LES led to a faster rate of decreaseof correlation with increasing separation in space ortime, as did the higher frequency fluctuations in theturbulent records from field measurements. Convectivevelocities estimated from the lagged two-pointauto-correlations of the calculated flow fields werecompared with similar calculations from wind-tunnelstudies. At the canopy top, estimates from thecorrelation analyses agree with the translationvelocity estimated from instantaneous snapshots of ascalar microfront using both LES and field data. Thistranslation velocity is somewhat higher than the localmean wind speed. Convective velocities estimated fromlagged correlations increase with height above thecanopy. It is suggested that an appropriate filteringprocedure may be necessary to reduce the effects ofsmall-scale random turbulence, as was reported in astudy over an orchard canopy. The mean longitudinalvelocity near the treetops is found to be moreappropriate than the local mean longitudinal velocityat each height to link single-point integral timescales with directly calculated spatial integralstreamwise length scales.  相似文献   

13.
A multilayer canopy model of a pine forest is used to investigate the sensitivity of the water balance of the wet canopy to variations in meteorological input. The multilayer model does not take into account large-scale eddies, which are now considered to be of importance to canopy transport. It does, however, provide realistic simulations of wet canopy water balance and often predicts interception loss rates higher than those predicted by a unilayer model for the same meteorological input. Stable layers both within and above the canopy are often simulated during rainfall events, and these may help to spontaneously generate large-scale eddies or waves within forest canopies. The sensitivity study for a wet canopy suggests that low vapour pressure deficits and low wind speeds are associated with unstable surface conditions, and increasing values of both variables are associated with decreasing canopy drainage values and increasing evaporative losses. Low short- or long-wave radiation inputs are associated with stable surface conditions, and increasing values of both variables are associated with decreasing canopy drainage values and increasing evaporative losses. Increasing temperature is associated with increasing surface stability and increasing canopy drainage and decreasing evaporative losses. In real situations the tendency for increasing temperature to cause surface stability and decreased evaporative loss is probably compensated by the opposite effects of increasing short- or long-wave radiation. The model simulations suggest that wet forest canopies may be better ventilated at low temperatures, if other meteorological conditions are constant.  相似文献   

14.
This is the second paper describing a study of the turbulence regimes and exchange processes within and above an extensive Douglas-fir stand. The experiment was conducted on Vancouver Island during a two-week rainless period in July and August 1990. Two eddy correlation units were operated in the daytime to measure the fluxes of sensible heat and water vapour and other turbulence statistics at various heights within and above the stand. Net radiation was measured above the overstory using a stationary net radiometer and beneath the overstory using a tram system. Supplementary measurements included soil heat flux, humidity above and beneath the overstory, profiles of wind speed and air temperature, and the spatial variation of sensible heat flux near the forest floor.The sum of sensible and latent heat fluxes above the stand accounted for, on average, 83% of the available energy flux. On some days, energy budget closure was far better than on others. The average value of the Bowen ratio was 2.1 above the stand and 1.4 beneath the overstory. The mid-morning value of the canopy resistance was 150–450 s/m during the experiment and mid-day value of the Omega factor was about 0.20. The daytime mean canopy resistance showed a strong dependence on the mean saturation deficit during the two-week experimental period.The sum of sensible and latent heat fluxes beneath the overstory accounted for 74% of the available energy flux beneath the overstory. One of the reasons for this energy imbalance was that the small number of soil heat flux plates and the short pathway of the radiometer tram system was unable to account for the large horizontal heterogeneity in the available energy flux beneath the overstory. On the other hand, good agreement was obtained among the measurements of sensible heat flux made near the forest floor at four positions 15 m apart.There was a constant flux layer in the trunk space, a large flux divergence in the canopy layer, and a constant flux layer above the stand. Counter-gradient flux of sensible heat constantly occurred at the base of the canopy.The transfer of sensible heat and water vapour was dominated by intermittent cool downdraft and warm updraft events and dry downdraft and moist updraft events, respectively, at all levels. For sensible heat flux, the ratio of the contribution of cool downdrafts to that of warm updrafts was greater than one in the canopy layer and less than one above the stand and near the forest floor.  相似文献   

15.
Vertical heat and momentum fluxes were measured by the eddy correlation method under near-neutral conditions during both day and night above a spruce forest canopy. Results show that 50% of the heat transported to the spruce canopy during night and away from the canopy during the day occurs in extreme magnitude events, the majority of less than one second duration. Extreme-magnitude events were more frequent and lasted longer during the day than during the night. The distributions of the duration of extreme events in the same direction as the net heat flux and the turbulence intensity for both day and night were similar.During the night, the mean horizontal windspeed was about 1 m s-1 and the measured coincident transport of momentum and heat accounted for 36% of the total heat flux. The predominant mechanism of forced convection during the extreme nightime heat transport events was excess heat sweeps in which the duration of the event is usually less than 1 s. During the day, the mean horizontal windspeed was about 2 m s -1 and the measured coincident transport of momentum and heat accounted for only 16% of the total heat flux. Local free convection was suggested to account for 27% of the total heat flux. The predominant mechanism of mixed convection during the extreme daytime heat transport events is deficit heat inward interactions. During both night and day, about 10% of the total heat transport occurred in extreme events working against the thermal gradient.Now atPurdue University, West Lafayette, IN, U.S.A.  相似文献   

16.
An analysis of velocity statistics and spectra measured above a wind-tunnel forest model is reported. Several measurement stations downstream of the forest edge have been investigated and it is observed that, while the mean velocity profile adjusts quickly to the new canopy boundary condition, the turbulence lags behind and shows a continuous penetration towards the free stream along the canopy model. The statistical profiles illustrate this growth and do not collapse when plotted as a function of the vertical coordinate. However, when the statistics are plotted as function of the local mean velocity (normalized with a characteristic velocity scale), they do collapse, independently of the streamwise position and freestream velocity. A new scaling for the spectra of all three velocity components is proposed based on the velocity variance and integral time scale. This normalization improves the collapse of the spectra compared to existing scalings adopted in atmospheric measurements, and allows the determination of a universal function that provides the velocity spectrum. Furthermore, a comparison of the proposed scaling laws for two different canopy densities is shown, demonstrating that the vertical velocity variance is the most sensible statistical quantity to the characteristics of the canopy roughness.  相似文献   

17.
Measurements of mean and fluctuating velocities, surface pressure and stalk waving have been made in a uniform wheat canopy. Features of the vertical profiles of mean turbulence quantities are discussed in the context of the resonant waving of wheat stalks. The discrete and prominent peaks in the velocity spectra measured in and above the canopy are then analyzed in the light of the organized travelling wave-type structure or ‘honami’, observed in such crops on windy days. Prominent peaks in the spectra are identified with the arrival of gusts, the stalk-waving frequency, and the frequency of oscillations in canopy height. Two possible mechanisms are proposed to account for the observed height dependence of the peak frequencies, directly associated with stalk waving.  相似文献   

18.
Measurements of mean and fluctuating velocities, surface pressure and stalk waving have been made in a uniform wheat canopy. Features of the vertical profiles of mean turbulence quantities are discussed in the context of the resonant waving of wheat stalks. The discrete and prominent peaks in the velocity spectra measured in and above the canopy are then analyzed in the light of the organized travelling wave-type structure or ‘honami’, observed in such crops on windy days. Prominent peaks in the spectra are identified with the arrival of gusts, the stalk-waving frequency, and the frequency of oscillations in canopy height. Two possible mechanisms are proposed to account for the observed height dependence of the peak frequencies, directly associated with stalk waving.  相似文献   

19.
Statistics of atmospheric turbulence within and above a corn canopy   总被引:1,自引:2,他引:1  
Two three-dimensional split-film anemometers were used to measure turbulence statistics within and above a corn canopy. Normalised profiles of mean windspeed, root-mean-square velocity, momentum flux, and heat flux were constructed from half-hourly averages by dividing within-canopy measurements by the simultaneous canopy-top measurement. With the exception of the heat flux, these profiles showed consistent shape from day to day. Time series of the three velocity components were recorded on magnetic tape and subsequently analysed to obtain Eulerian time and length scales and the power spectrum of each component at several heights. The timescale was found to have a local minimum value at the top of the canopy. However the length scale L wformed from the timescale and the root-mean-square vertical velocity varied with height as L w 0.1 z. The power-spectra were non-dimensionalised to facilitate comparison of spectra at different heights and times. All spectra had -5/3 regions spanning at least two decades in frequency.  相似文献   

20.
An intensive measurement campaign within and above a maize row canopy was carried out to investigate flow characteristics within this vegetation. Attention was given to finding adequate scaling parameters of the within-canopy windspeed and air temperature profiles under above-canopy stable stratification.During clear and calm nights the within-canopy condition differs considerably from the abovecanopy state. In contrast to the daytime, the windspeed and temperature profiles do not scale with the above-canopy friction velocity,u * , and the scaling temperature,T * , respectively. A free convection flow regime is generated, forced by the soil heat flux at the canopy floor and by cooling at the top of the canopy. However, the windspeed and temperature profiles appear to scale well with the free convective velocity scale,w * , and the free convective temperature scale,T f , respectively. The free convective state within the canopy agrees well with the free convection criterion Gr>16Re2(u * ), where Gr is the Grashof number and Re(u * ) the Reynolds number, a criterion often used in technical flow problems. Also it is shown that under within-canopy free convection, there is a unique relation between the Grashof number, Gr, and the Reynolds number if the latter is based on the free convective velocity scale.Under within-canopy free convective conditions, it appears that within the canopy the fluxes of heat and water vapour can be estimated well with the relatively simple variance technique. Under these conditions, the Grashof, or Rayleigh number, represents a measure for the kinetic energy of the turbulence within the canopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号