首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We observed active pahoehoe lobes erupted on Kilauea during May-June 1996, and found a range of emplacement styles associated with variations in local effusion rate, flow velocity, and strain rate. These emplacement styles were documented and quantified for comparison with earlier laboratory experiments.At the lowest effusion rates, velocities, and strain rates, smooth-surfaced lobes were emplaced via swelling, where new crust formed along an incandescent lip at the front of the lobe and the rest of the lobe was covered with a dark crust. At higher effusion rates, strain rates and velocities, lobes were emplaced through tearing or cracking. Tearing was characterized by ripping of the ductile crust near the initial breakout point, and most of the lobe surface was incandescent during its emplacement. This mechanism was observed to generate both smooth-surfaced lobes, and, when the lava encountered an obstacle, folded lobes. Cracking lobes were similar to those emplaced via tearing, but involved breaking of a thicker, brittle crust at the initial breakout of the lobe and therefore required somewhat higher flow rates than did tearing. Cracking lobes typically formed ropy folds in the center of the lobe, and smooth margins. At the highest effusion rates, strain rates, and flow velocities, the lava formed open channels with distinct levees.The final lobe morphologies were compared to results from laboratory simulations, which were designed to infer effusion rate from final flow morphology, to quantitatively test the laboratory results on the scale of individual natural pahoehoe lobes. There is general agreement between results from laboratory simulations and natural lavas on the scale of individual pahoehoe lobes, but there are disparities between laboratory flows and lava flows on the scale of an entire pahoehoe lava flow field.Editorial responsibility: A. Woods  相似文献   

2.
During the 1969–1974 Mauna Ulu eruption on Kilauea's upper east rift zone, lava tubes were observed to develop by four principal processes: (1) flat, rooted crusts grew across streams within confined channels; (2) overflows and spatter accreted to levees to build arched roofs across streams; (3) plates of solidified crust floating downstream coalesced to form a roof; and (4) pahoehoe lobes progressively extended, fed by networks of distributaries beneath a solidified crust. Still another tube-forming process operated when pahoehoe entered the ocean; large waves would abruptly chill a crust across the entire surface of a molten stream crossing through the surf zone. These littoral lava tubes formed abruptly, in contrast to subaerial tubes, which formed gradually. All tube-forming processes were favored by low to moderate volume-rates of flow for sustained periods of time. Tubes thereby became ubiquitous within the pahoehoe flows and distributed a very large proportionof the lava that was produced during this prolonged eruption. Tubes transport lava efficiently. Once formed, the roofs of tubes insulate the active streams within, allowing the lava to retain its fluidity for a longer time than if exposed directly to ambient air temperature. Thus the flows can travel greater distances and spread over wider areas. Even though supply rates during most of 1970–1974 were moderate, ranging from 1 to 5 m3/s, large tube systems conducted lava as far as the coast, 12–13 km distant, where they fed extensive pahoehoe fields on the coastal flats. Some flows entered the sea to build lava deltas and add new land to the island. The largest and most efficient tubes developed during periods of sustained extrusion, when new lava was being supplied at nearly constant rates. Tubes can play a major role in building volcanic edifices with gentle slopes because they can deliver a substantial fraction of lava erupted at low to moderate rates to sites far down the flank of a volcano. We conclude, therefore, that the tendency of active pahoehoe flows to form lava tubes is a significant factor in producing the common shield morphology of basaltic volcanoes.  相似文献   

3.
Effusion rate is a primary measurement used to judge the expected advance rate, length, and hazard potential of lava flows. At basaltic volcanoes, the rapid draining of lava stored in rootless shields and perched ponds can produce lava flows with much higher local effusion rates and advance velocities than would be expected based on the effusion rate at the vent. For several months in 2007–2008, lava stored in a series of perched ponds and rootless shields on Kīlauea Volcano, Hawai'i, was released episodically to produce fast-moving 'a'ā lava flows. Several of these lava flows approached Royal Gardens subdivision and threatened the safety of remaining residents. Using time-lapse image measurements, we show that the initial time-averaged discharge rate for one collapse-triggered lava flow was approximately eight times greater than the effusion rate at the vent. Though short-lived, the collapse-triggered 'a'ā lava flows had average advance rates approximately 45 times greater than that of the pāhoehoe flow field from which they were sourced. The high advance rates of the collapse-triggered lava flows demonstrates that recognition of lava accumulating in ponds and shields, which may be stored in a cryptic manner, is vital for accurately assessing short-term hazards at basaltic volcanoes.  相似文献   

4.
The 1614–1624 lava flow of Mt. Etna was formed during a long-duration flank eruption involving predominantly pahoehoe flows which produced unusual surface features including mega-tumuli (here defined) and terraces. Detailed mapping of the flow units, surface features, and associated tubes reveals a complex sequence of emplacement for the field. The stair-stepped terraces appear to have been formed as a consequence of self-damming of tube-fed flows which developed «perched» ponds of lava. Surges of lava through tubes elevated sections of crusted lava at the distal ends of the flow to generate tumuli, some as high as 130 m, as a consequence of pressure via «hydrostatic head» conditions within the tube. Although pahoehoe lavas and the related features described here are atypical of Mt. Etna, they may reflect styles of eruption and lava emplacement found on volcanoes elsewhere.  相似文献   

5.
The use of a hand-held thermal camera during the 2002–2003 Stromboli effusive eruption proved essential in tracking the development of flow field structures and in measuring related eruption parameters, such as the number of active vents and flow lengths. The steep underlying slope on which the flow field was emplaced resulted in a characteristic flow field morphology. This comprised a proximal shield, where flow stacking and inflation caused piling up of lava on the relatively flat ground of the vent zone, that fed a medial–distal lava flow field. This zone was characterized by the formation of lava tubes and tumuli forming a complex network of tumuli and flows linked by tubes. Most of the flow field was emplaced on extremely steep slopes and this had two effects. It caused flows to slide, as well as flow, and flow fronts to fail frequently, persistent flow front crumbling resulted in the production of an extensive debris field. Channel-fed flows were also characterized by development of excavated debris levees in this zone (Calvari et al. 2005). Collapse of lava flow fronts and inflation of the upper proximal lava shield made volume calculation very difficult. Comparison of the final field volume with that expecta by integrating the lava effusion rates through time suggests a loss of ~70% erupted lava by flow front crumbling and accumulation as debris flows below sea level. Derived relationships between effusion rate, flow length, and number of active vents showed systematic and correlated variations with time where spreading of volume between numerous flows caused an otherwise good correlation between effusion rate, flow length to break down. Observations collected during this eruption are useful in helping to understand lava flow processes on steep slopes, as well as in interpreting old lava–debris sequences found in other steep-sided volcanoes subject to effusive activity.  相似文献   

6.
Here, we use observations of active flows along with detailed morphometric field measurements of more than 70 tumuli on flows at Mount Etna (Italy), Kilauea, and Hualalai (US) volcanoes to constrain a previously published model that estimates the pressure needed to form tumuli. In an attempt to discover the nature and magnitude of pressure variations within active lava flow interiors, we then consider how tumuli differ from idealized circular plates. We incorporate observations of active tumuli and find that they may grow asymmetrically yet produce a symmetrical tumulus and can form where the flow path significantly changes direction. Bending models of clamped edges provide the most reasonable head estimates for the tumuli in our study. Tumulus formation requires the proper combination of cooling and effusion rate. If cooling is too extensive and effusion rate too low, the crust will provide too much resistance to bending. If cooling is too limited and effusion rates too high, crusts will not develop or have insufficient strength to resist fracture and subsequent breakouts. We do not find it surprising that tumuli are rarely found over well-established lava tubes that typically have rigid, walls/overlying crusts that exceed 2 m in thickness and provide too much resistance to bending. Silicic flows lack tumuli because the viscosity gradients within the flow are insufficient to concentrate stress in a localized area.  相似文献   

7.
The 1975 sub-terminal activity was characterised by low effusion rates (0.3–0.5 m3 s−1) and the formation of a compound lava field composed of many thousands of flow units. Several boccas were active simultaneously and effusion rates from individual boccas varied from about 10−4 to 0.25 m3s−1. The morphology of lava flows was determined by effusion rate (E): aa flows with well-developed channels and levees formed when E > 2 × 10−3 m3 s−1, small pahoehoe flows formed when 2 × 10−3 m3 s−1 >E > 5 > 10−4 m3 s−1 and pahoehoe toes formed when E < 5 × 10−4 m3 s−1. There was very little variation with time in the effusion temperature, composition or phenocryst content of the lava.New boccas were commonly formed at the fronts of mature lava flows which had either ceased to flow or were moving slowly. These secondary boccas developed when fluid lava in the interior of mature aa flows either found a weakness in the flow front or was exposed by avalanching of the moving flow front. The resulting release of fluid lava was accompanied by either partial drainage of the mature flow or by the formation of a lava tube in the parent flow. The temperature of the lava forming the new bocca decreased with increasing distance from the source bocca (0.035°C m−1). It is demonstrated from the rate of temperature decrease and from theoretical considerations that many of the Etna lavas still contained a substantial proportion of uncooled material in their interior as they came to rest. The formation of secondary boccas is postulated to be one reason why direct measurements of effusion rates tend, in general, to overestimate the total effusion rates of sub-terminal Etna lava fields.  相似文献   

8.
The initial cooling of pahoehoe flow lobes   总被引:1,自引:0,他引:1  
 In this paper we describe a new thermal model for the initial cooling of pahoehoe lava flows. The accurate modeling of this initial cooling is important for understanding the formation of the distinctive surface textures on pahoehoe lava flows as well as being the first step in modeling such key pahoehoe emplacement processes as lava flow inflation and lava tube formation. This model is constructed from the physical phenomena observed to control the initial cooling of pahoehoe flows and is not an empirical fit to field data. We find that the only significant processes are (a) heat loss by thermal radiation, (b) heat loss by atmospheric convection, (c) heat transport within the flow by conduction with temperature and porosity-dependent thermal properties, and (d) the release of latent heat during crystallization. The numerical model is better able to reproduce field measurements made in Hawai'i between 1989 and 1993 than other published thermal models. By adjusting one parameter at a time, the effect of each of the input parameters on the cooling rate was determined. We show that: (a) the surfaces of porous flows cool more quickly than the surfaces of dense flows, (b) the surface cooling is very sensitive to the efficiency of atmospheric convective cooling, and (c) changes in the glass forming tendency of the lava may have observable petrographic and thermal signatures. These model results provide a quantitative explanation for the recently observed relationship between the surface cooling rate of pahoehoe lobes and the porosity of those lobes (Jones 1992, 1993). The predicted sensitivity of cooling to atmospheric convection suggests a simple field experiment for verification, and the model provides a tool to begin studies of the dynamic crystallization of real lavas. Future versions of the model can also be made applicable to extraterrestrial, submarine, silicic, and pyroclastic flows. Received: 26 November 1994 / Accepted: 1 December 1995  相似文献   

9.
Sierra Negra volcano began erupting on 22 October 2005, after a repose of 26 years. A plume of ash and steam more than 13 km high accompanied the initial phase of the eruption and was quickly followed by a ~2-km-long curtain of lava fountains. The eruptive fissure opened inside the north rim of the caldera, on the opposite side of the caldera from an active fault system that experienced an mb 4.6 earthquake and ~84 cm of uplift on 16 April 2005. The main products of the eruption were an `a`a flow that ponded in the caldera and clastigenic lavas that flowed down the north flank. The `a`a flow grew in an unusual way. Once it had established most of its aerial extent, the interior of the flow was fed via a perched lava pond, causing inflation of the `a`a. This pressurized fluid interior then fed pahoehoe breakouts along the margins of the flow, many of which were subsequently overridden by `a`a, as the crust slowly spread from the center of the pond and tumbled over the pahoehoe. The curtain of lava fountains coalesced with time, and by day 4, only one vent was erupting. The effusion rate slowed from day 7 until the eruption’s end two days later on 30 October. Although the caldera floor had inflated by ~5 m since 1992, and the rate of inflation had accelerated since 2003, there was no transient deformation in the hours or days before the eruption. During the 8 days of the eruption, GPS and InSAR data show that the caldera floor deflated ~5 m, and the volcano contracted horizontally ~6 m. The total eruptive volume is estimated as being ~150×106 m3. The opening-phase tephra is more evolved than the eruptive products that followed. The compositional variation of tephra and lava sampled over the course of the eruption is attributed to eruption from a zoned sill that lies 2.1 km beneath the caldera floor.  相似文献   

10.
Factors which control lava flow length are still not fully understood. The assumption that flow length as mainly influenced by viscosity was contested by Walker (1973) who proposed that the length of a lava flow was dependent on the mean effusion rate, and by Malin (1980) who concluded that flow length was dependent on erupted volume. Our reanalysis of Malin's data shows that, if short duration and tube-fed flows are eliminated, Malin's Hawaiian flow data are consistent with Walker's assertion. However, the length of a flow can vary, for a given effusion rate, by a factor of 7, and by up to 10 for a given volume. Factors other than effusion rate and volume are therefore clearly important in controlling the lengths of lava flows. We establish the relative importance of the other factors by performing a multivariate analysis of data for recent Hawaiian lava flows. In addition to generating empirical equations relating flow length to other variables, we have developed a non-isothermal Bingham flow model. This computes the channel and levee width of a flow and hence permits the advance rates of flows and their maximum cooling-limited lengths for different gradients and effusion rates to be calculated. Changing rheological properties are taken into account using the ratio of yield strength to viscosity; available field measurements show that this varies systematically from the vent to the front of a lava flow. The model gives reasonable agreement with data from the 1983–1986 Pu'u Oo eruptions and the 1984 eruption of Mauna Loa. The method has also been applied to andesitic and rhyolitic lava flows. It predicts that, while the more silicic lava flows advance at generally slower rates than basaltic flows, their maximum flow lengths, for a given effusion rate, will be greater than for basaltic lava flows.  相似文献   

11.
The historical records of Kilauea and Mauna Loa volcanoes reveal that the rough-surfaced variety of basalt lava called aa forms when lava flows at a high volumetric rate (>5–10 m3/s), and the smooth-surfaced variety called pahoehoe forms at a low volumetric rate (<5–10 m3/s). This relationship is well illustrated by the 1983–1990 and 1969–1974 eruptions of Kilauea and the recent eruptions of Mauna Loa. It is also illustrated by the eruptions that produced the remarkable paired flows of Mauna Loa, in which aa formed during an initial short period of high discharge rate (associated with high fountaining) and was followed by the eruption of pahoehoe over a sustained period at a low discharge rate (with little or no fountaining). The finest examples of paired lava flows are those of 1859 and 1880–1881. We attribute aa formation to rapid and concentrated flow in open channels. There, rapid heat loss causes an increase in viscosity to a threshold value (that varies depending on the actual flow velocity) at which, when surface crust is torn by differential flow, the underlying lava is unable to move sufficiently fast to heal the tear. We attribute pahoehoe formation to the flowage of lava at a low volumetric rate, commonly in tubes that minimize heat loss. Flow units of pahoehoe are small (usually <1 m thick), move slowly, develop a chilled skin, and become virtually static before the viscosity has risen, to the threshold value. We infer that the high-discharge-rate eruptions that generate aa flows result from the rapid emptying of major or subsidiary magma chambers. Rapid near-surface vesiculation of gas-rich magma leads to eruptions with high discharge rates, high lava fountains, and fast-moving channelized flows. We also infer that long periods of sustained flow at a low discharge rate, which favor pahoehoe, result from the development of a free and unimpeded pathway from the deep plumbing system of the volcano and the separation of gases from the magma before eruption. Achievement of this condition requires one or more episodes of rapid magma excursion through the rift zone to establish a stable magma pathway.  相似文献   

12.
 The Kupaianaha vent, the source of the 48th episode of the 1983-to-present Pu'u 'O'o–Kupaianaha eruption, erupted nearly continuously from July 1986 until February 1992. This investigation documents the geophysical and geologic monitoring of the final 10 months of activity at the Kupaianaha vent. Detailed very low frequency (VLF) electromagnetic profiles across the single lava tube transporting lava from the vent were used to determine the cross-sectional area of the molten lava within the tube. Combined with measurements of lava velocity, these data provide an estimate of the lava output of Kupaianaha. In addition, lava temperatures (calculated from analysis of quenched glass) and bulk-rock chemistry were obtained for samples taken from the tube at the same site. The combined data set shows the lava flux from Kupaianaha vent declining linearly from 250 000 m3/day in April 1991 to 54 000 m3/day by November 1991. During that time surface breakouts of lava from weak points along the tube occurred progressively closer to the vent, consistent with declining efficiency in lava transport. There were no significant changes in lava temperature or in bulk MgO content during this period. Another eruptive episode (the 49th) began uprift of Kupaianaha on 8 November 1991 and erupted lava concurrently with Kupaianaha for 18 days. Lava flux from Kupaianaha decreased in response to this new episode, but the response was delayed by approximately 1 day. After 14 November 1991, lava velocities were no longer measurable in the tube because the lava stream beneath the skylight had crusted over; however, the VLF-derived electrical conductances documented the decreasing flux of molten lava through the tube. Kupaianaha remained active, but output continued to decrease until early February 1992 when the last active surface flows were seen. In November 1991 we used the linearly decreasing effusion rate to accurately predict the date for the death of the Kupaianaha vent. The linear nature of the decline in lava tube conductance and the delayed and slow response of the Waha'ula tube conductances to the 49th eruptive episode led us to speculate that (a) the Kupaianaha vent shut down because of a decrease in driving pressure and not because of a freeze-up of the vent, and (b) that Pu'u 'O'o, episode 49, and Kupaianaha were fed nearly vertically from a source deep within the rift zone. Received: 29 September 1995 / Accepted: 21 November 1995  相似文献   

13.
Episode 48 of the ongoing eruption of Kilauea, Hawai`i, began in July 1986 and continuously extruded lava for the next 5.5 years from a low shield, Kūpaianaha. The flows in March 1990 headed for Kalapana and inundated the entire town under 15–25 m of lava by the end of August. As the flows advanced eastward, they entered into Kaimū Bay, replacing it with a plain of lava that extends 300 m beyond the original shoreline. The focus of our study is the period from August 1 to October 31, 1990, when the lava buried almost 406,820 m2 of the 5-m deep bay. When lava encountered the sea, it flowed along the shoreline as a narrow primary lobe up to 400 m long and 100 m wide, which in turn inflated to a thickness of 5–6 m. The flow direction of the primary lobes was controlled by the submerged delta below the lavas and by damming up lavas fed at low extrusion rates. Breakout flows through circumferential and axial inflation cracks on the inflating primary lobes formed smaller secondary lobes, burying the lows between the primary lobes and hiding their original outlines. Inflated flow lobes eventually ruptured at proximal and/or distal ends as well as mid-points between the two ends, feeding new primary lobes which were emplaced along and on the shore side of the previously inflated lobes. The flow lobes mapped with the aid of aerial photographs were correlated with daily observations of the growing flow field, and 30 primary flow lobes were dated. Excluding the two repose periods that intervened while the bay was filled, enlargement of the flow field took place at a rate of 2,440–22,640 square meters per day in the bay. Lobe thickness was estimated to be up to 11 m on the basis of cross sections of selected lobes measured using optical measurement tools, measuring tape and hand level. The total flow-lobe volume added in the bay during August 1–October 31 was approximately 3.95 million m3, giving an average supply rate of 0.86 m3/s.  相似文献   

14.
Whale-back-shaped uplifts called "tumuli" are common in the pahoehoe flows of the western Deccan Volcanic Province (DVP). Although they usually occur in hummocky flows, they are also associated with thicker sheet lobes. They have been subjected to a detailed morphometric and petrographic study for the first time. The tumuli are characterised by positive relief and "lava-inflation clefts" occupied by squeeze-ups. They display elongate as well as equant forms; some are constituted of a single flow lobe, whereas others display multiple flow lobes. Some tumuli appear to have developed along anastomosing tube systems. The detailed study of one of the tumuli reveals considerable petrographic and textural variations among the constituent flow units. Some of these, such as the enrichment of phenocrysts in squeeze-ups and breakouts, could be related to the emplacement dynamics of the tumulus. All the observed tumuli display much evidence of inflation or endogenous growth. Field observations and measurements reveal that the tumuli and associated pahoehoe features display a close similarity with their Hawaiian counterparts. This is a very significant observation since it points out to a similarity in nature and style of eruptions in Hawaii and at least in the western part of the DVP. This has an important bearing on determining the short, medium and long-term effusion rates in the Deccan; however, any concrete inference will have to await systematic volcanological studies of the lava features in the DVP.  相似文献   

15.
We studied the anisotropy of magnetic susceptibility (AMS) of 22 basaltic flow units, including S-type pahoehoe, P-type pahoehoe, toothpaste lava and 'a' emplaced over different slopes in two Hawaiian islands. Systematic differences occur in several aspects of AMS (mean susceptibility, degree of anisotropy, magnetic fabric and orientation of the principal susceptibilities) among the morphological types that can be related to different modes of lava emplacement. AMS also detects systematic changes in the rate of shear with position in a unit, allowing us to infer local flow direction and some other aspects of the velocity field of each unit. 'A' flows are subject to stronger deformation than pahoehoe, and also their internal parts behave more like a unit. According to AMS, the central part of pahoehoe commonly reveals a different deformation history than the upper and lower extremes, probably resulting from endogenous growth.  相似文献   

16.
Lava flows from Mauna Loa volcano can travel the long distances from source vents to populated areas of east Hawaii only if heat-insulating supply conduits (lava channels and/or lava tubes) are constructed and maintained, so as to channelize the flow and prevent heat loss during transport. Lava is commonly directed into such conduits by horseshoe-or lyre-shaped spatter cones-loose accumulations of partially welded scoria formed around principal vents during periods of high fountaining. These conduit systems commonly develop fragile areas amenable to artificial disruption by explosives during typical eruptions. If these conduits can be broken or blocked, lava supply to the threatening flow fronts will be cut off or reduced. Explosives were first suggested as a means to divert lava flows threatening Hilo, Hawaii during the eruption of 1881. They were first used in 1935, without significant success, when the Army Air Force bombed an active pahoehoe channel and tube system on Mauna Loa’s north flank. Channel walls of a Mauna Loa flow were also bombed in 1942, but again there were no significant effects. The locations of the 1935 and 1942 bomb impact areas were determined and are shown for the first time, and the bombing effects are documented. Three days after the 1942 bombing the spatter cone surrounding the principal vent partially collapsed by natural processes, and caused the main flow advancing on Hilo to cease movement. This suggested that spatter cones might be a suitable target for future lava diversion attempts. Because ordnance, tactics, and aircraft delivery systems have changed dramatically since 1942, the U.S. Air Force conducted extensive testing of large aerial bombs (to 900 kg) on prehistoric Mauna Loa lavas in 1975 and 1976, to evaluate applicability of the new systems to lava diversion. Thirty-six bombs were dropped on lava tubes, channels, and a spatter cone in the tests, and it was verified that spatter cones are especially fragile. Bomb crater size (to 30 m diameter) was found to be inversely related to target rock density, with the largest craters produced in the least dense, weakest rock. Bomb fuze time delays of 0.05 sec caused maximum disruption effects for the high impact velocities employed (250 to 275 m/sec). Modern aerial bombing has a substantial probability of success for diversion of lava from most expected types of eruptions on Mauna Loa’s Northeast Rift Zone, if Hilo is threatened and if Air Force assistance is requested. The techniques discussed in this paper may be applicable to other areas of the world threatened by fluid lava flows in the future.  相似文献   

17.
This study focuses on Middle Miocene tholeiitic flood basalt lava flows from the Oregon Plateau, northwestern USA (Steens Basalt), and is the first to comprehensively document and evaluate their morphology. Field observations of flows from several sections within and proximal to the main exposures at Steens Mountain have been supplemented with textural and geochemical data, and are used to offer preliminary insights into their emplacement. Compound pahoehoe flows of variable thickness appear to be common throughout the study area, laterally and vertically. These tend to be plagioclase phyric and the morphology and disposition of constituent flow lobes are quite similar to those from other provinces such as Hawaii and the Snake River Plain. Classic a’a flows with brecciated upper and basal crusts are not abundant, but by no means uncommon. Flows with characters different from typical pahoehoe and a’a are also common. Such flows display a range in morphology; flows with preserved upper crusts but brecciated basal crusts, as well as those displaying well-developed flow-top breccias and preserved basal crusts (rubbly pahoehoe) are observed. The Steens Basalt appears to display greater morphological and textural diversity at the outcrop scale than that described for some other flood basalt provinces. The abundant compound pahoehoe flows (often rich in plagioclase phenocrysts) were likely emplaced during slow but sustained eruptive episodes; their constituent lobes show clear evidence for endogenous growth. The relatively aphyric flows with brecciated surfaces (including a’a) hint at higher strain rates and/or higher viscosity, probably caused by higher effusion rates. A couple of sections are characterized by compositionally similar, but morphologically different flows that were possibly part of the same eruption. While differences in pre-eruptive topography could explain this, it is also possible that certain physical parameters changed substantially and abruptly during eruption and that such changes were accompanied by differentiation processes within the plumbing system. It is possible that such observations indicate temporal fluctuations within complex magmatic and eruptive systems, and deserve closer scrutiny.  相似文献   

18.
Historic and recent (last 2,000?years) eruptions on the active volcanic island of Tenerife have been predominantly effusive, indicating that this is the most probable type of activity to be expected in the near future. In the past, lava flow invasion caused major damage on the island, and as the population and infrastructure have increased dramatically since the last eruption, lava flows are the most important short-term volcanic risk on Tenerife. Hence, an understanding of lava flow behaviour is vital to manage risks from lava flows and minimise future losses on the island. This paper focuses on the lava flows from the historic eruptions in Tenerife, providing new data on the volumes emitted, advance rates and the timing of the emplacement of flows. The studies show three main stages in the development of unconfined flow fields: the first stage, corresponding to the fast advance of the initial fronts during the first 24?C36?h of eruption (reaching calculated velocities of up to 1.1?m/s); the second stage, in which fronts stagnate; and a third stage, in which secondary lava flows develop from breakouts 4?C7?days after the initial eruption and farther extend the flow field (velocities of up to 0.02?m/s have been calculated for this stage). The breakouts identified originated at sites both proximal and distal to the vent and, in both cases, caused damage through lengthening and widening the original flow field. Hence, the probability of damage from lavas to land and property is highest during stages 1 and 3, and this should be accounted for when planning the response to a future effusive eruption. Tenerife??s lava flows display a similar behaviour to that of lava flows on volcanoes characterised by basaltic effusive activity (such as Etna or Kilauea), indicating the possibility of applying forecasting models developed at those frequently active volcanoes to Tenerife.  相似文献   

19.
A long-standing question in lava flow studies has been how to infer emplacement conditions from information preserved in solidified flows. From a hazards perspective, volumetric flux (effusion rate) is the parameter of most interest for open-channel lava flows, as the effusion rate is important for estimating the final flow length, the rate of flow advance, and the eruption duration. The relationship between effusion rate, flow length, and flow advance rate is fairly well constrained for basaltic lava flows, where there are abundant recent examples for calibration. Less is known about flows of intermediate compositions (basaltic andesite to andesite), which are less frequent and where field measurements are limited by the large block sizes and the topographic relief of the flows. Here, we demonstrate ways in which high-resolution digital topography obtained using Light Detection and Ranging (LiDAR) systems can provide access to terrains where field measurements are difficult or impossible to collect. We map blocky lava flow units using LiDAR-generated bare earth digital terrain models (DTMs) of the Collier Cone lava flow in the central Oregon Cascades. We also develop methods using geographic information systems to extract and quantify morphologic features such as channel width, flow width, flow thickness, and slope. Morphometric data are then analyzed to estimate both effusion rates and emplacement times for the lava flow field. Our data indicate that most of the flow outline (which comprises the earliest, and most voluminous, flow unit) can be well explained by an average volumetric flux ~14–18?m3/s; channel data suggest an average flux ~3?m3/s for a later, channel-filling, flow unit. When combined with estimates of flow volume, these data suggest that the Collier Cone lava flow was most likely emplaced over a time scale of several months. This example illustrates ways in which high-resolution DTMs can be used to extract and analyze morphologic measurements and how these measurements can be analyzed to estimate emplacement conditions for inaccessible, heavily vegetated, or extraterrestrial lava flows.  相似文献   

20.
We sampled basaltic lava flows and underlying dacitic tuff deposits in or near lava tubes of the Cave Basalt, Mount St. Helens, Washington to determine whether the Cave Basalt lavas contain geochemical evidence of substrate contamination by lava erosion. The samples were analyzed using a combination of wavelength-dispersive X-ray fluorescence spectrometry and inductively-coupled plasma mass spectrometry. The results indicate that the oldest, outer lava tube linings in direct contact with the dacitic substrate are contaminated, whereas the younger, inner lava tube linings are uncontaminated and apparently either more evolved or enriched in residual liquid. The most heavily contaminated lavas occur closer to the vent and in steeper parts of the tube system, and the amount of contamination decreases with increasing distance downstream. These results suggest that erosion by lava and contamination were limited to only the initially emplaced flows and that erosion was localized and enhanced by vigorous laminar flow over steeper slopes. After cooling, the initial Cave Basalt lava flows formed an insulating lining within the tubes that prevented further erosion by later flows. This interpretation is consistent with models of lava erosion that predict higher erosion rates closer to sources and over steeper slopes. A greater abundance of xenoliths and xenocrysts relative to xenomelts in hand samples indicates that mechanical erosion rather than thermal erosion was the dominant erosional process in the Cave Basalt, but further sampling and petrographic analyses must be performed to verify this hypothesis.Editorial responsibility: J. Donnelly-Nolan  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号