首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is demonstrated that an along-track mean sea surface (MSS) model estimated with TOPEX altimeter data, including the large 1997-1998 El Niño event, is slightly less accurate than a MSS model calculated from less data where El Niño signals are small. The manner in which true sea level variability corrupts the estimation of MSS gradients is discussed. A model is proposed to reduce the error, based on scaling climate indices such as the Southern Oscillation Index, while accounting for phase shifts using a Hilbert transform. After modeling and removing the seasonal and interannual sea level variations, parameters to a plane MSS model are estimated using TOPEX altimeter data from January 1993 to June 2000. Results indicate an overall improvement over the earlier model based on four years of data, and no apparent degradation due to aliasing of sea level variability.  相似文献   

2.
Satellite-borne altimeters have had a profound impact on geodesy, geophysics, and physical oceanography. To first order approximation, profiles of sea surface height are equivalent to the geoid and are highly correlated with seafloor topography for wavelengths less than 1000 km. Using all available Geos-3 and Seasat altimeter data, mean sea surfaces and geoid gradient maps have been computed for the Bering Sea and the South Pacific. When enhanced using hill-shading techniques, these images reveal in graphic detail the surface expression of seamounts, ridges, trenches, and fracture zones. Such maps are invaluable in oceanic regions where bathymetric data are sparse. Superimposed on the static geoid topography is dynamic topography due to ocean circulation. Temporal variability of dynamic height due to oceanic eddies can be determined from time series of repeated altimeter profiles. Maps of sea height variability and eddy kinetic energy derived from Geos-3 and Seasat altimetry in some cases represent improvements over those derived from standard oceanographic observations. Measurement of absolute dynamic height imposes stringent requirements on geoid and orbit accuracies, although existing models and data have been used to derive surprisingly realistic global circulation solutions. Further improvement will only be made when advances are made in geoid modeling and precision orbit determination. In contrast, it appears that use of altimeter data to correct satellite orbits will enable observation of basin-scale sea level variations of the type associated with climatic phenomena.  相似文献   

3.
《Marine Geodesy》2013,36(3-4):261-284
The double geodetic Corsica site, which includes Ajaccio-Aspretto and Cape Senetosa (40 km south Ajaccio) in the western Mediterranean area, has been chosen to permit the absolute calibration of radar altimeters. It has been developed since 1998 at Cape Senetosa and, in addition to the use of classical tide gauges, a GPS buoy is deployed every 10 days under the satellites ground track (10 km off shore) since 2000. The 2002 absolute calibration campaign made from January to September in Corsica revealed the necessity of deploying different geodetic techniques on a dedicated site to reach an accuracy level of a few mm: in particular, the French Transportable Laser Ranging System (FTLRS) for accurate orbit determination, and various geodetic equipment as well as a local marine geoid, for monitoring the local sea level and mean sea level. TOPEX/Poseidon altimeter calibration has been performed from cycle 208 to 365 using M-GDR products, whereas Jason-1 altimeter calibration used cycles from 1 to 45 using I-GDR products. For Jason-1, improved estimates of sea-state bias and columnar atmospheric wet path delay as well as the most precise orbits available have been used. The goal of this article is to give synthetic results of the analysis of the different error sources for the tandem phase and for the whole studied period, as geophysical corrections, orbits and reference frame, sea level, and finally altimeter biases. Results are at the millimeter level when considering one year of continuous monitoring; they show a great consistency between both satellites with biases of 6 ± 3 mm (ALT-B) and 120 ± 7 mm, respectively, for TOPEX/Poseidon and Jason-1.  相似文献   

4.
The double geodetic Corsica site, which includes Ajaccio-Aspretto and Cape Senetosa (40 km south Ajaccio) in the western Mediterranean area, has been chosen to permit the absolute calibration of radar altimeters. It has been developed since 1998 at Cape Senetosa and, in addition to the use of classical tide gauges, a GPS buoy is deployed every 10 days under the satellites ground track (10 km off shore) since 2000. The 2002 absolute calibration campaign made from January to September in Corsica revealed the necessity of deploying different geodetic techniques on a dedicated site to reach an accuracy level of a few mm: in particular, the French Transportable Laser Ranging System (FTLRS) for accurate orbit determination, and various geodetic equipment as well as a local marine geoid, for monitoring the local sea level and mean sea level. TOPEX/Poseidon altimeter calibration has been performed from cycle 208 to 365 using M-GDR products, whereas Jason-1 altimeter calibration used cycles from 1 to 45 using I-GDR products. For Jason-1, improved estimates of sea-state bias and columnar atmospheric wet path delay as well as the most precise orbits available have been used. The goal of this article is to give synthetic results of the analysis of the different error sources for the tandem phase and for the whole studied period, as geophysical corrections, orbits and reference frame, sea level, and finally altimeter biases. Results are at the millimeter level when considering one year of continuous monitoring; they show a great consistency between both satellites with biases of 6 ± 3 mm (ALT-B) and 120 ± 7 mm, respectively, for TOPEX/Poseidon and Jason-1.  相似文献   

5.
《Marine Geodesy》2013,36(3-4):319-334
In the framework of the TOPEX/Poseidon and Jason-1 CNES-NASA missions, two probative experiments have been conducted at the Corsica absolute calibration site in order to determine the local marine geoid slope under the ascending TOPEX/Poseidon and Jason-1 ground track (No. 85). An improved determination of the geoid slope was needed to better extrapolate the offshore (open-ocean) altimetric data to on-shore tide-gauge locations. This in turn improves the overall precision of the calibration process. The first experiment, in 1998, used GPS buoys. Because the time required to cover the extended area with GPS buoys was thought to be prohibitive, we decided to build a catamaran with two GPS systems onboard. Tracked by a boat at a constant speed, this innovative system permitted us to cover an area of about 20 km long and 5.4 km wide centered on the satellites' ground track. Results from an experiment in 1999 show very good consistency between GPS receivers: filtered sea-surface height differences have a mean bias of ?0.2 cm and a standard deviation of 1.2 cm. No systematic error or distortions have been observed and crossover differences have a mean value of 0.2 cm with a standard deviation of 2.7 cm. Comparisons with tide gauges data show a bias of 1.9 cm with a standard deviation of less than 0.5 cm. However, this bias, attributable in large part to the effect of the catamaran speed on the waterline, does not affect the geoid slope determination which is used in the altimeter calibration process. The GPS-deduced geoid slope was then incorporated in the altimeter calibration process, yielding a significant improvement (from 4.9 to 3.3 cm RMS) in the agreement of altimeter bias determinations from repeated overflight measurements.  相似文献   

6.
In the framework of the TOPEX/Poseidon and Jason-1 CNES-NASA missions, two probative experiments have been conducted at the Corsica absolute calibration site in order to determine the local marine geoid slope under the ascending TOPEX/Poseidon and Jason-1 ground track (No. 85). An improved determination of the geoid slope was needed to better extrapolate the offshore (open-ocean) altimetric data to on-shore tide-gauge locations. This in turn improves the overall precision of the calibration process. The first experiment, in 1998, used GPS buoys. Because the time required to cover the extended area with GPS buoys was thought to be prohibitive, we decided to build a catamaran with two GPS systems onboard. Tracked by a boat at a constant speed, this innovative system permitted us to cover an area of about 20 km long and 5.4 km wide centered on the satellites' ground track. Results from an experiment in 1999 show very good consistency between GPS receivers: filtered sea-surface height differences have a mean bias of -0.2 cm and a standard deviation of 1.2 cm. No systematic error or distortions have been observed and crossover differences have a mean value of 0.2 cm with a standard deviation of 2.7 cm. Comparisons with tide gauges data show a bias of 1.9 cm with a standard deviation of less than 0.5 cm. However, this bias, attributable in large part to the effect of the catamaran speed on the waterline, does not affect the geoid slope determination which is used in the altimeter calibration process. The GPS-deduced geoid slope was then incorporated in the altimeter calibration process, yielding a significant improvement (from 4.9 to 3.3 cm RMS) in the agreement of altimeter bias determinations from repeated overflight measurements.  相似文献   

7.
Sea surface height profiles derived from 2‐year, repeat track, Geosat altimeter data have been compared with a regional gravimetric geoid in the western North Sea, computed using a geopotential model and terrestrial gravity data. The comparison encompasses 18 Geosat profiles covering a 750 × 850 km area of the North Sea. After a second‐order polynomial was used to model the long‐wavelength differences which cannot be clearly separated over an area of this size, results show agreement to better than ±3 cm for wavelengths between approximately 20 and 750 km. In regions where terrestrial gravity data were not available to improve the geoid, similar comparisons with the OSU91A geopotential model alone show differences of up to ±6 cm. This illustrates the importance of incorporating local gravity data in regional geoid computations, and partly validates the regional gravimetric geoid solution and Geosat sea surface profiles in the western North Sea. It is concluded that, in marine areas where the sea surface topography is known to be small in magnitude, Geosat sea surface profiles can act as an independent control on gravimetric geoids in the medium‐wavelength range.  相似文献   

8.
Variations of surface current velocity derived by the TOPEX altimeter are compared with data from Tokyo-Ogasawara Line Experiment (TOLEX)-Acoustic Doppler Current Profiler (ADCP) monitoring for a period from October 1992 to July 1993. Since the locations of ADCP ship track and TOPEX altimeter ground tracks do not coincide with each other, and the temporal and spatial sampling are also different between the ADCP and altimeter observations, re-sampling, interpolation and smoothing in time and space are needed to the ADCP and altimeter data. First, the interpolated TOPEX sea surface height is compared with sea level data at Chichijima in the Ogasawara Islands. It is found that aliasing caused by the tidal correction error for M2 constituent in the TOPEX data is significant. Therefore, comparison of the TOPEX data with the TOLEX-ADCP data is decided to be made by using cross-track velocity components of the surface current, which are considered to be relatively less affected by the errors in the tidal correction. The cross-track velocity variations derived from the TOPEX sea surface heights agree well with those of the ADCP observations. The altimeterderived velocity deviations associated with transition of the Kuroshio paths coincide with the ADCP data. It is quantitatively confirmed that the TOPEX altimeter is reliable to observe the synoptic variations of surface currents including fluctuations of the Kuroshio axis.  相似文献   

9.
The recovery of quantities related to the gravity field (i.e., geoid heights and gravity anomalies) is carried out in a test area of the central Mediterranean Sea using 5' × 5' marine gravity data and satellite altimeter data from the Geodetic Mission (GM) of ERS‐J. The optimal combination of the two heterogeneous data sources is performed using (1) the space‐domain least‐squares collocation (LSC) method, and (2) the frequency‐domain input‐output system theory (IOST). The results derived by these methods agree at the level of 2 cm in terms of standard deviation in the case of the geoid height prediction. The gravity anomaly prediction results by the same methods vary between 2.18 and 2.54 mGal in terms of standard deviation. In all cases, the spectral techniques have a much higher computational efficiency than the collocation procedure. In order to investigate the importance of satellite altimetry for gravity field modeling, a pure gravimetric geoid solution, carried out in a previous study for our lest area by the fast collocation approach (FCOL), is used in comparison with the combined geoid models. The combined solutions give more accurate results, at the level of about 15 cm in terms of standard deviation, than the gravimetric geoid solution, when the geoid heights derived by each method are compared with TOPEX altimeter sea surface heights (SSHs). Moreover, nonisotropic power spectral density functions (PSDs) can be easily used by IOST, while LSC requires isotropic covariance functions. The results show that higher prediction accuracies are always obtained when using a priori nonisotropic information instead of isotropic information.  相似文献   

10.
This article describes an “absolute” calibration of Jason-1 (J-1) altimeter sea surface height bias using a method developed for TOPEX/Poseidon (T/P) bias determination reported previously. The method makes use of U.K. tide gauges equipped with Global Positioning System (GPS) receivers to measure sea surface heights at the same time, and in the same geocentric reference frame, as Jason-1 altimetric heights recorded in the nearby ocean. The main time-dependent components of the observed altimeter-minus-gauge height-difference time series are due to the slightly different ocean tides at the gauge and in the ocean. The main harmonic coefficients of the tide differences are calculated from analysis of the copious TOPEX data set and then applied to the determination of T, P, and J-1 bias in turn. Datum connections between the tide gauge and altimetric sea surface heights are made by means of precise, local geoid differences from the EGG97 model. By these means, we have estimated Jason-1 altimeter bias determined from Geophysical Data Record (GDR) data for cycles 1–61 to be 12.9 cm, with an accuracy estimated to be approximately 3 cm on the basis of our earlier work. This J-1 bias value is in close agreement with those determined by other groups, which provides a further confirmation of the validity of our method and of its potential for application in other parts of the world where suitable tide gauge, GPS, and geoid information exist.  相似文献   

11.
The primary experiment on the Geodynamics Experimental Ocean Satellite‐3 (GEOS‐3) is the radar altimeter. This experiment's major objective is to demonstrate the utility of measuring the geometry of the ocean surface, i.e., the geoid. Results obtained from this experiment so far indicate that the planned objectives of measuring the topography of the ocean surface with an absolute accuracy of ±5 m can be met and perhaps exceeded. The GEOS‐3 satellite altimeter measurements have an instrument precision in the range of ±25 cm to ±50 cm when the altimeter is operating in the “short pulse”; mode. After one year's operations of the altimeter, data from over 5,000 altimeter passes have been collected. With the mathematical models developed and the altimeter data presently available, mapping of local areas of ocean topography has been realized to the planned accuracy levels and better. This paper presents the basic data processing methods employed and some interesting results achieved with the early data. Plots of mean sea surface heights as inferred by the altimeter measurements are compared with a detailed 1o × 1° gravimetric geoid.  相似文献   

12.
Absolute Calibration of the Jason-1 Altimeter Using UK Tide Gauges   总被引:1,自引:0,他引:1  
This article describes an “absolute” calibration of Jason-1 (J-1) altimeter sea surface height bias using a method developed for TOPEX/Poseidon (T/P) bias determination reported previously. The method makes use of U.K. tide gauges equipped with Global Positioning System (GPS) receivers to measure sea surface heights at the same time, and in the same geocentric reference frame, as Jason-1 altimetric heights recorded in the nearby ocean. The main time-dependent components of the observed altimeter-minus-gauge height-difference time series are due to the slightly different ocean tides at the gauge and in the ocean. The main harmonic coefficients of the tide differences are calculated from analysis of the copious TOPEX data set and then applied to the determination of T, P, and J-1 bias in turn. Datum connections between the tide gauge and altimetric sea surface heights are made by means of precise, local geoid differences from the EGG97 model. By these means, we have estimated Jason-1 altimeter bias determined from Geophysical Data Record (GDR) data for cycles 1-61 to be 12.9 cm, with an accuracy estimated to be approximately 3 cm on the basis of our earlier work. This J-1 bias value is in close agreement with those determined by other groups, which provides a further confirmation of the validity of our method and of its potential for application in other parts of the world where suitable tide gauge, GPS, and geoid information exist.  相似文献   

13.
One possible technique to validate the observations of altimeter missions is the comparison with sea-surface heights measured by tide gauges. In our investigation, we compared observations of the two tide gauge stations, Sassnitz and Warnemünde, which are located at the southern coast of the Baltic Sea, with sea-surface heights obtained from the altimeter missions Geosat, ERS-1, ERS-2, and TOPEX/Poseidon. For this purpose, the compared sea-surface heights were related to a common reference system and extrapolated to a common location. GPS observations, leveling data, regional geoid information, sea-surface topography, and postglacial rebound were included in the analysis. Considering the uncertainties of all model components, a more reliable estimation of the error budget (source, type, and magnitude of the errors) was performed. The obtained absolute altimeter biases are (-243 - 32) mm for Geosat, (467 - 19) mm for ERS-1, (76 - 19) mm for ERS-2, and (13 - 18) mm for TOPEX.  相似文献   

14.
The Seasat altimeter data has been completely adjusted by a crossing arc technique to reduce the crossover discrepancies to approximately ±30 cm in five regional adjustments. This data was then used to create sea surface heights at 1° intersections in the ocean areas with respect to the GRS80 ellipsoid. These heights excluded the direct tidal effects but included the induced permanent deformation. A geoid corresponding to these sea surface heights was computed, based on the potential coefficients of the GEML2 gravity field up to degree 6, augmented by Rapp's coefficients up to degree 180. The differences between sea surface heights and the geoid were computed to give approximate estimates of sea surface topography. These estimates are dominated by errors in both sea surface heights and geoid undulations. To optimally determine sea surface topography a spherical harmonic analysis of raw estimates was carried out and the series was further truncated at degree 6, giving estimates with minimum wavelengths on the order of 6000 km. The direction of current flow can be computed on a global basis using the spherical harmonic expansion of the sea surface topography. Ths has been done, not only for Seasat/GEML2 estimates, but also using the recent dynamic topography estimates of Levitus. The results of the two solutions are very similar and agree well with the major circulation features of the oceans.  相似文献   

15.
Mesoscale eddies constitute the most energetic component of the variability of ocean currents. An attempt has been made for the detection of oceanic mesoscale eddy signatures over the Southern Indian Oceanic (SIO) regions using the dynamic topography derived from TOPEX/POSEIDON (T/P) altimeter data, by the signal processing technique, called matched filtering. After applying all the ocean and atmospheric corrections, data of a complete cycle of T/P over SIO has been used for detection of eddy signatures. The geoid undulations are removed from the data of corrected sea surface height from T/P and the resulting dynamic topographic data are passed through a matched filter designed to detect a generic eddy signature of Gaussian signal embedded in noise. The filter is optimized to detect eddies with amplitude 20 to 30 cm and diameters roughly 100?250 km. Out of all the analyzed data of T/P orbits over SIO a few examples are presented for brevity. Qualitative verification of eddies is done with some independent T/P sea level anomaly data over the region. The analysis shows that the matched filtering technique is most suitable for monitoring eddy signatures along the subsatellite track instantly over the remote and most hostile regions of the southern global oceans.  相似文献   

16.
The altimeter radar backscatter cross-section is known to be related to the ocean surface wave mean square slope statistics, linked to the mean surface acceleration variance according to the surface wave dispersion relationship. Since altimeter measurements also provide significant wave height estimates, the precedent reasoning was used to derive empirical altimeter wave period models by combining both significant wave height and radar backscatter cross-section measurements. This article follows such attempts to propose new algorithms to derive an altimeter mean wave period parameter using neural networks method. Two versions depending on the required inputs are presented. The first one makes use of Ku-band measurements only as done in previous studies, and the second one exploits the dual-frequency capability of modern altimeters to better account for local environmental conditions. Comparison with in situ measurements show high correlations which give confidence in the derived altimeter wave period parameter. It is further shown that improved mean wave characteristics can be obtained at global and local scales by using an objective interpolation scheme to handle relatively coarse altimeter sampling and that TOPEX/Poseidon and Jason-1 altimeters can be merged to provide altimeter mean wave period fields with a better resolution. Finally, altimeter mean wave period estimates are compared with the WaveWatch-III numerical wave model to illustrate their usefulness for wave models tuning and validation.  相似文献   

17.
The altimeter radar backscatter cross-section is known to be related to the ocean surface wave mean square slope statistics, linked to the mean surface acceleration variance according to the surface wave dispersion relationship. Since altimeter measurements also provide significant wave height estimates, the precedent reasoning was used to derive empirical altimeter wave period models by combining both significant wave height and radar backscatter cross-section measurements. This article follows such attempts to propose new algorithms to derive an altimeter mean wave period parameter using neural networks method. Two versions depending on the required inputs are presented. The first one makes use of Ku-band measurements only as done in previous studies, and the second one exploits the dual-frequency capability of modern altimeters to better account for local environmental conditions. Comparison with in situ measurements show high correlations which give confidence in the derived altimeter wave period parameter. It is further shown that improved mean wave characteristics can be obtained at global and local scales by using an objective interpolation scheme to handle relatively coarse altimeter sampling and that TOPEX/Poseidon and Jason-1 altimeters can be merged to provide altimeter mean wave period fields with a better resolution. Finally, altimeter mean wave period estimates are compared with the WaveWatch-III numerical wave model to illustrate their usefulness for wave models tuning and validation.  相似文献   

18.
Abstract

We studied geoid validation using ship-borne global navigation satellite systems (GNSS) on the Baltic Sea. We obtained geoid heights by combining GNSS–inertial measurement unit observations, tide gauge data, and a physical sea model. We used two different geoid models available for the area. The ship route was divided into lines and the lines were processed separately. The GNSS results were reduced to the sea surface using attitude and draft parameters available from the vessel during the campaign. For these lines, the residual errors between ellipsoidal height versus geoid height and absolute dynamic topography varied between 0 and 15?cm, grand mean being 2?cm. The mean standard deviations of the original time series were approximately 11?cm and reduced to below 5?cm for the time series filtered with 10?min moving average. We showed that it is possible to recover geoid heights from the GNSS observations at sea and validate existing geoid models in a well-controlled area.  相似文献   

19.
This work presents the first calibration results for the SARAL/AltiKa altimetric mission using the Gavdos permanent calibration facilities. The results cover one year of altimetric observations from April 2013 to March 2014 and include 11 calibration values for the altimeter bias. The reference ascending orbit No. 571 of SARAL/AltiKa has been used for this altimeter assessment. This satellite pass is coming from south and nears Gavdos, where it finally passes through its west coastal tip, only 6 km off the main calibration location. The selected calibration regions in the south sea of Gavdos range from about 8 km to 20 km south off the point of closest approach. Several reference surfaces have been chosen for this altimeter evaluation based on gravimetric, but detailed regional geoid, as well as combination of it with other altimetric models.

Based on these observations and the gravimetric geoid model, the altimeter bias for the SARAL/AltiKa is determined as mean value of ?46mm ±10mm, and a median of ?42 mm ±10 mm, using GDR-T data at 40 Hz rate. A preliminary cross-over analysis of the sea surface heights at a location south of Gavdos showed that SARAL/AltiKa measure less than Jason-2 by 4.6 cm. These bias values are consistent with those provided by Corsica, Harvest, and Karavatti Cal/Val sites. The wet troposphere and the ionosphere delay values of satellite altimetric measurements are also compared against in-situ observations (?5 mm difference in wet troposphere and almost the same for the ionosphere) determined by a local array of permanent GNSS receivers, and meteorological sensors.  相似文献   

20.
卫星高度计绝对定标中海面高梯度的计算   总被引:1,自引:0,他引:1       下载免费PDF全文
给出了通过平均海面高模型计算海面高梯度的具体方法,选择DTU13、CNES_CLS15、WHU2013 3种模型计算了不同海域近岸比较点海面高梯度值,随机选择的30个近岸比较点处的计算结果表明:使用3种模型计算得到的海面高梯度值之间的标准差均值为0.19cm/km。在卫星高度计定标的具体应用中,由海面高梯度得到的海面高差改正量的误差应不超过0.3cm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号