首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 832 毫秒
1.
The picture of the young stellar groups in the Canis Major–Puppis–Vela (215°< l <275°) section of the Milky Way is studied and updated utilizing uvbyβ photometry of intrinsically luminous OB stars. We use all data from the literature to create a sample with 98 per cent completeness to 9.5 mag.
The very dense low reddened OB association CMa OB1 is confirmed at a distance of 0.99 (±0.05 s.e. ) kpc. Towards Puppis the brightest intrinsically luminous stars do not reveal Pup OB1 and Pup OB2. In the same direction, we separate two small groups, previously related to the association surrounding NGC 2439 at 3.5–4.5 kpc. The first one contains four highly reddened B-type supergiants situated in front of the cluster at 1.03 (±0.14 s.e.) kpc – much closer to the Sun than has been estimated before. The second one lies north-west from the cluster at 3.2 (±0.23 s.e.) kpc according to our estimate. In the direction to Vela, the bright OB stars are apparently embedded in a dust cloud and spread out between 0.3 and 2.5 kpc, forming clumps over this distance range.
In general, the prominent apparent young structures delineated by the brightest intrinsically luminous OB stars in the directions of Canis Major and Vela are some 20–25 per cent closer to the Sun than has previously been thought. This is in agreement with the Hipparcos results for the Galactic OB associations, and is highly likely to be caused by the overestimation of the spectroscopic distances used in the previous studies.  相似文献   

2.
《New Astronomy》2007,12(6):461-470
We present results of a study that combines UBVI photometry, MK spectral classification and proper motions in the area of the, up to now unknown, open cluster Ruprecht 58 at the Puppis region. Star counts from the 2MASS data catalog together with the analysis of CCD UBVI photometry demonstrate that it is a real open cluster with 9′ size approximately. The cluster is placed at a distance of 3.9 kpc and is about 250 Myr old with mean reddening E(BV) = 0.33 mag. Proper motions confirm Ruprecht 58 is a real cluster with mean absolute proper motions μαcosδ = −2.77 ± 0.45 mas/yr and μδ = 4.54 ± 0.45 mas/yr in the magnitude range 13.5 < V < 14.5 and μαcosδ = −2.70 ± 0.32 mas/yr and μδ = 3.19 ± 0.32 mas/yr in the range 14.5 < V < 16.0. The computation of the cluster mass spectrum slope yielded x = 1.8 in the mass range from ≈1.4 to ≈4m.  相似文献   

3.
The observed distribution of young open clusters is far from uniform. Statistics shows that, when age, spatial distribution and kinematics are considered simultaneously, they tend to appear in clumps. These young cluster groups or families constitute unambiguously coeval, genetically related complexes associated to the underlying spiral structure. In this paper, we derive detailed physical properties for one of them: the Cassiopeia–Perseus family. With a diameter of about 600 pc, it is located 2 kpc from the Sun, embedded in the Perseus arm, and probably includes 10–20 members. It began to form 20–40 Myr ago although we find distinctive evidence for at least three generations of star formation organized in two distinct fronts, with the oldest clusters located at lower Galactic longitude than the youngest. The plane roughly defined by the structure is inclined ~30° to the Galactic disk with most candidate members located below the disk and moving away from it. Our results for this cluster of clusters suggest that, within a coherent cloud complex, the first generation of star formation is triggered by the shock wave induced by a spiral arm. The second and subsequent generations are sustained by ionization fronts and supernova shocks created by the evolution of the first generation of massive stars. In this particular case, the front moves with average velocity of about 70 km/s in the direction of increasing Galactic longitude. The Cassiopeia–Perseus family and related objects appear to be a close relative of the cluster complexes found in the spiral galaxy M51 or perhaps a younger analog of the Gould Belt.  相似文献   

4.
Using UBVRI CCD data taken from 104-cm Sampurnanand Telescope, ARIES, Nainital, we present the structure, initial mass function and mass segregation of three young age (∼10 Myr) open star clusters: NGC 2129, NGC 1502 and King 12. Based on photometric as well as astrometric criteria, the cluster member stars as well as field stars have been identified. We construct luminosity function which is further used to estimate the mass functions by employing theoretical stellar evolutionary isochrones. The entire cluster region mass function (MF) slopes for NGC 2129, NGC 1502 and King 12 are obtained as −2.55 ± 0.14, −2.73 ± 0.36 and −1.94 ± 0.12 respectively. It is found that changes in the MF slope of King 12 are significantly different compared to NGC 2129 and NGC 1502 from inner region to outer region. The MF slope for King 12 is steeper at larger radii. The dynamical relaxation times for all three clusters are found to be less than age of the clusters. This indicates that all these clusters are dynamically relaxed. We show that for NGC 1502 and King 12, passing off of low mass stars from the inner region of the clusters to the halo occurs during the course of evolution.  相似文献   

5.
On the basis of the revised Hipparcos data recently released, the zero-point of the period-luminosity relation for classical cepheids is reexamined. Fitting the proper motion and radial velocity data via an axisymmetric model, the Oort constants and circular rotation velocity of the LSR are calculated to obtain the Galactocentric distance of the Sun, R0 = 8.0 ± 0.8 kpc. From the rotation curve in solar neighborhood, the existence of weak ellipticity of the Galactic potential is found. Adopting a simple asymmetric model, we have obtained the ellipticity ∈(R0) = 0.067 ± 0.036 at the Sun, while the minor axis points to φb = 32° ± 15°.  相似文献   

6.
《New Astronomy》2007,12(2):117-123
Both V701 Sco and BH Cen are two early-type short-period overcontact systems (P = 0.d762 and P = 0.d792, respectively). V701 Sco is a member of the young galactic cluster NGC 6383, while BH Cen is a component of a younger galactic cluster IC 2944 where star formation is in process. They provide good opportunity to understand the formation and evolution of binary stars. In the present paper, orbital period changes of the two binaries are investigated. It is discovered that the orbital period of BH Cen shows a long-term increase with a rate of dP/dt = +1.70(±0.39) × 10−7 days/year while it undergoes a cyclic oscillation with a period of 44.6 years and an amplitude of A3 = 0.d0216. For V701 Sco, its O-C curve reveals a periodic change with a period of 41.2 years and amplitude of A3 = 0.d0158. The mass ratio of BH Cen is 0.84, but V701 Sco contains twin B1-1.5V type stars with a mass ratio of unit. The continuous period increase of BH Cen is caused by the mass transfer from the less massive component to the more massive one at a rate of dM2/dt = 3.5 × 10−6 days/year.The cyclic period changes of both systems can be plausibly explained as the results of light-travel time effects suggesting that they are triple systems. The astrophysical parameters of the unseen tertiary components in the two systems have been determined. We think that the invisible tertiary components in both binaries played an important role in the formations and evolutions of the overcontact configurations by bringing angular momentum out from the central systems. For BH Cen, this process created the initial short period and will support its evolution into an overcontact configuration via a Case A mass transfer within the life time of the extremely young cluster IC 2944. For V701 Sco, two identical zero-age main-sequence components in an overcontact configuration suggest that it may have been formed by fission, possibly by the fission of the third body. The fact that no long-term continuous period variations were found for V701 Sco may suggest that an overcontact binary with the mass ratio of unity can be in an equilibrium revealing that the original configuration of the binary was overcontact as is its present state. It has been reported that faint stars in the two extremely young clusters are relatively scare. From the present study, it is shown that faint stars in young clusters are usually formed as companions of OB stars (including binaries). It is very difficult to detect them because of their low luminosity when compared with the more luminous OB stars.  相似文献   

7.
8.
Accurate two-colour photometry and proper motions of 7096 young X-ray stars in the ROSAT All-Sky Survey Bright Star Catalogue, version 1RXS, are extracted from the Tycho-2 Catalogue. The sample is dominated by red main-sequence and possibly pre-main-sequence stars. On a global proper motion convergence map, two features are very prominent: the nearby section of the Gould Belt and the Hyades convergent point. The appearance of the Gould Belt feature with its peak at ( l =2443, b =−126) is quite similar to that of Hipparcos OB stars. When only stars with proper motions drawing close to that point are selected, strong concentrations of stars in the direction of the Sco–Cen complex are found. Another concentration, not corresponding to any known OB association, is detected between the position of the Lower Centaurus Crux and Vela OB2 associations. It is a new young moving group located in Carina and Vela, and a near extension of the Sco–Cen complex. Contrary to the classical Gould Belt OB associations, the Carina–Vela moving group has a considerable geometric depth, the closest members being as near as 30 pc from the Sun. IC 2391, one of the youngest and closest open clusters on the sky, is a part of the Carina–Vela moving group. The Carina–Vela moving group does not link the Sco–Cen complex with the Vela OB associations, because the latter is much more distant than the outer limit of the sample. It is more likely that the young late-type population of the Scorpio–Centaurus–Carina moving group stretches towards the Sun and possibly beyond it.  相似文献   

9.
This investigation presents a new analysis of the spatial distribution of the bright early‐type stars in the field of Northern Monoceros. A database of all O–B9 stars with available uvbyβ photometry is collated and a homogeneous distance scale is established for the clusters and layers of field stars. We provide revised distances for NGC 2264 and NGC 2244 of 833±38 (s.e.) pc and 1585±60 (s.e.) pc, respectively. We present arguments that there might be substructures in the clusters projected along the line of sight. According to the present sample the classical Mon OB2 association at 1.6 kpc is represented by a relatively compact group at 1.26 kpc in the vicinity of NGC 2244 and a layer of massive stars located between 1.5 and 3 kpc (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Assuming that soft X-ray sources in symbiotic stars result from strong thermonuclear runaways, and supersoft X-ray sources from weak thermonuclear runaways or steady hydrogen burning symbiotic stars, we investigate the Galactic soft and supersoft X-ray sources in symbiotic stars by means of population synthesis. The Galactic occurrence rates of soft X-ray sources and supersoft X-ray sources are from ~2 to 20 yr?1, and ~2 to 17 yr?1, respectively. The numbers of X-ray sources in symbiotic stars range from 2390 to 6120. We simulate the distribution of X-ray sources over orbital periods, masses and mass accretion rates of white dwarfs. The agreement with observations is reasonable.  相似文献   

11.
We present CCD photometry in the Washington system C and T1 passbands down to T1  19.5 magnitudes in the fields of Czernik 26, Czernik 30, and Haffner 11, three poorly studied open clusters located in the third Galactic quadrant. We measured T1 magnitudes and C ? T1 colors for a total of 6472 stars distributed throughout cluster areas of 13.6′ × 13.6′ each. Cluster radii were estimated from star counts in appropriate-sized boxes distributed throughout the entire observed fields. Based on the best fits of isochrones computed by the Padova group to the (C ? T1, T1) color-magnitude diagrams (CMDs), we derived color excesses, heliocentric distances and ages for the three clusters. These are characterized by a relatively small angular size and by a high field star contamination. We performed a firm analysis of the field star contamination of the CMDs and examined different relationships between the position in the Galaxy of known open clusters located within 1 kpc around the three studied ones, their age and their interstellar visual absorption. We confirm previous results in the sense that the closer the cluster birthplace to the Galactic plane, the higher the interstellar visual absorption. We also found that the space velocity dispersion perpendicular to the Galactic plane diminishes as the clusters are younger. The positions, interstellar visual absorptions, ages, and metallicities of the three studied clusters favor the hypothesis that they were not born in the recently discovered Canis major (CMa) dwarf galaxy before it was accreted by the Milky Way.  相似文献   

12.
13.
We present new B ,  V and R linear polarimetric observations for 61 stars towards the region of the young open cluster NGC 654. In this study we found evidence for the presence of at least two layers of dust along the line of sight to the cluster. The distances to the two dust layers are estimated to be ∼200 pc and ∼1 kpc which are located much closer to the Sun than the cluster (∼2.4 kpc). Both the dust layers have their local magnetic field orientation nearly parallel to the direction of the Galactic plane. The foreground dust layer is found to have a ring morphology with the central hole coinciding with the centre of the cluster. The foreground dust grains are suggested to be mainly responsible for both the observed differential reddening and the polarization towards the cluster.  相似文献   

14.
The OB stars are concentrated near the Galactic plane and should permit a determination of the distance to the Galactic center. van Leeuwen’s new reduction of the Hipparcos catalog provides, after 824 Gould belt stars have been excluded, 6288 OB stars out to 1 kpc and Westin’s compilation an additional 112 stars between 1 kpc and 3 kpc. The reduction model involves 14 unknowns: the Oort A and B constants, the distance to the Galactic center R 0, 2 second-order partial derivatives, the 3 components of solar motion, a K term, a first order partial derivative for motion perpendicular to the Galactic plane, a second-order partial for acceleration perpendicular to the plane, two terms for a possible expansion of the OB stars, and a C constant. The model is nonlinear, and the unknowns are calculated by use the simplex algorithm for nonlinear adjustment applied to 14313 equations of condition, 12694 in proper motion and 1619 in radial velocity. Various solutions were tried: an L1 solution, a least squares solution with modest (2.7 %) trim of the data, and two robust least squares solutions (biweight and Welsch weighting) with more extreme trimming. The Welsch solution seems to give the best results and calculates a distance to the Galactic center 6.72±0.39 kpc. Statistical tests show that the data are homogeneous, that the reduction model seems adequate and conforms with the assumptions used in its derivation, and that the post-fit residuals are random. Inclusion of more terms, such as streaming motion induced by Galactic density waves, degrades the solution.  相似文献   

15.
《New Astronomy》2007,12(3):234-245
We present the Galactic model parameters for thin disc estimated by Sloan Digital Sky Survey (SDSS) data of 14 940 stars with apparent magnitudes 16 < g0  21 in six intermediate latitude fields in the first Galactic quadrant. Star/galaxy separation was performed by using the SDSS photometric pipeline and the isodensity contours in the (g  r)0  (r  i)0 two colour diagram. The separation of thin disc stars is carried out by the bimodal distribution of stars in the (g  r)0 histogram, and the absolute magnitudes were evaluated by a procedure presented in the literature (Bilir, S., Karaali, S., Tunçel, S. 2005. AN 326, 321). Exponential density law fits better to the derived density functions for the absolute magnitude intervals 8 < M(g)  9 and 11 < M(g)  12, whereas sech/sech2 laws are more appropriate for absolute magnitude intervals 9 < M(g)  10 and 10 < M(g)  11. We showed that the scaleheight and scalelength are Galactic longitude dependent. The average values and ranges of the scaleheight and the scalelength are 〈H = 220 pc (196  H  234 pc) and 〈H = 1900 pc (1561  h  2280 pc) respectively. This result would be useful to explain different numerical values claimed for those parameters obtained by different authors for the fields in different directions of the Galaxy.  相似文献   

16.
17.
《New Astronomy》2007,12(2):146-160
We point out that although conventional stars are primarily fed by burning of nuclear fuel at their cores, in a strict sense, the process of release of stored gravitational energy, known as, Kelvin–Helmholtz (KH) process is either also operational albeit at an arbitrary slow rate, or lying in wait to take over at the disruption of the nuclear channel. In fact, the latter mode of energy release is the true feature of any self-gravity bound object including stars. We also highlight the almost forgotten fact that Eddington was the first physicist to introduce special relativity into the problem and correctly insist that, actually, total energy stored in a star is not the mere Newtonian energy but the total mass energy (E = Mc2). Accordingly, Eddington defined an “Einstein time scale” of Evolution where the maximum age of the Sun turned out to be tE  1.4 × 1013 yr. This concept has a fundamental importance though we know now that Sun in its present form cannot survive for more than 10 billion years. We extend this concept by introducing general relativity and show that the minimum value of depletion of total mass–energy is tE = ∞ not only for Sun but for and sufficiently massive or dense object. We propose that this time scale be known in the name of “Einstein–Eddington”. We also point out that, recently, it has been shown that as massive stars undergo continued collapse to become a Black Hole, first they become extremely relativistic radiation pressure supported stars. And the life time of such relativistic radiation pressure supported compact stars is indeed dictated by this Einstein–Eddington time scale whose concept is formally developed here. Since this observed time scale of this radiation pressure supported quasistatic state turns out to be infinite, such objects are called eternally collapsing objects (ECO). Further since ECOs are expected to have strong intrinsic magnetic field, they are also known as “Magnetospheric ECO” or MECO.  相似文献   

18.
We derive astrophysical and structural parameters of the poorly studied open clusters NGC 6866, NGC 7062, and NGC 2360 based on filtered 2MASS (J, J ? H) diagrams, and stellar radial density profiles. The field star decontamination technique is utilised for selecting high-probability cluster members. The E(B ? V) reddening values of the three clusters derived from 2MASS JHKs agree with those inferred from UBV and uvby ? β photometries. We find that the core mass function slopes are flatter than the halo’s for the three clusters. The large core and cluster radii of NGC 6866 and NGC 2360 indicate an expanded core, which may suggest the presence of stellar mass black-holes. NGC 2360 is located in the third quadrant (? = 229°.80), where Giant Molecular Clouds are scarce that, together with its relatively large mass (~1800 m), might explain its longevity (~1.8 Gyr) in the Galaxy.  相似文献   

19.
We present a UBV CCD photometric study of four open clusters, NGC 7245, King 9, IC 166 and King 13, located between   l = 90°  and 135°. All are embedded in a rich Galactic field. NGC 7245 and King 9 are close together in the sky and have similar reddenings. The distances and ages are: NGC 7245, 3.8 ± 0.35 kpc and 400 Myr; King 9 (the most distant cluster in this quadrant), 7.9 ± 1.1 kpc and 3.0 Gyr. King 13 is 3.1 ± 0.3 kpc distant and 300 Myr old. King 9 and IC 166 (4.8 ± 0.5 kpc distant and 1 Gyr old) may be metal-poor clusters  ( Z = 0.008)  , as estimated from isochrone fitting. The average value of the distance of young clusters from the Galactic plane in the above longitude range and beyond 2 kpc (−47 ± 16 pc, for 64 clusters) indicates that the young disc bends towards the southern latitudes.  相似文献   

20.
《New Astronomy Reviews》2002,46(8-10):547-552
The allsky image of 26Al radiation at 1.809 MeV with COMPTEL suggests that clusters of massive stars dominate the Galactic production of 26Al. Studies of rather well-known localized regions are most promising to further this interpretation. In the Vela region, excessive emissivity is found compared to other Galactic regions. This may be due to few prominent foreground sources, such as the Vela SNR and RX J0852.0-4622 combined; but more plausibly the star forming activity along the Vela Molecular Ridge is enhanced in general, too. In the anticenter region, the detected 26Al emission appears related to nucleosynthetic activity in the Orion OB1 association: It seems plausible that ejecta are being vented into the Eridanus bubble blown by earlier massive stars’ activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号