首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using eighteen years of observations at Big Bear, we summarize the development of δ spots and the great flares they produce. We find δ groups to develop in three ways: eruption of a single complex active region formed below the surface, eruption of large satellite spots near (particularly in front of) a large older spot, or collision of spots of opposite polarity from different dipoles. Our sample of twenty-one δ spots shows that once they lock together, they never separate, although rarely an umbra is ejected. The δ spots are already disposed to their final form when they emerge. The driving force for the shear is spot motion, either flux emergence or the forward motion of p spots in an inverted magnetic configuration. We observe the following phenomena preceding great flares:
  1. δ spots, preferentially Types 1 and 2.
  2. Umbrae obscured by Hα emission.
  3. Bright Hα emission marking flux emergence and reconnection.
  4. Greatly sheared magnetic configurations, marked by penumbral and Hα fibrils parallel to the inversion line.
We assert that with adequate spatial resolution one may predict the occurrence of great flares with these indicators.  相似文献   

2.
Van Driel-Gesztelti  L.  Csepura  G.  Schmieder  B.  Malherbe  J.-M.  Metcalf  T. 《Solar physics》1997,172(1-2):151-160
We present a study of the evolution of NOAA AR 7205 in the photosphere and corona, including an analysis of sunspot motions, and show the evolutionary aspects of flare activity using full-disc white-light observations from Debrecen, vector magnetograms from Mees Observatory, Hawaii, and Yohkoh soft X-ray observations. NOAA AR 7205 was born on the disc on 18 June, 1992. During the first 3 days it consisted of intermittent minor spots. A vigorous evolution started on 21 June when, through the emergence and merging (v 100–150 m s-1) of several bipoles, a major bipolar sunspot group was formed. Transverse magnetic fields and currents indicated the presence of shear (clockwise twist) already on 21 June (with 0.015 Mm-1). On 23 June, new flux emerged in the trailing part of the region with the new negative polarity spot situated very close to the big positive polarity trailing spot of the main bipole. The secondary bipole seemed to emerge with high non-potentality (currents). From that time the AR became the site of recurrent flare activity. We find that all 14 flares observed with the Yohkoh satellite occurred between the highly sheared new bipole and the double-headed principal bipole. Currents observed in the active region became stronger and more extended with time. We propose that the currents have been (i) induced by sunspot motions and (ii) increased by non-potential flux emergence leading to the occurrence of energetic flares (X1.8 and X3.9). This observation underlines the importance of flare analysis in the context of active region evolution.  相似文献   

3.
Energy is stored when the force-free magnetic field in an active region departs from a potential field, the departure showing up as a shear in the field. As soon as the field untwists, energy will be released to produce flares. Based on this idea, we derived an analytical solution of the equation of force-free field under the assumption of a constant force-free factor, and found expressions for seven important quantities for quadrupolar sunspots: the magnetic energy of the twisted field, that of potential field, the extractable free energy ΔM, the magnetic flux, the total current, the force-free factor and the field decay factor, in terms of three observables: the field intensity, the twist angle and the distance between two spots of the same polarity. The expression for ΔM can be useful in solar prediction work. For the active region of August, 1972, we found ΔM up to 6 × 1032 erg, sufficient to supply the energy of the observed flare activity. Observations of this active region are in good general agreement with our theoretical expectations: in the entire twisting of the quadrupolar sunspot group, each spot assumes the form of a complete spiral in the clockwise direction for each of the four spots.  相似文献   

4.
We describe the decay phase of one of the largest active regions of solar cycle 22 that developed by the end of June 1987. The center of both polarities of the magnetic fields of the region systematically shifted north and poleward throughout the decay phase. In addition, a substantial fraction of the trailing magnetic fields migrated equatorward and south of the leading, negative fields. The result of this migration was the apparent rotation of the magnetic axis of the region such that a majority of the leading polarity advanced poleward at a faster rate than the trailing polarity. As a consequence, this region could not contribute to the anticipated reversal of the polar field.The relative motions of the sunspots in this active region were also noteworthy. The largest, leading, negative polarity sunspot at N24 exhibited a slightly slower-than-average solar rotation rate equivalent to the mean differential rotation rate at N25. In contrast, the westernmost, leading, negative polarity sunspot at N21 consistently advanced further westward at a mean rate of 0.13 km s–1 with respect to the mean differential rotation rate at its latitude. These sunspot motions and the pattern of evolution of the magnetic fields of the whole region constitute evidence of the existence of a large-scale velocity field within the active region.Solar Cycle Workshop Paper.  相似文献   

5.
We derive an occurrence frequency for white-light flares (WLF) of 15.5 ± 4.5 yr?1 during a 2.6 year period following the maximum of solar cycle 21. This compares with a frequency 5–6 yr?1 derived by McIntosh and Donnelly (1972) during solar cycle 20. We find that the higher frequency of the more recently observed WLFs is due to the availability of patrol data at shorter wavelengths (λ ? 4000 Å), where the contrast of the flare emission is increased; the improved contrast has allowed less energetic (and hence more frequently occurring) events to be classified as WLFs. We find that sufficient conditions for the occurrence of a WLF are: active region magnetic class = delta; sunspot penumbra class = K, with spot group area ≥ 500 millionths of the solar hemisphere; 1–8 Å X-ray burst class ≥ X2.  相似文献   

6.
A number of fundamental questions as regards the physical nature of sunspots are formulated. In order to answer these questions, we apply the model of a round-shaped unipolar sunspot with a lower boundary consisting of cool plasma and with strong magnetic field at the depth of about 4 Mm beneath the photosphere, in accordance with the data of local helioseismology and with certain physically sound arguments (the shallow sunspot model). The magnetic configuration of a sunspot is assumed to be close to the observed one and similar to the magnetic field of a round solenoid of the appropriate size. The transverse (horizontal) and longitudinal (vertical) equilibria of a sunspot were calculated based on the thermodynamic approach and taking into account the magnetic, gravitational, and thermal energy of the spot and the pressure of the environment. The dependence of the magnetic field strength in the sunspot center, B 0, on the radius of the sunspot umbra a is derived theoretically for the first time in the history of sunspot studies. It shows that the magnetic field strength in small spots is about 700 Gauss (G) and then increases monotonically with a, tending asymptotically to a limit value of about 4000 G. This dependence, B 0(a) includes, as parameters, the gravity acceleration on the solar surface, the density of gas in the photosphere, and the ratio of the radius of the spot (including penumbra), a p, to the radius of its umbra a. It is shown that large-scale subsurface flows of gas in the sunspot vicinity, being the consequence but not the cause of sunspot formation, are too weak to contribute significantly to the pressure balance of the sunspot. Stability of the sunspot is provided by cooling of the sunspot plasma and decreasing of its gravitational energy due to the vertical redistribution of the gas density when the geometric Wilson depression of the sunspot is formed. The depth of a depression grows linearly with B 0, in contrast to the quadratic law for the magnetic energy. Therefore, the range of stable equilibria turns out to be limited: large spots, with radius a larger than some limit value (about 12–18 Mm, depending on the magnetic field configuration), are unstable. It explains the absence of very large spots on the Sun and the appearance of light bridges in big spots that divide the spot into a few parts. The sunspots with B 0≈2.6÷2.7 kilogauss (kG) and a≈5 Mm are most stable. For these spots, taken as a single magnetic structure, the period of their vertical eigen oscillations is minimal and amounts, according to the model, to 10–12 hours. It corresponds well to the period derived from the study of long-term oscillations of sunspots using SOHO/MDI data.  相似文献   

7.
The generation of magnetic flux in the solar interior and its transport from the convection zone into the photosphere, the chromosphere, and the corona will be in the focus of solar physics research for the next decades. With 4 m class telescopes, one plans to measure essential processes of radiative magneto‐hydrodynamics that are needed to understand the nature of solar magnetic fields. One key‐ingredient to understand the behavior of solar magnetic field is the process of flux emergence into the solar photosphere, and how the magnetic flux reorganizes to form the magnetic phenomena of active regions like sunspots and pores. Here, we present a spectropolarimetric and imaging data set from a region of emerging magnetic flux, in which a proto‐spot without penumbra forms a penumbra. During the formation of the penumbra the area and the magnetic flux of the spot increases. First results of our data analysis demonstrate that the additional magnetic flux, which contributes to the increasing area of the penumbra, is supplied by the region of emerging magnetic flux. We observe emerging bipoles that are aligned such that the spot polarity is closer to the spot. As an emerging bipole separates, the pole of the spot polarity migrates towards the spot, and finally merges with it. We speculate that this is a fundamental process, which makes the sunspot accumulate magnetic flux. As more and more flux is accumulated a penumbra forms and transforms the proto‐spot into a full‐fledged sunspot (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Digitized Mount Wilson sunspot data from 1917 to 1985 are analyzed to examine the growth and decay rates of sunspot group umbral areas. These rates are distributed roughly symmetrically about a median rate of decay of a few hemisphere day-1. Percentage area change rates average 502% day-1 for growing groups and -45% day-1 for decaying groups. These values are significantly higher than the comparable rates for plage magnetic fields because spot groups have shorter lifetimes than do plages. The distribution of percentage decay rates also differs from that of plage magnetic fields. Small spot groups grow at faster rates on average than they decay, and large spot groups decay on average at faster rates than they grow. Near solar minimum there is a marked decrease in daily percentage spot area growth rates. This decrease is not related to group area, nor is it due to latitude effects. Sunspot groups with rotation rates close to the average (for each latitude) have markedly slower average rates of daily group growth and decay than do those groups with rotation rates faster or slower than the average. Similarly, sunspot groups with latitude drift rates near zero have markedly slower average rates of daily group growth and decay than do groups with significant latitude drifts in either direction. Both of these findings are similar to results for plage magnetic fields. These various correlations are discussed in the light of our views of the connection of the magnetic fields of spot groups to subsurface magnetic flux tubes. It is suggested that a factor in the rates of growth or decay of spot groups and plages may be the inclination angle to the vertical of the magnetic fields of the spots or plages. Larger inclination angles may result in faster growth and decay rates.Operated by the Association of Universities for Research in Astronomy, Inc., under Cooperative Agreement with the National Science Foundation.  相似文献   

9.
Kumar  Brajesh  Jain  Rajmal  Tripathy  S.C.  Vats  Hari Om  Deshpande  M.R. 《Solar physics》2000,191(2):293-307
A time series of GONG Dopplergrams for the period 10–14 May 1997 from Udaipur and Big Bear sites has been used to measure the velocity fluctuations in a sunspot (NOAA active region 8038) and quiet photosphere simultaneously. We observe that the power of pre-dominant p mode is reduced in the sunspot as compared to quiet photosphere by 39–52% depending on the location of the sunspot region on the solar disk. We also observe a relative peak frequency deviation of p modes in the sunspot, of the order of 80–310 Hz, which shows a linear dependence on the magnetic field gradient in the active region. The maximum frequency deviation of 310 Hz on 12 May appears to be an influence of a long-duration solar flare that occurred in this active region. We interpret this relative peak frequency deviation as either due to power re-distribution of p modes in the sunspot or a consequence of frequency modulation of these modes along the magnetic flux tubes due to rapidly varying magnetic field structure.  相似文献   

10.
Yurchyshyn  Vasyl B.  Wang  Haimin 《Solar physics》2001,203(2):233-238
We study photospheric plasma flows in an active region NOAA 8375, by using uninterrupted high-resolution SOHO/MDI observations (137 intensity images, 44 hours of observations). The active region consists of a stable large spot and many small spots and pores. Analyzing horizontal flow maps, obtained with local correlation tracking technique, we found a system of stable persistent plasma flows existing in the active region. The flows start on either side of the sunspot and extend over 100′′ to the east. Our measurements show that the speed of small sunspots and pores, averaged over 44 hours, was about 100 m s−1, which corresponds to root-mean-square longitudinal drifts of sunspots of 0.67°–0.76° day−1. We conclude that these large-scale flows are due to faster proper motion of the large sunspot relative to the ambient photospheric plasma. We suggest that the flows may be a good carrier to transport magnetic flux from eroding sunspots into the outer part of an active region.  相似文献   

11.
The separation of the leading and following portions of plages and (multi-spot) sunspot groups is examined as a parameter in the analysis of plage and spot group rotation. The magnetic complexity of plages affects their average properties in such a study because it tends to make the polarity separations of the plages less than they really are (by the definition of polarity separation used here). Correcting for this effect, one finds a clear and very significant dependence of the total magnetic flux of a region on its polarity separation. Extrapolating this relationship to zero total flux leads to an X intercept of about 25 Mm in polarity separation. The average residual rotation rates of regions depend upon the polarity separation in the sense that larger separations correspond to slower rotation rates (except for small values of separation, which are affected by region complexity). In the case of sunspots, the result that smaller individual spots rotate faster than larger spots is confirmed and quantified. It is shown also that smaller spot groups rotate faster than larger groups, but this is a much weaker effect than that for individual spots. It is suggested that the principal effect is for spots, and that this individual spot effect is responsible for much or all of the group effect, including that attributed in the past to group age. Although larger spot groups have larger polarity separations, it is shown that the rotation rate-polarity separation effect is the opposite in groups than one finds in plages: groups with larger polarity separations rotate faster than those with smaller separations. This anomalous effect may be related to the evolution of plages and spot groups, or it may be related to connections with subsurface toroidal flux tubes. It is suggested that the polarity separation is a parameter of solar active regions that may shed some light on their origin and evolution.Operated by the Association of Universities for Research in Astronomy, Inc., under Cooperative Agreement with the National Science Foundation.  相似文献   

12.
The degree of association between geoeffective (SID producing) flares (hereafter called SID flares) and sunspot morphology is examined. It is found that: (1) the frequency of SID flares associated with sunspot groups is linear function of sunspot area and rate of change in area; (2) the SID flare intensity is dependent on the sunspot area and on the magnetic morphology (field geometry); (3) the probability of a sunspot group being magnetically complex (henceforth called complex ratio) is a linear function of spot area, the larger this area the more likely a group is in the βγ or δ magnetic class; (4) the complex ratio exhibits the greatest degree of association to SID flare frequency. We conclude from these results that a higher frequency of D-region ionizing flares (emitting a soft X-ray flux >2 × 10?3 erg cm?2 s?1) is likely to accompany the disk transit of large area, complex spot groups. This combination of morphological factors reflects a shearing of the associated force-free magnetic field, with accumulation of free magnetic energy to power SID flares. Mutual polarity intrusion would be one observational signature of the pre-flare energy storing process.  相似文献   

13.
14.
We employ annually averaged solar and geomagnetic activity indices for the period 1960??C?2001 to analyze the relationship between different measures of solar activity as well as the relationship between solar activity and various aspects of geomagnetic activity. In particular, to quantify the solar activity we use the sunspot number R s, group sunspot number R g, cumulative sunspot area Cum, solar radio flux F10.7, and interplanetary magnetic field strength IMF. For the geomagnetic activity we employ global indices Ap, Dst and Dcx, as well as the regional geomagnetic index RES, specifically estimated for the European region. In the paper we present the relative evolution of these indices and quantify the correlations between them. Variations have been found in: i) time lag between the solar and geomagnetic indices; ii) relative amplitude of the geomagnetic and solar activity peaks; iii) dual-peak distribution in some of solar and geomagnetic indices. The behavior of geomagnetic indices is correlated the best with IMF variations. Interestingly, among geomagnetic indices, RES shows the highest degree of correlation with solar indices.  相似文献   

15.
Five days of coordinated observation were carried out from 24–29 September, 1987 at Big Bear and Huairou Solar Observatories. Longitudinal magnetic fields of an p sunspot active region were observed almost continuously by the two observatories. In addition, vector magnetic fields, photospheric and chromospheric Doppler velocity fields of the active region were also observed at Huairou Solar Observatory. We studied the evolution of magnetic fields and mass motions of the active region and obtained the following results: (1) There are two kinds of Moving Magnetic Features (MMFs). (a) MMFs with the same magnetic polarity as the center sunspot. These MMFs carry net flux from the spot, move through the moat, and accumulate at the moat's outer boundary. (b) MMFs in pairs of mixed polarity. These MMFs are not responsible for the decay of the spot since they do not carry away the net flux. MMFs in category (b) move faster than those of (a). (2) The speed of the mixed polarity MMFs is larger than the outflow measured by photospheric Dopplergrams. The uni-polar MMFs are moving at about the same speed as the Doppler outflow. (3) The chromospheric velocity is in approximately the opposite direction from the photospheric velocity. The photospheric Doppler flow is outward; chromospheric flow is inward. We also found evidence that downward flow appears in the photospheric umbra; in the chromosphere there is an upflow.  相似文献   

16.
An Abelian Higgs model of sunspot generalized in a Chern-Simons-like fashion is discussed. It is shown, in particular, that both themagnetic andelectric fields are present inside the sunspot, and that the latterrotates. One demonstrates that the total angular momentum of a static, cylindrically symmetric sunspot is proportional top 2, wherep — an integer — stands for the number of magnetic fluxquanta carried by the spot. Finally, the behaviour of the Higgs field amplitude, magnetic and electric field strengths are illustrated for the spots carrying one to five flux quanta, all having the penumbra-to-umbra radius ratio of the value .  相似文献   

17.
Digitized Mount Wilson sunspot data from 1917 to 1985 are analyzed to examine tilt angles determined from the area-weighted positions of leading and following sunspots. These spot group tilt angles are examined in relation to other group characteristics to give information which may relate to the formation and evolution of sunspot groups and the magnetic connection of groups to subsurface magnetic flux tubes. The average tilt angle of all 24816 (multiple-spot) group observations in this study is found to be + 4.2 ± 0.2 deg, where the positive sign signifies that the leading spots lie equatorward of the following spots. Sunspot group areas are significantly larger on average for groups nearer the average tilt angle, which is similar to a result found earlier for active region plages. Average tilt angles are found to be larger at higher latitudes, confirming earlier results. There is a strong negative correlation between average daily latitudinal motion (plus to poles) and group tilt angle. That is, for groups within about 40 deg of the average tilt angle, smaller tilt angles are associated with more positive (poleward) daily drift. Groups nearest the average tilt angle rotate the fastest, on average, the amplitude differences being between about +0.1 and – 0.1 deg day–1 for groups near and far from the average tilt angle, respectively. Groups with tilt angles near the average show a negative daily separation change between leading and following spots of close to 4 Mm day–1 on average. Groups on either side of the average tilt angle show spot separations that are on average more positive. A similar effect is not seen for the daily variations of group areas. These results are discussed in relation to analogous recent results for active region magnetic fields. More evidence is found for a qualitative difference between the magnetic fields of sunspots and of plages, relating, perhaps, to a difference in subsurface connection of the field lines or to different physical mechanisms that may play a role for fields of different field strengths.Operated by the Association of Universities for Research in Astronomy, Inc., under Cooperative Agreement with the National Science Foundation.  相似文献   

18.
Large sunspot areas correspond to dips in the total solar irradiance (TSI), a phenomenon associated with the local suppression of convective energy transport in the spot region. This results in a strong correlation between sunspot area and TSI. During the growth phase of a sunspot other physics may affect this correlation; if the physical growth of the sunspot resulted in surface flows affecting the temperature, for example, we might expect to see an anomalous variation in TSI. In this paper we study NOAA active region 8179, in which large sunspots suddenly appeared near disk center, at a time (March 1998) when few competing sunspots or plage regions were present on the visible hemisphere. We find that the area/TSI correlation does not significantly differ from the expected pattern of correlation, a result consistent with a large thermal conductivity in solar convection zone. In addition we have searched for a smaller-scale effect by analyzing white-light images from MDI (the Michelson Doppler Imager) on SOHO. A representative upper-limit energy consistent with the images is on the order of 3×1031 ergs, assuming the time scale of the actual spot area growth. This is of the same order of magnitude as the buoyant energy of the spot emergence even if it is shallow. We suggest that detailed image analyses of sunspot growth may therefore show `transient bright rings' at a detectable level.  相似文献   

19.
From the gyroresonance brightness temperature spectrum of a sunspot, one can determine the magnetic field strength by using the property that microwave brightness is limited above a frequency given by an integer-multiple of the gyrofrequency. In this paper, we use this idea to find the radial distribution of magnetic field at the coronal base of a sunspot in the active region, NOAA 4741. The gyroresonance brightness temperature spectra of this sunspot are obtained from multi-frequency interferometric observations made at the Owens Valley Radio Observatory at 24 frequencies in the range of 4.0–12.4 GHz with spatial resolution 2.2″–6.8″. The main results of present study are summarized as follows: first, by comparison of the coronal magnetic flux deduced from our microwave observation with the photospheric magnetic flux measured by KPNO magnetograms, we show that theo-mode emission must arise predominantly from the second harmonic of the gyrofrequency, while thex-mode arises from the third harmonic. Second, the radial distribution of magnetic fieldsB(r) at the coronal base of this spot (say, 2000–4000 km above the photosphere) can be adequately fitted by $$B(r) = 1420(1 \pm 0.080)\exp \left[ { - \left( {\frac{r}{{11.05''(1 \pm 0.014)}}} \right)^2 } \right]G,$$ wherer is the radial distance from the spot center at coronal base. Third, it is found that coronal magnetic fields originate mostly from the photospheric umbral region. Fourth, although the derived vertical variation of magnetic fields can be approximated roughly by a dipole model with dipole moment 1.6 × 1030 erg G?1 buried at 11000 km below the photosphere, the radial field distribution at coronal heights is found to be more confined than predicted by the dipole model.  相似文献   

20.
An examination of the tilt angles of multi-spot sunspot groups and plages shows that on average they tend to rotate toward the average tilt angle in each hemisphere. This average tilt angle is about twice as large for plages as it is for sunspot groups. The larger the deviation from the average tilt angle, the larger, on average, is the rotation of the magnetic axis in the direction of the average tilt angle. The rate of rotation of the magnetic axis is about twice as fast for sunspot groups as it is for plages. Growing plages and spot groups rotate their axes significantly faster than do decaying plages and spot groups. There is a latitude dependence of this effect that follows Joy's law. The fact that these tilt angles move toward the average tilt angle and not toward 0 deg (the east-west orientation), combined with other results presented here, suggest that a commonly accepted view of the origin of active region magnetic flux at the solar surface may have to be re-examined.Operated by the Association of Universities for Research in Astronomy, Inc., under Cooperative Agreement with the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号