首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Abstract— Possible evidence for the presence of 248Cm in the early Solar System was reported from fission gas studies (Rao and Gopalan, 1973) and recently from studies of very high nuclear track densities (≥ 5 × 10g cm?2) in the merrillite of the H4 chondrite Forest Vale (F. V.) (Pellas et al., 1987). We report here an analysis of the isotopic abundances of xenon in F. V. phosphates and results of track studies in phosphate/pyroxene contacts. The fission xenon isotopic signature clearly identifies 244Pu as the extinct progenitor. We calculate an upper limit 248Cm/244Pu < 1.5 × 10?3 at the beginning of Xe retention in F. V. phosphates. This corresponds to an upper limit of the ratio 248Cm/235U ≤ 5 × 10?5, further constraining the evidence for any late addition of freshly synthesized actinide elements just prior to Solar System formation. The fission track density observed after annealing the phosphates at 290 °C (1 hr, which essentially erases spallation recoil tracks) is also in agreement with the 244Pu abundance inferred from fission Xe. The spallation recoil tracks produced during the 76 Ma cosmic-ray exposure account for the very high track density in merrillites.  相似文献   

2.
A new composition of primordial terrestrial xenon is derived, on the assumption that it lies on an extension of the mixing line between solar Xe and anomalous (CCF) Xe in carbonaceous chondrites. With this composition, the apparent fission components in atmospheric and well gas Xe become larger, and resemble 244Pu fission xenon.  相似文献   

3.
Abstract— A review of problems related to Xe isotopic abundances in meteorites and terrestrial materials leads to four postulates which should be taken into account to build a model of the Earth's accretion and early evolution. 1. The pre-planetary accretion time scale was shorter than the 129I half-life, 17 Ma, so the initial ratio of 129I/127I had not been decreased considerably when planetary accretion started; therefore, this must also be the case for the 244Pu abundance. 2. The initial relative abundance of involatile refractory 244Pu in proto-planetary materials should be the same as in chondrites, that is, 244Pu/238U = 0.0068; this value corresponds to initial 244Pu 0.30 ppb in the bulk silicate earth. In contrast, I is a highly volatile element; its initial abundance, accretion history and even the present-day mean concentrations in principal terrestrial reservoirs are poorly known. 3. There is much less fission Xe in the upper mantle, crust, and atmosphere than is predictable from the fission of 244Pu (Xe(Pu)) based on the above argument. Therefore, Xe(Pu) has been mainly released from these reservoirs. 4. A mechanism for Xe(Pu) escape from the complementary upper mantle-crust-atmosphere reservoirs, for example, atmospheric escape via collisions of a growing Earth with large embryos and/or hydrodynamic hydrogen flux, etc., operated during the Earth's accretion. These postulates have been used as a background for a balance model of homogeneous Earth accretion which envisages: growth of the Earth due to accumulation of planetesimals; fractionation inside the Earth and segregation of the core; degassing via collision and fractionation; and escape of volatiles from the atmosphere. During the post-accretion terrestrial history, the processes described by the model are continuous fractionation, degassing and recycling of the upper mantle and crust. The lower mantle is considered as an isolated reservoir. Depending on the scenario invoked, the accretion time scale varies within the limits of 50–200 Ma. In the light of recent experimental data, the latter value is inferred to the most realistic version which explains a high Xe(U)/Xe(Pu) ratio in the upper mantle. Contrary to previous suggestions, the 129I-129Xe subsystem is considered to be meaningless with regard to the terrestrial accretion time scale. The terrestrial inventory of 129Xe(I) is controlled by the initial abundance of volatile elements (including I and Xe) in proto-terrestrial materials and the subsequent degassing history of the Earth. The residence time of a volatile element (e.g., Xe) in the bulk mantle (bm) during accretion, < t (Xe)bm>, is approximated by the ratio of < t (Xe)bm> m bm(t)/φbm, mf ≤ 10 Ma, where m bm(t) is the mantle mass, and φbm, mf is the rate of metal/silicate fractionation, which provided segregation of the core; φbm, mf is determined by involatile siderophile element abundances in the upper mantle. This relationship implies a link between the abundance of involatile siderophile and volatile incompatible elements. A short <t(Xe)bm> reflects a high degassing rate due to extremely high φbm, mf 1020 g/year. A small ratio of the atmospheric amount of Xe over the total amount of this gas in prototerrestrial materials, ≤0.01, is in accord with the process of Xe escape and fractionation in the primary Earth atmosphere.  相似文献   

4.
Noble gases in the five angrites Northwest Africa (NWA) 1296, 2999, 4590, 4801, and 4931 were analyzed with total melting and stepwise heating methods. The noble gases consist of in situ components: spallogenic, radiogenic, nucleogenic, and fission. Cosmic-ray exposure ages of the angrites (including literature data) spread uniformly from <0.2 to 56 Ma, and coarse-grained angrites have longer exposure ages than fine-grained angrites. It is implied that the parent bodies from which the two subgroups of angrites were ejected are different and have distinct orbital elements. The 244Pu-136Xe relative ages of the angrites obtained by using 244Pu/150Nd ratios are as old as that of Angra dos Reis, reflecting their early formation. On the other hand, another method to obtain 244Pu-136Xe relative ages, using fission 136Xe, spallogenic 126Xe, and Ba/REE ratios, yields systematically older 244Pu-136Xe ages than those obtained by using 244Pu/150Nd ratios, which is explained by apparently high Ba/REE ratios caused by Ba contamination during terrestrial weathering. The 244Pu/238U ratio at 4.56 Ga of angrites is estimated as 0.0061 ± 0.0028, which is consistent with those for chondrules, chondrites, achondrites, and a terrestrial zircon. It is suggested that initial 244Pu/238U ratio has been spatially homogeneous at least in the inner part of the early solar system.  相似文献   

5.
Abstract— We report noble gas data for the second chassignite, Northwest Africa (NWA) 2737, which was recently found in the Moroccan desert. The cosmic ray exposure (CRE) age based on cosmogenic 3He, 21Ne, and 38Ar around 10–11 Ma is comparable to the CRE ages of Chassigny and the nakhlites and indicates ejection of meteorites belonging to these two families during a discrete event, or a suite of discrete events having occurred in a restricted interval of time. In contrast, U‐Th/He and K/Ar ages <0.5 Ga are in the range of radiometric ages of shergottites, despite a Sm‐Nd signature comparable to that of Chassigny and the nakhlites (Misawa et al. 2005). Overall, the noble gas signature of NWA 2737 resembles that of shergottites rather than that of Chassigny and the nakhlites: NWA 2737 does not contain, in detectable amount, the solar‐like xenon found in Chassigny and thought to characterize the Martian mantle nor apparently fission xenon from 244Pu, which is abundant in Chassigny and some of the nakhlites. In contrast, NWA 2737 contains Martian atmospheric noble gases trapped in amounts comparable to those found in shergottite impact glasses. The loss of Martian mantle noble gases, together with the trapping of Martian atmospheric gases, could have occurred during assimilation of Martian surface components, or more likely during shock metamorphism, which is recorded in the petrology of this meteorite.  相似文献   

6.
Abstract— In a study of the isotopic signatures of trapped Xe in shock-produced glass of shergottites and in ALH 84001, we observe three components: (1) modern Martian atmospheric Xe that is isotopically mass fractionated relative to solar Xe, favoring the heavy isotopes, (2) solar-like Xe, as previously observed in Chassigny, and (3) an isotopically fractionated (possibly ancient) component with little or no radiogenic 129Xerad. In situ-produced fission and spallation components are observed predominantly in the high-temperature steps. Heavy N signatures in ALH 84001, EET 79001 and Zagami reveal Martian atmospheric components. The low-temperature release of ALH 84001 shows evidence for the presence of a light N component (δ15N ≤ -21%), which is consistent with the component observed in the other Shergotty, Nakhla and Chassigny (SNC) group meteorites. The highest observed 129Xe/130Xe ratio of 15.60 in Zagami and EET 79001 is used here to represent the present Martian atmospheric component, and the isotopic composition of this component is compared with other solar system Xe signatures. The 129Xe/130Xe ratios in ALH 84001 are lower but appear to reflect varying mixing ratios with other components. The consistently high 129Xe/130Xe ratios in rocks of different radiometric ages suggest that Martian atmospheric Xe evolved early on. As already concluded in earlier work, only a small fission component is observed in the Martian atmospheric component. Assuming that a chondritic 244Pu/129I initial ratio applies to Mars, this implies that either Pu-derived fission Xe is retained in the solid planet (in fact, in situ-produced fission Xe is observed in ALH 84001) or may reflect a very particular degassing history of the planet.  相似文献   

7.
We report new data from Pesyanoe‐90,1 (dark lithology) on the isotopic signature of solar wind (SW) Xe as recorded in this enstatite achondrite which represents a soil‐breccia of an asteroidal regolith. The low temperature (≤800°C) steps define the Pesyanoe‐S xenon component, which is isotopically consistent with SW Xe reported for the lunar regolith. This implies that the SW Xe isotopic signature was the same at two distinct solar system locations and, importantly, also at different times of solar irradiation. Further, we compare the calculated average solar wind “SW‐Xe” signature to Chass‐S Xe, the indigenous Xe observed in SNC (Mars) meteorites. Again, a close agreement between these compositions is observed, which implies that a mass‐dependent differential fractionation of Xe between SW‐Xe and Chass‐S Xe is >1.5%o per amu. We also observe fractionated (Pesyanoe‐F) Xe and Ar components in higher temperature steps and we document a fission component due to extinct 244Pu. Interestingly, the Pesyanoe‐F Xe component is revealed only at the highest temperatures (>1200°C). The Pesyanoe‐F gas reveals Xe isotopic signatures that are consistent with lunar solar energetic particles (SEP) data and may indicate a distinct solar energetic particle radiation as was inferred for the moon. However, we cannot rule out fractionation processes due to parent body processes. We note that ratios 36Ar/38Ar≤5 are also consistent with SEP data. Calculated abundances of the fission component correlate well with radiogenic 40Ar concentrations, revealing rather constant 244Pu/K ratios in Pesyanoe, and separates thereof, and indicate that both components were retained. We identify a nitrogen component (δ15N = 44%o) of non‐solar origin with an isotopic signature distinct from indigenous N (δ15N = ?33%o). While large excesses at 128Xe and 129Xe are observed in the lunar regolith samples, these excesses in Pesyanoe are small. On the other hand, significant 126Xe isotopic excesses, comparable to relative excesses observed in lunar soils and breccias, are prominent in the intermediate temperature steps of Pesyanoe‐90,1.  相似文献   

8.
Abstract— Based on 43 documented drill core samples of the H5 chondrite Jilin, the depth profile of track densities was investigated. The study of olivine and pyroxene crystals extracted from the two drill cores A and B of the main fragment no. 1 yields a track background for the Jilin interior of 150 ± 90 cm?2. To estimate the contribution of different track origins, the U microdistribution of sample sections and single grain sections was mapped by neutron-induced 235U-fission using high-purity quartz glass detectors. The average U content of 0.59 ± 0.22 ppb for pyroxenes and 0.12 ± 0.06 ppb for olivines is consistent with the observed fission track background in these minerals. There are no indications of spontaneous fission of 244Pu, secondary mobilisation of U in the bulk sample, or substantial track annealing. As deduced from the calculated fission track density, the track contribution from galactic cosmic rays is negligible in the core samples investigated.  相似文献   

9.
We analyzed noble gases in nine individual chondrules, an assemblage of small chondrules, and four whole‐rock samples of the Allende CV3 chondrite. Major elements were also determined for five chondrules. The cosmic ray exposure ages are calculated from cosmogenic 3He to be 5.17 ± 0.38 and 5.15 ± 0.25 Myr for the averages of the chondrules and whole rocks, respectively, showing no significant pre‐exposure evidence for the studied chondrules. Large amounts of 36Ar, 80,82Kr, and 128Xe produced by neutron capture are observed in most samples; the abundances of these nuclides are correlated among the samples. The epithermal neutron flux and neutron slowing down density are calculated based on [80Kr]n, from which a sample depth of about 30 cm can be calculated. The measured chondrules contain variable amounts of radiogenic 129Xe. The abundance ratios of radiogenic 129Xe to neutron capture–produced 128Xe are rather constant among the studied chondrules; four chondrules give more precise ratios at the high‐temperature fractions, ranging from 1920 ± 80 to 2280 ± 140, which corresponds to a time difference of 3.9 ± 2.4 Myr. It is noticeable that most chondrules also contain 244Pu‐derived fission Xe. The average 244Pu/238U ratio for nine chondrules is 0.0069 ± 0.0018, which agrees well with the preferred ratio reported for chondrites.  相似文献   

10.
We suggest that the unidentified fission xenon component in carbonaceous chondrites may be attributable to the decay of the extinct radioactivities250Cm and, to a lesser extent,258Cm. Two assumptions are fundamental to this picture: (1) these relatively short-lived actinides (1.13×104 and 3.7×105 yr, respectively) were incorporated into grains in the vicinity of their supernova birthplace (prior to decay); and (2) such grains and their trapped anomalous xenon component were incorporated intact into the meteorites. Recognizing the many substantial uncertainties associated with our suggested model, we emphasize the importance of precise experimental determinations of the mass spectra of fission xenon resulting from250Cm and248Cm decay.  相似文献   

11.
The results of the determination of the fission track age of the Brahin pallasite are presented. Crystals of phosphates (stanfieldites), with an enhanced uranium concentration, were found directly in the investigated samples. Fossil tracks in them are represented by two generations. The distribution and partial annealing of first-generation track lengths point to a shock/thermal event at an early stage in the cosmic history of the pallasite. The value of the fission track age, registering the time of its passage, was computed from second-generation tracks. It was shown that the second generation is represented mainly by tracks of the spontaneous fission of 238U and 244Pu nuclei (Pu/U 4). The calculations performed made it possible to establish that the last intensive thermal event in the cosmic history of the Brahin pallasite occurred 4.26–4.20 billion years ago. The temperature of the reheating of its parent body did not rise above 500°C. The excellently preserved character of the second-generation tracks provides evidence that the pallasite underwent subsequent cosmic evolution in mild conditions.  相似文献   

12.
Abstract— Chemical and mineral analysis of the Bhawad chondrite, which fell in Rajasthan in 2002, suggest that this stone belongs to LL6 group of chondrites. Based on helium, neon, and argon isotopes, it has a cosmic ray exposure age of 16.3 Ma. The track density in the olivines shows a narrow range of 1.7–6.8 times 106/cm2. The 22Na/26Al ratio of 1.13 is about 25% lower than the solar cycle average value of about 1.5, but is consistent with irradiation of the meteoroid to modulated galactic cosmic ray fluxes as expected for a fall around the solar maximum. The cosmogenic records indicate a pre‐atmospheric radius of about 7.5 cm. Based on U/Th‐4He and K‐40Ar, the gas retention ages are low (about 1.1 Ga), indicating a major thermal event or shock event that lead to the complete loss of radiogenic 4He and 40Ar and the partial loss of radiogenic 129Xe and fission Xe from 244Pu.  相似文献   

13.
Abstract— Isotopic signatures and concentrations of xenon have been measured in Shergotty mineral separates by laser step heating. Martian atmosphere and ‘martian interior’ xenon are present, as is a spallation component. Martian atmospheric xenon is 5–10 times more concentrated in opaque minerals (magnetite, ilmenite, and pyrrhotite) and maskelynite than in pyroxenes, perhaps reflecting grain size variation. This is shown to be consistent with shock incorporation. A component consisting of solar xenon with a fission contribution, similar to components previously identified in martian meteorites and associated with the martian interior, is best defined in the pyroxene‐dominated separates. This component exhibits a consistent 129Xe (129Xe/132Xe ?1.2) excess over solar/planetary (129Xe/132Xe ?1.04). We suggest that gas present in the melt, perhaps a mixture of interior xenon and martian atmosphere, was incorporated into the pyroxenes in Shergotty as the minerals crystallized.  相似文献   

14.
Abstract– Noble gas isotopic compositions were measured for a eucritic pebble and bulk material of a silicate–metal mixture from the Vaca Muerta mesosiderite as well as pyroxene and plagioclase separated from the eucritic pebble by total melting and stepwise heating methods. Trapped noble gases were degassed completely by a high‐temperature thermal event, probably at the formation of the Vaca Muerta parent body (VMPB). The presence of fissiogenic Xe isotopes from extinct 244Pu in the bulk samples might be a result of rapid cooling from an early high‐temperature metamorphism. High concentrations of cosmogenic noble gases enabled us to determine precise isotopic ratios of cosmogenic Kr and Xe. Spallogenic Ne from Na and unique Ar isotopic compositions were observed. The 81Kr‐Kr exposure age of 168 ± 8 Myr for the silicate pebble is distinctly longer than the age of 139 ± 8 Myr for the bulk samples. The precursor of the pebble had been irradiated on the surface of the VMPB for more than 60 Myr (first stage irradiation), with subsequent incorporation into bulk materials approximately 4 Gyr ago. The Vaca Muerta meteorite was excavated from the VMPB 140 Myr ago (second stage irradiation). Relative diffusion rates among the cosmogenic Ar, Kr, and Xe based on data obtained by stepwise heating indicate that Kr and Xe can be partially retained in pyroxene and plagioclase under the condition that resets the K‐Ar system. This result supports the presence of fission Xe and of excess concentration of cosmogenic Kr, which could have survived the thermal event approximately 3.8 Gyr ago.  相似文献   

15.
Simulations of the neutron background for future large-scale particle dark matter detectors are presented. Neutrons were generated in rock and detector elements via spontaneous fission and (α,n) reactions, and by cosmic-ray muons. The simulation techniques and results are discussed in the context of the expected sensitivity of a generic liquid xenon dark matter detector. Methods of neutron background suppression are investigated. A sensitivity of 10−9–10−10 pb to WIMP-nucleon interactions can be achieved by a tonne-scale detector.  相似文献   

16.
Rare gas isotopic analyses have been performed on both pile-irradiated and unirradiated samples from Boulder 1, Station 2. Two samples from rock 72255, the Civet Cat clast and a sample of adjacent breccia, have concordant40Ar-39 Ar ages of 3.99±0.03 b.y. and 4.01±0.03 b.y., respectively. Several samples from rock 72275 have complex thermal release patterns with no datable features, but an intermediate-temperature plateau from the dark rim material of the Marble Cake clast yields an age of 3.99±0.03 b.y. - indistinguishable from the age of rock 72255. We regard these ages as upper limits on the time of the Serenitatis basin-forming event. The absence of fossil solar-wind trapped gases in the breccia samples implies that a prior existence for the boulder as near-surface regolith material can be regarded as extremely unlikely. Instead, the small trapped rare-gas components have isotopic and elemental compositions diagnostic of the terrestrial-type trapped component which has previously been identified in several Apollo 16 breccias and in rock 14321. Excess fission Xe is found in all Boulder 1 samples in approximately 1:1 proportions with Xe from spontaneous fission of238U. This excess fission Xe is attributed to spontaneous fission of244Puin situ. Cosmic-ray exposure ages for samples from rocks 72215 and 72255 are concordant, with mean81Kr-Kr exposure ages of 41.4±1.4 m.y. and 44.1±3.3 m.y., respectively. However a distinctly different81Kr-Kr exposure age of 52.5±1.4 m.y. is obtained for samples from rock 72275. A two-stage exposure model is developed to account for this discordance and for the remaining cosmogenic rare-gas data. The first stage was initiated at least 55 m.y. ago, probably as a result of the excavation of the boulder source-crop. A discrete change in shielding depths ~ 35 m.y. ago probably corresponds to the dislodgement of Boulder 1 from the South Massif and emplacement in its present position.  相似文献   

17.
Abstract— The isotopic composition and concentrations of noble gases were measured in the eucrites Bereba, Cachari, Caldera, Camel Donga, Chervony Kut, Ibitira, Jonzac, Juvinas, Millbillillie, Moore County, Padvarninkai, Pasamonte, Pomozdino, Serra de Magé, Sioux County, and Vetluga. The distribution of 81Kr-Kr exposure ages shows “clusters” at (7 ± 1) Ma, (10 ± 1) Ma, (14 ± 1) Ma, (22 ± 2) Ma, and (37 ± 1) Ma that agree with those for howardites, eucrites, and diogenites (HED) at (6 ± 1) Ma, (12 ± 2) Ma, (21 ± 4) Ma, and (38 ± 8) Ma. This most likely indicates a common origin of HED meteorites. Correlation equations for the shielding-sensitive cosmogenic ratios 78Kr/83Kr, 80Kr/83Kr, 82Kr/83Kr, and 124Xe/131Xe were obtained. Comparison with data from simulation experiments suggests that most eucrites were exposed to the cosmic radiation as somewhat large meteoroids with diameters of ~1 m or more. The shielding-dependence of the 78Kr and 126Xe production rates was found to be small, with a few exceptions the variations aren <10%–15%. Concentrations of spallogenic 3He indicate diffusive losses of up to 70% that can be, in first approximation, described by a model of quasi-continuous losses during the exposure to the cosmic radiation with a loss rate of the order of ~3 × 10?8 a?1. Radiogenic 4He shows additional substantial losses that occurred at the time of, or prior to, the separation of the meteoroids from their parent body. Typical 40Ar retention in eucrites is 50%–60% which corresponds to a 40Ar-K retention age of 3.4–3.6 Ga. In all analyzed unbrecciated eucrites, the retention is distinctly larger (70%–100%). The 244Pu fission ratio (86Kr/136Xe)Pu, was evaluated from the data on Pomozdino samples to be 0.039 ± 0.014.  相似文献   

18.
Abstract The 244Pu-fission-136Xe retention ages of howardites, eucrites, and diogenites (HEDs) show that these meteorites have retained Xe since they were formed about 4500 Ma ago. For the Garland diogenite and the Millbillillie eucrite, we obtain fission Xe ages of 4525 ± 40 Ma and 4486 ± 40 Ma, respectively. If Xe isotope data reported by other workers are also considered, we conclude that the monomict equilibrated eucrites Camel Donga, Juvinas, and Millbillillie formed about 40 Ma later than Pasamonte, a polymict unequilibrated eucrite. Stannern, a monomict equilibrated brecciated eucrite, yields a 244Pu-136Xe age of 4442 Ma. The 40K-40Ar retention ages fall, for most HEDs, into the 1000–4000 Ma age range, indicating that 40Ar is generally not well retained. The good retentivity for Xe of HEDs allows us to study primordial trapped Xe in these meteorites. Except for Shalka, in which other authors found Kr and Xe from terrestrial atmospheric contamination only, we present for the first time Kr and Xe isotopic data for diogenites. We studied Ellemeet, Garland, Ibbenbühren, Shalka, and Tatahouine. We show that Tatahouine contains two types of trapped Xe: a terrestrial contamination acquired by an irreversible adsorption process and released at pyrolysis temperatures up to 800 °C, and indigenous primordial Xe released primarily between 800 °C and 1200 °C. The isotopic composition of this primordial Xe is identical to that proposed earlier to be present in primitive achondrites and termed U-Xe or “primitive” Xe, but it has not been directly observed in achondrites until now. This type of primitive Xe is important for understanding the evolution of other Xe reservoirs in the Solar System. Terrestrial atmospheric Xe (corrected for fission Xe and radiogenic Xe from outgassing of the Earth) is related to it by a mass dependent fractionation favoring the heavier Xe isotopes. This primitive Xe is isotopically very similar to solar Xe except for 134Xe and 136Xe. Solar Xe appears to contain an enrichment of unknown origin for these isotopes relative to the primitive Xe.  相似文献   

19.
Donald D. Clayton 《Icarus》1977,32(3):255-269
I evaluate several nuclear and chemical problems related both to the recent scenario suggesting that the known isotopic anomalies in the solar system have resulted from a supernova near the protosolar nebula and to the model of extinct presolar carriers. Major features include: (1) Large quantities of extinct 248Cm and 36Cl are predicted from the Cameron-Truran model of a minor injection about 106 yr before condensation; (2) an extinct-carrier model of 26Mg is set forth in detail with a solid chemistry picture of the early solar system; (3) a major thermonuclear supernova responsible for 26Al, 244Pu, and 40K would have to have occurred several million years (3 m.y.) before condensation and contributed a large fraction of the major stable chemical elements; (4) carbon isotope families are to be expected if the oxygen isotope families are due to a late injection of 16O; (5) the Earth and E meteorites may have condensed primarily in a carbon-rich nebula existing before admixtures of a major late 16O-rich mixture; (6) the extinct-presolar-carrier model is the single best explanation of all anomalies.  相似文献   

20.
Abstract– Xenon‐isotopic ratios, step‐heating release patterns, and gas concentrations of mineral separates from Martian shergottites Roberts Massif (RBT) 04262, Dar al Gani (DaG) 489, Shergotty, and Elephant Moraine (EET) 79001 lithology B are reported. Concentrations of Martian atmospheric xenon are similar in mineral separates from all meteorites, but more weathered samples contain more terrestrial atmospheric xenon. The distributions of xenon from the Martian and terrestrial atmospheres among minerals in any one sample are similar, suggesting similarities in the processes by which they were acquired. However, in opaque and maskelynite fractions, Martian atmospheric xenon is released at higher temperatures than terrestrial atmospheric xenon. It is suggested that both Martian and terrestrial atmospheric xenon were initially introduced by weathering (low temperature alteration processes). However, the Martian component was redistributed by shock, accounting for its current residence in more retentive sites. The presence or absence of detectable 129Xe from the Martian atmosphere in mafic minerals may correspond to the extent of crustal contamination of the rock’s parent melt. Variable contents of excess 129Xe contrast with previously reported consistent concentrations of excess 40Ar, suggesting distinct sources contributed these gases to the parent magma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号