首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
2.
There is a pressing need for standardization of data derived from bathy‐metric swath‐mapping systems. Currently several dozen multibeam and sidescan sonar data formats exist within the oceanographic community, and more can be expected as new systems are developed. Without some standardization of swath‐mapping data formats, the capability for use and integration of data from different systems will be severely compromised.

This paper presents a strategy for organizing swath bathymetry data in a logical modular fashion that will allow data from all current swath bathymetric sonar systems to be stored and accessed in a common fashion. We have chosen the approach of defining compact efficient modules for each logically independent portion of a data record and storing it in a manner that is portable between diverse computer architectures and operating systems. This approach is extensible to accommodate new types of data. Although specifically developed for swath bathymetry, this format is also capable of supporting digital sidescan data and other types of swath data.  相似文献   

3.
A procedure for postprocessing bathymetry data provided by a phase-measuring sidescan sonar system is presented. The data were collected with the SeaMARC II system, and are generally characterized by a high level of noise and uneven spatial sampling. Before any spatial filtering is applied, data are selected to remove most of the obvious artifacts and to retain instantaneous depth profiles whose slant ranges increase monotonically from a central location to the edges of the swath. An extrapolation scheme, patterned after a potential field, is proposed to fill gaps in the coverage or to extend the bathymetric swath to that of the corresponding sidescan image when regridding the data to a rectangular frame. To fill the near nadir gap typically found in these data, a specific interpolation methodology is developed that takes into account the slant range of the first bottom return as received by the sidescan sonar itself or by a shipboard echo-sounder. Spatial low-pass filtering is applied through convolutions with parabolic windows whose width is proportional to the footprint of the acoustic beam along track and roughly 1/8 of the swath width across track. Mismatches of contour lines between adjacent tracks are reduced through a statistical method design to correct systematic profile errors  相似文献   

4.
Images collected by any sidescan sonar system represent the convolution of the acoustic beam pattern of the instrument with the true echo amplitude distribution over the seafloor. At typical low speeds, the 1.7° beam width of SeaMARC I (seafloor mapping and remote characterization) results in multiple insonification of individual targets, particularly at the outside of the swath. A nonlinearly constrained iterative deconvolution technique developed for radar applications can be applied to SeaMARC I imagery to reduce the effect of the beam pattern and equalize the spectral content of the image across the swath. Since the deconvolution is implemented in the along-track direction, the registration of individual scan lines must be precisely corrected before the operator is applied. The deconvolution operator must be modeled to account for beam shape, vehicle speed, swath width, slant range, and ping rate. The method is numerically stable and increases the effective resolution of the image, but results in some loss of dynamic range. The technique is applied to target recognition and imagery from volcanic terrains of the central Juan de Fuca Ridge  相似文献   

5.
Abstract

In May, 1977, the first non‐military version of a multi‐beam, wide swath, deep ocean, bathymetric sonar was placed in service. Called SEA BEAM, this equipment provides high resolution bathymetric data across a swath width approximately equal to 78% of the depth. Angu ar resolution is 2.7° with a maximum operating depth of 11,000 m. Real time displays include a CRT presentation of the thwartship profile and a continuous strip chart of bottom contours. All sounding data are recorded on digital magnetic tape for final processing and merging with corrected navigation data. More recently, a companion system called HYDRO CHART has gone into operation for continental shelf surveys.  相似文献   

6.
7.
Morphology of a seamount at 12°35'E and 76°18.5’ and two abyssal hills in its vicinity is described using the Hydrosweep multibeam‐swath bathymetric system. The height of the seamount is 1350 m, and it occupies an area of 330 km2. Its basal width is 22.5 km, and the mount has a gentle and longer western flank and a steep and shorter eastern flank. There is a characteristic terracelike feature on the western flank, about 300 m from the top. A caldera is also observed on top of the seamount. Slope angles in this area are high (over 35"). Results of morphologic studies of the seamount from the multibeam survey are comparable to those from a narrow‐beam echosounding survey. The origin of the seamount may be related to the presence of a fracture zone at 75°45'E.  相似文献   

8.
Approximately 12,000 km2 of acoustic backscatter imagery (sidescan) data and swath bathymetry data were collected jointly by Republic of Korea (ROK) Navy, the Naval Oceanographic Office (NAVOCEANO), Hawaii Mapping Research Group (HMRG) and the Naval Research Laboratory (NRL) in the East Sea (Sea of Japan) in 1995. Preliminary analysis of these data have revealed a large network of canyons with well-developed fan deposits and slumps which were not previously mapped. Also identified is a 1400 km2 area occupied by more than 300 circular, low-backscatter features ca. 50–1000 m in diameter which are interpreted to be pockmarks or mounds created by escaping methane gas, methane-rich porewater and mud.Indirect evidence for the probable existence of methane gas hydrate include the five following observations: (1) Core samples in the region contain high levels of organic carbon (>7%), degassing cracks caused by gas expansion, and emit a strong H2S odor. (2) Extensive canyon formation and slumping may have occurred as the result of the destabilization of sediments due to gas accumulation. (3) Several of the high backscatter objects occur at the crest of a bathymetric high under which gas could be accumulating and periodically releasing in a manner similar to that documented on the Vestnesa Ridge in the Norwegian-Greenland Sea. (4) Pockmark-like features have been identified in 3.5 kHz records on the northern edge of the Ulleung Basin. (5) Drill core samples from the morphologically similar Yamato Basin, which is adjacent to the Ulleung Basin, have positively identified methane and numerous gas voids in unconsolidated sediments. No bottom simulating reflector (BSR) has been identified in seismic reflection profiles collected across the slope in Ulleung Basin.  相似文献   

9.
Submarine canyons are complex geomorphological features that have been suggested as potential hotspots for biodiversity. However, few canyons have been mapped and studied at high resolution (tens of m). In this study, the four main branches of Whittard Canyon, Northeast Atlantic, were mapped using multibeam and sidescan sonars to examine which environmental variables were most useful in predicting regions of higher biodiversity. The acoustic maps obtained were ground truthed by 13 remotely operated vehicle (ROV) video transects at depths ranging from 650 to 4000 m. Over 100 h of video were collected, and used to identify and georeference megabenthic invertebrate species present within specific areas of the canyon. Both general additive models (GAMs) and random forest (RF) were used to build predictive maps for megafaunal abundance, species richness and biodiversity. Vertical walls had the highest diversity of organisms, particularly when colonized by cold‐water corals such as Lophelia pertusa and Solenosmilia variabilis. GAMs and RF gave different predictive maps and external assessment of predictions indicated that the most adequate technique varied based on the response variable considered. By using ensemble mapping approaches, results from more than one model were combined to identify vertical walls most likely to harbour a high biodiversity of organisms or cold‐water corals. Such vertical structures were estimated to represent less than 0.1% of the canyon's surface. The approach developed provides a cost‐effective strategy to facilitate the location of rare biological communities of conservation importance and guide further sampling efforts to help ensure that appropriate monitoring can be implemented.  相似文献   

10.
《Marine Geology》2005,214(4):431-449
The dependence of acoustic backscatter on sediment grain size distribution is examined using dual frequency (100 and 410 kHz) sidescan sonar and 22 sediment grab samples from the Loch Linnhe artificial reef site on the west coast of Scotland. The sidescan data were processed to remove an empirically estimated average grazing angle dependence on backscatter. The processed data were analysed by forming histograms of pixels extracted from a 20 m2 box around each ground truth site. A positive correlation (r=0.73) between mean backscatter intensity and mean grain size was obtained, i.e., the coarsest samples had the brightest backscatter. A positive correlation (r=0.59) was also found between the standard deviations of the backscatter and grain size distributions, i.e., poorly sorted sediments gave the most variable backscatter. The performance of the sidescan data was compared to results from a co-incident single-beam echo-sounder RoxAnn survey. The RoxAnn roughness index E1 compared well with the sidescan, whilst the RoxAnn hardness index E2 did not. This may be due to a physical link between the acoustic measures. The comparison showed the sidescan to have delivered a significantly higher-resolution image of the seabed for a similar amount of ship-time. Imaging of the artificial reef modules themselves was found to be frequency dependent.  相似文献   

11.
Processing and analysis of Simrad multibeam sonar data   总被引:1,自引:0,他引:1  
The common approach to analysing data collected with multibeam and sidescan sonars is to visually interpret charts of contoured bathymetry and mosaics of seabed images. However, some of the information content is lost by processing the data into charts because this involves some averaging; the analysis might uncover more information if done on the data at an earlier stage in the processing. Motivated by this potential, I have created a software system which can be used to analyse data collected with Simrad EM1000 (shallow water) and EM12 (deep water) multibeam sonars, as well as to generate bathymetry contour charts and backscatter mosaics. The system includes data preprocessing, such as navigation filtering, depth filtering (removal of outlying values), and amplitude mapping using the multibeam bathymetry to correctly position image pixels across the swath. The data attributes that can be analysed include the orientation and slope of the seafloor, and the mean signal strength for each sounding. To determine bathymetry attributes such as slope, the soundings across a number of beams and across a series of pings are grouped and a least-squares plane fitted to them. Bathymetric curvature is obtained by detrending the grouped data using the least-squares plane and fitting a paraboloid to the residuals. The magnitudes and signs of the paraboloid's coefficients reveal depressions and hills and their orientations. Furthermore, the seafloor geology can be classified using a simple combination of these attributes. For example, flat-lying sediments can be classified where the backscatter, slope and curvature fall below specified values.  相似文献   

12.
High-resolution, side-looking sonar data collected near the seafloor (100 m altitude) provide important structural and topographic information for defining the geological history and current tectonic framework of seafloor terrains. DSL-120 kHz sonar data collected in the rift valley of the Lucky Strike segment of the Mid-Atlantic Ridge near 37° N provide the ability to quantitatively assess the effective resolution limits of both the sidescan imagery and the computed phase-bathymetry of this sonar system. While the theoretical, vertical and horizontal pixel resolutions of the DSL-120 system are <1 m, statistical analysis of DSL-120 sonar data collected from the Lucky Strike segment indicates that the effective spatial resolution of features is 1–2 m for sidescan imagery and 4 m for phase-bathymetry in the seafloor terrain of the Mid-Atlantic Ridge rift valley. Comparison of multibeam bathymetry data collected at the sea-surface with deep-tow DSL-120 bathymetry indicates that depth differences are on the order of the resolution of the multibeam system (10–30 m). Much of this residual can be accounted for by navigational mismatches and the higher resolving ability of the DSL-120 data, which has a bathymetric footprint on the seafloor that is 20 times smaller than that of hull-mounted multibeam at these seafloor depths (2000 m). Comparison of DSL-120 bathymetry with itself on crossing lines indicates that residual depth values are ±20 m, with much of that variation being accounted for by navigational errors. A DSL-120 survey conducted in 1998 on the Juan de Fuca Ridge with better navigation and less complex seafloor terrain had residual depth values half those of the Lucky Strike survey. The quality of the bathymetry data varies as a function of position within the swath, with poorer data directly beneath the tow vehicle and also towards the swath edges.Variations in sidescan amplitude observed across the rift valley and on Lucky Strike Seamount correlate well with changes in seafloor roughness caused by transitions from sedimented seafloor to bare rock outcrops. Distinct changes in sonar backscatter amplitude were also observed between areas covered with hydrothermal pavement that grade into lava flows and the collapsed surface of the lava lake in the summit depression of Lucky Strike Seamount. Small features on the seafloor, including volcanic constructional features (e.g., small cones, haystacks, fissures and collapse features) and hydrothermal vent chimneys or mounds taller than 2 m and greater than 9 m2 in surface area, can easily be resolved and mapped using this system. These features at Lucky Strike have been confirmed visually using the submersible Alvin, the remotely operated vehicle Jason, and the towed optical/acoustic mapping system Argo II.  相似文献   

13.
Acoustic seabed classification is a useful tool for monitoring marine benthic habitats over broad-scales (>1 km2) and meso-scales (10 m2–1 km2). Its utility in this context was evaluated using two approaches: by describing natural changes in the temporal distribution of marine biotopes across the broad-scale (4 km2), and by attempting to detect specific experimentally-induced changes to kelp-dominated biotopes across the meso-scale (100 m2). For the first approach, acoustic backscatter mosaics were constructed using sidescan sonar and multibeam echosounder data collected from Church Bay (Rathlin Island, Northern Ireland) in 1999, 2008 and 2009. The mosaics were manually segmented into acoustic facies, which were ground-truthed using a drop-video camera. Biotopes were classified from the video by multivariate exploratory analysis and cross-tabulated with the acoustic facies, showing a positive correlation. These results were integrated with bathymetric data to map the distribution of seven unique biotopes in Church Bay. Kappa analysis showed the biotope distribution was highly similar between the biotope maps, possibly due to the stability of bedforms shaped by the tidal regime around Rathlin Island. The greatest biotope change in this approach was represented by seasonal and annual changes in the growth of the seagrass, Zostera marina. In the second approach, sidescan sonar data were collected before and after the removal of 100 m2 of kelp from three sites. Comparison of the data revealed no differences between the high-resolution backscatter imagery. It is concluded that acoustic seabed classification can be used to monitor change over broad- and meso-scales but not necessarily for all biotopes; its success depends on the type of acoustic system employed and the biological characteristics of the target biotope.  相似文献   

14.
《Oceanologica Acta》1999,22(6):679-686
The application of marine geophysics and GIS techniques to the characterization of benthic habitats has increased the ability of fisheries managers to assess distribution and habitat types beyond common practices. We report upon a 150 kHz sidescan sonar survey offshore of Kruzof Island, Alaska undertaken to characterize rockfish (Sebastes) habitat. Using GIS, MapGrafix and Map1Factory we determined the percentage of seafloor cover that exists in our survey area. Bathymetry in the study area was determined with sidescan interferometry. All XYZ data were gridded using Surfer and plotted in shaded relief, bathymetric contour, and 3-dimensional formats. Contoured bathymetry was used as an over-lay in MapGrafix. Small sub-areas were extracted from the bathymetric data for closer study, and gridded in Surfer. Areas of the mosaic where backscatter patterns were not distinct were verified with hand samples and video collected with the submersible Delta. The use of submersibles for verification of interpreted lithologies and surface textures enables a high degree of accuracy for the interpretations. Lithotypes were lumped into larger groups based on morphology and fish associations with different morphologies verified using the submersible. The accuracy of digital maps from high-resolution sidescan sonar data allows a close quantification of the areal extents of these important features, directing the application of management strategies to critical areas.  相似文献   

15.
The variation of the backscatter strength with the angle of incidence is an intrinsic property of the seafloor, which can be used in methods for acoustic seafloor characterization. Although multibeam sonars acquire backscatter over a wide range of incidence angles, the angular information is normally neglected during standard backscatter processing and mosaicking. An approach called Angular Range Analysis has been developed to preserve the backscatter angular information, and use it for remote estimation of seafloor properties. Angular Range Analysis starts with the beam-by-beam time-series of acoustic backscatter provided by the multibeam sonar and then corrects the backscatter for seafloor slope, beam pattern, time varying and angle varying gains, and area of insonification. Subsequently a series of parameters are calculated from the stacking of consecutive time series over a spatial scale that approximates half of the swath width. Based on these calculated parameters and the inversion of an acoustic backscatter model, we estimate the acoustic impedance and the roughness of the insonified area on the seafloor. In the process of this inversion, the behavior of the model parameters is constrained by established inter-property relationships. The approach has been tested using a 300 kHz Simrad EM3000 multibeam sonar in Little Bay, NH. Impedance estimates are compared to in situ measurements of sound speed. The comparison shows a very good correlation, indicating the potential of this approach for robust seafloor characterization.  相似文献   

16.
The combination of multi-beam echo-sounder swath bathymetry and high-resolution deep-towed sidescan sonar provides a powerful database from which to examine mid-ocean ridge processes. We have used such a database, gathered from the Mid-Atlantic Ridge north of the Kane Fracture Zone (the MARNOK area), to examine the relationship between tectonic, volcanic, and bathymetric segmentation. We have identified structural domains, with different fault distributions, and neovolcanic segments that are distinct from the 2nd or 3rd order bathymetric segmentation.From their mutual relationships, a model is proposed for the magmatic accretion of oceanic crust at slow spreading ridges that relates the local melt supply to the tectonic style. We suggest that these are mutually interactive, and determine whether volcanic extrusion along the ridge is continuous and slow, or episodic and rapid.  相似文献   

17.
The oceans have been and will continue to be disposal sites for a wide variety of waste products. Often these wastes are not dumped at the designated sites or transport occurs during or after dumping, and, subsequent attempts to monitor the effects the waste products have on the environment are inadequate because the actual location of the waste is not known. Acoustic mapping of the seafloor with sidescan sonar is a very effective technique for locating and monitoring dredge-spoil material and other debris. Sidescan sonar provides an acoustic image or sonograph of the sea floor that is similar to a satellite image of the Earth's land surface. In effect sidescan sonar allows the water column to be stripped from the sea floor, thereby providing a clear, unobstructed view of the sea bed.An example of the potential of this technique is summarized herein for the Gulf of the Farallones region. More than 47 800 drums (55 gallon) and other containers of low-level radioactive waste were dumped on the continental margin offshore the San Francisco Bay between 1946 and 1970. These drums now litter a large area (1200 km2) of the sea floor within the Gulf of the Farallones National Marine Sanctuary (GFNMS). The exact location of the drums and the potential hazard the drums pose to the environment are unknown. To evaluate the risk, samples of the sediment, biota and water must be collected near and distant from the concentrations of barrels. To do this the exact location of the barrels must be known prior to sampling. The USGS, through a cooperative research agreement with GFNMS, used sidescan sonar to map two areas within the sanctuary. Total sea-floor coverage was obtained and computer-processed sonographic mosaics were constructed on board ship. Many small nongeologic targets were distributed throughout the survey areas that covered about 70 km2 on the shelf and 120 km2 on the slope. Analysis of the sidescan data suggests that the targets are 55-gallon drums. This interpretation was confirmed at one site with an underwater video and 35-mm camera system. Data were collected with both a 30-kHz and a 120-kHz sidescan system within a 15-km2 area on the shelf. We found that the barrels were more easily detected with the mid-range 30-kHz system than with the higher resolution 120-kHz system. Maps of barrel distribution derived from the sonographs are being used to design sampling schemes to evaluate the risk that the radioactivity may have on the biota and environment.  相似文献   

18.
The sandy substrate of Lake Taharoa (west coast, North Island, New Zealand ‐ 35°50'S, 173°41'E) is covered by communities of filamentous algae that extend from the exposed beach down to 21 m depth. The algae bind the sand to form crusts and mats which may break off as discrete plates. The dominant species are the blue‐greens Microcoleus, Nostoc, Phormidium, Lyngbya, Oscillatoria, Scytonema, Stigonema, Shizothrix, Calothrix, Dichothrix, Tolypothrix, and Anabaena, with occasional high concentrations of the desmid Cylindrocystis. Nitrogenase activity, measured by acetylene reduction, showed a wide range of rates (4–150 μmol C2H4 m‐2h‐1). Estimates of annual rates of nitrogen fixation by the Taharoa communities are comparable with those for periphytic blue‐green algae‐dominated systems reported elsewhere.  相似文献   

19.
We have replaced the usual band of poor-quality data in the near-nadir region of our GLORIA long-range sidescan-sonar imagery with a shaded-relief image constructed from swath bathymetry data (collected simultaneously with GLORIA) which completely cover the nadir area. We have developed a technique to enhance these pseudo-sidescan images in order to mimic the neighbouring GLORIA backscatter intensities. As a result, the enhanced images greatly facilitate the geologic interpretation of the adjacent GLORIA data, and geologic features evident in the GLORIA data may be correlated with greater confidence across track. Features interpreted from the pseudo-sidescan may be extrapolated from the near-nadir region out into the GLORIA range where they may nt have been recognized otherwise, and therefore the pseudo-sidescan can be used to ground-truth GLORIA interpretations. Creation of digital sidescan mosaics utilized an approach not previously used for GLORIA data. Pixels were correctly placed in cartographic space and the time required to complete a final mosaic was significantly reduced. Computer software for digital mapping and mosaic creation is incorporated into the newly-developed Woods Hole Image Processing System (WHIPS) which can process both low- and high-frequency sidescan, and can interchange data with the Mini Image Processing System (MIPS) most commonly used for GLORIA processing. These techniques are tested by creating digital mosaics of merged GLORIA sidescan and Hydrosweep pseudo-sidescan data from the vicinity of the Juan Fernandez microplate along the East Pacific Rise (EPR).  相似文献   

20.
The EM12 multibeam echosounder can record acoustic backscatter information as well as high resolution bathymetry. The dataset presented, from the axis of the Mid-Atlantic Ridge at 45° N, was the first EM12 survey of a mid-ocean ridge. This paper presents methods for utilising the backscatter information. Data processing enables the production of a mosaic of acoustic backscatter, and visualisation techniques are investigated to provide initial qualitative views of the combined backscatter and bathymetry datasets. The co-registration of the backscatter and bathymetry data enables quantitative analysis of their relationships. Various sites of different geological type have been selected and their angular acoustic backscattering relationships estimated, including the effect on backscatter of incidence angle, its regional variability with bottom type and the influence of bottom slope. Incidence angles and bottom type are shown to affect backscatter to a similar degree, while slopes appear to contribute little. The geometry of hull-mounted systems, such as the EM12, is significantly different from that of conventional sidescan sonars, such as GLORIA, and the backscatter images from the two types differ in various respects. Because of the wide variations in incidence angle that are common with hull-mounted systems, and the importance of incidence angle in determining backscatter strength, it is vital to consider the effect of incidence angle during interpretation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号