首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This study makes use of the concept of wave age in estimating ocean wave period from space borne altimeter measurements of backscattering coefficient and significant wave height. Introduction of wave age allowed better accounting of the difference between swells and wind waves. Using two years (1998 and 1999) data of TOPEX/Poseidon altimeter and ocean data buoy observations in the Indian Ocean, coefficients were generated for wave period, which were subsequently tested against data for the years 2000 and 2001. The results showed the wave period accuracy to be of the order of 0.6 sec (against 1.3 sec obtained with the semiempirical approach, reported earlier).  相似文献   

2.
A Spectral Approach for Determining Altimeter Wind Speed Model Functions   总被引:9,自引:0,他引:9  
We propose a new analytical algorithm for the estimation of wind speeds from altimeter data using the mean square slope of the ocean surface, which is obtained by integration of a widely accepted wind-wave spectrum including the gravity-capillary wave range. It indicates that the normalized radar cross section depends not only on the wind speed but also on the wave age. The wave state effect on the altimeter radar return becomes remarkable with increasing wind speed and cannot be neglected at high wind speeds. A relationship between wave age and nondimensional wave height based on buoy observational data is applied to compute the wave age using the significant wave height of ocean waves, which could be simultaneously obtained from altimeter data. Comparison with actual data shows that this new algorithm produces more reliable wind speeds than do empirical algorithms. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The altimeter radar backscatter cross-section is known to be related to the ocean surface wave mean square slope statistics, linked to the mean surface acceleration variance according to the surface wave dispersion relationship. Since altimeter measurements also provide significant wave height estimates, the precedent reasoning was used to derive empirical altimeter wave period models by combining both significant wave height and radar backscatter cross-section measurements. This article follows such attempts to propose new algorithms to derive an altimeter mean wave period parameter using neural networks method. Two versions depending on the required inputs are presented. The first one makes use of Ku-band measurements only as done in previous studies, and the second one exploits the dual-frequency capability of modern altimeters to better account for local environmental conditions. Comparison with in situ measurements show high correlations which give confidence in the derived altimeter wave period parameter. It is further shown that improved mean wave characteristics can be obtained at global and local scales by using an objective interpolation scheme to handle relatively coarse altimeter sampling and that TOPEX/Poseidon and Jason-1 altimeters can be merged to provide altimeter mean wave period fields with a better resolution. Finally, altimeter mean wave period estimates are compared with the WaveWatch-III numerical wave model to illustrate their usefulness for wave models tuning and validation.  相似文献   

4.
波浪能是一种重要的海洋可再生能源,在开发波浪能之前需要对波浪能的时空分布状况进行可靠的评估。高度计可以提供比海浪模式更为准确的海浪现场观测结果,可以作为波浪能资源评估的一种新的手段。高度计数据的优势在于对海浪有效波高的观测具有较高的精度。为了发挥高度计数据的特点和优势,实现高度计数据在波浪能资源评估研究中的应用,本文建立了一种适合于高度计数据的局部海域波浪能资源的评估方法,主要包括数据的选择和处理;评价指标体系的建立;区域等级划分标准的建立。然后,以西北太平洋为例论述了该方法的具体应用。研究表明:本文建立的评估方法可以有效的评估研究海域波浪能资源的储量和时空分布状况,可为波能电站的建站选址和波能转换装置的设计和运行提供科学的参考依据。  相似文献   

5.
The altimeter radar backscatter cross-section is known to be related to the ocean surface wave mean square slope statistics, linked to the mean surface acceleration variance according to the surface wave dispersion relationship. Since altimeter measurements also provide significant wave height estimates, the precedent reasoning was used to derive empirical altimeter wave period models by combining both significant wave height and radar backscatter cross-section measurements. This article follows such attempts to propose new algorithms to derive an altimeter mean wave period parameter using neural networks method. Two versions depending on the required inputs are presented. The first one makes use of Ku-band measurements only as done in previous studies, and the second one exploits the dual-frequency capability of modern altimeters to better account for local environmental conditions. Comparison with in situ measurements show high correlations which give confidence in the derived altimeter wave period parameter. It is further shown that improved mean wave characteristics can be obtained at global and local scales by using an objective interpolation scheme to handle relatively coarse altimeter sampling and that TOPEX/Poseidon and Jason-1 altimeters can be merged to provide altimeter mean wave period fields with a better resolution. Finally, altimeter mean wave period estimates are compared with the WaveWatch-III numerical wave model to illustrate their usefulness for wave models tuning and validation.  相似文献   

6.
中国HY-2卫星雷达高度计有效波高真实性检验   总被引:9,自引:5,他引:4  
Chinese Haiyang-2(HY-2) satellite is the first Chinese marine dynamic environment satellite. The dual-frequency(Ku and C band) radar altimeter onboard HY-2 has been working effective to provide operational significant wave height(SWH) for more than three years(October 1, 2011 to present).We validated along-track Ku-band SWH data of HY-2 satellite against National Data Buoy Center(NDBC) in-situ measurements over a time period of three years from October 1, 2011 to September 30, 2014, the root mean square error(RMSE) and mean bias of HY-2SWH is 0.38 m and(–0.13±0.35) m, respectively. We also did cross validation against Jason-2 altimeter SWH data,the RMSE and the mean bias is 0.36 m and(–0.22±0.28) m, respectively. In order to compare the statistical results between HY-2 and Jason-2 satellite SWH data, we validated the Jason-2 satellite radar altimeter along-track Ku-band SWH data against NDBC measurements using the same method. The results demonstrate the validation method in this study is scientific and the RMSE and mean bias of Jason-2 SWH data is 0.26 m and(0.00±0.26) m,respectively. We also validated both HY-2 and Jason-2 SWH data every month, the mean bias of Jason-2 SWH data almost equaled to zero all the time, while the mean bias of HY-2 SWH data was no less than –0.31 m before April2013 and dropped to zero after that time. These results indicate that the statistical results for HY-2 altimeter SWH are reliable and HY-2 altimeter along-track SWH data were steady and of high quality in the last three years. The results also indicate that HY-2 SWH data have greatly been improved and have the same accuracy with Jason-2SWH data after April, 2013. SWH data provided by HY-2 satellite radar altimeter are useful and acceptable for ocean operational applications.  相似文献   

7.
With the launch of altimeter,much effort has been made to develop algorithms on the wind speed and the wave period.By using a large data set of collocated altimeter and buoy measurements,the typical wind speed and wave period algorithms are validated.Based on theoretical argument and the concept of wave age,a semi-empirical algorithm for the wave period is also proposed,which has the wave-period dimension,and explicitly demonstrates the relationships between the wave period and the other variables.It is found that Ku and C band data should be applied simultaneously in order to improve either wind speed or wave period algorithms.The dual-band algorithms proposed by Chen et al.(2002) for the wind speed and Quilfen et al.(2004) for the wave period perform best in terms of a root mean square error in the practical applications.  相似文献   

8.
Results of comparison exercises carried out between the state-of-the-art TOPEX/POSEIDON altimeter-derived ocean surface wind speed and ocean wave parameters (significant wave height and wave period) and those measured by a set of ocean data buoys in the North Indian Ocean are presented in this article. Altimeter-derived significant wave height values exhibited rms deviation as small as ±0.3 m, and surface wind speed of ±1.6 m/s. These results are found consistent with those found for the Pacific Ocean. For estimation of ocean wave period, the spectral moments-based semiempirical approach, earlier applied on GEOSAT data, was extended to TOPEX/POSEIDON. For this purpose, distributions of first four years of TOPEX/POSEIDON altimeter data and climatology over the North Indian Ocean were analyzed and a new set of coefficients generated for estimation of wave period. It is shown that wave periods thus estimated from TOPEX/POSEIDON data (for the subsequent two years), when compared with independent data set of ocean data buoys deployed in the North Indian Ocean, exhibit improved accuracy (rms ~ ±1.4 nos) over those determined earlier with GEOSAT data.  相似文献   

9.
Results of comparison exercises carried out between the state-of-the-art TOPEX/POSEIDON altimeter-derived ocean surface wind speed and ocean wave parameters (significant wave height and wave period) and those measured by a set of ocean data buoys in the North Indian Ocean are presented in this article. Altimeter-derived significant wave height values exhibited rms deviation as small as - 0.3 m, and surface wind speed of - 1.6 m/s. These results are found consistent with those found for the Pacific Ocean. For estimation of ocean wave period, the spectral moments-based semiempirical approach, earlier applied on GEOSAT data, was extended to TOPEX/POSEIDON. For this purpose, distributions of first four years of TOPEX/POSEIDON altimeter data and climatology over the North Indian Ocean were analyzed and a new set of coefficients generated for estimation of wave period. It is shown that wave periods thus estimated from TOPEX/POSEIDON data (for the subsequent two years), when compared with independent data set of ocean data buoys deployed in the North Indian Ocean, exhibit improved accuracy (rms ~ - 1.4 nos) over those determined earlier with GEOSAT data.  相似文献   

10.
As a part of our calibration/validation activities five months of SARAL/AltiKa wave data have been analyzed in this study. A robust quality control procedure using threshold values on signal and retrieved wave heights was implemented before the assimilation. Assimilation runs in the wave model Météo-France (MFWAM) were performed for a long period. The validation of the model outputs was performed with independent wave observations from altimeter and buoy data. The results indicate good performance in terms of bias and scatter index for the significant wave height and the peak wave period. Statistical analyses were performed for different ocean basins (high and intermediate latitudes and tropics). The use of SARAL/AltiKa and Jason-2 wave data combined was also investigated. This leads to further improvements for the analysis and forecast periods. In other respects, the impact of the assimilation of SARAL/AltiKa wave data is discussed for waves under strong wind conditions such as typhoons Fitow and Danas which occurred in early October 2013.  相似文献   

11.
有效波高反演对于海洋工程及海洋环境安全具有重要意义。我国海洋二号(HY-2A)卫星载有散射计和高度计等获取海洋要素的仪器。散射计可获取海洋风场数据但无法直接获取有效波高数据,高度计可获取海洋有效波高数据但覆盖区域狭小。本文将散射计与高度计各自优势结合,利用支持向量回归(SVR)和长短期记忆(LSTM)智能算法反演散射计下有效波高,提升高度计有效波高利用率。实验结果表明,长短期记忆智能算法更能有效反演散射计下有效波高。  相似文献   

12.
This study analyses a 4.5 year (September 2009–March 2014) time-series of remotely-sensed data of altimeter significant wave heights to describe the temporal and spatial variability of ocean swells along the northern coast of the Gulf of Guinea. The NOAA WAVEWATCH III (NWW3) wave model data were used with altimeter data to determine the origin of the swells that occur along the coast of Côte d'Ivoire in West Africa. We show that the ocean swells along the northern coast of the Gulf of Guinea are generated in the Southern Ocean and then propagate from south to north in the South Atlantic Ocean, before turning south-west to north-east close to the coast. This finding corroborates previous studies in this area. The remotely-sensed and NWW3 significant wave height data captured the strong swells observed along the coast of Côte d'Ivoire from the period 28 August–3 September 2011, which were responsible for an extreme erosion event of more than 12?m along that country's coastline. This extreme event was triggered by a strong storm in the region between 40° and 60° S that occurred eight days previously in the South Atlantic. The waves propagated as swells at a speed of about 875?km day–1 before reaching the northern African coast.  相似文献   

13.
Long-Term Validation of Wave Height Measurements from Altimeters   总被引:1,自引:0,他引:1  
Since July 1991, six altimeter missions have been launched successfully, and they have provided almost continuous wave height measurements for more than 12 years. Long-term series of wave height measurements are of major interest for climatology and oceanic wave modeling. Before using such data, the measurements have to be validated, and the homogeneity of the data from various satellites has to be checked. Significant wave height measurements from ERS, TOPEX/Poseidon, GEOSAT Follow-on, Jason-1 and ENVISAT altimeters are validated using cross-altimeter and buoy comparisons. Emphasis is put on the two recent missions Jason-1 and ENVISAT. Corrections for biases and trends are proposed for the six altimeters, allowing the generation of consistent and homogeneous data. Tests of these corrections are performed over global ocean simple statistics.  相似文献   

14.
Since July 1991, six altimeter missions have been launched successfully, and they have provided almost continuous wave height measurements for more than 12 years. Long-term series of wave height measurements are of major interest for climatology and oceanic wave modeling. Before using such data, the measurements have to be validated, and the homogeneity of the data from various satellites has to be checked. Significant wave height measurements from ERS, TOPEX/Poseidon, GEOSAT Follow-on, Jason-1 and ENVISAT altimeters are validated using cross-altimeter and buoy comparisons. Emphasis is put on the two recent missions Jason-1 and ENVISAT. Corrections for biases and trends are proposed for the six altimeters, allowing the generation of consistent and homogeneous data. Tests of these corrections are performed over global ocean simple statistics.  相似文献   

15.
中国近海及临近海域海浪的季节特征及其时间变化   总被引:6,自引:0,他引:6  
利用1992年12月-2005年3月TOPEX卫星高度计资料,对中国近海波浪季节特征及其时间变化进行了分析。分析结果表明,冬季平均波高最大,台湾海峡、南海北部、中南半岛东南海域以及吕宋海峡外侧是冬季的大浪区;夏季平均波高最小;春、秋两季为过渡期。对冬季大浪所在区域波浪时间变化的研究表明,年变化是其主要时间变化特征,而季节内变化是该海区的另一重要特征,并且以5 a为周期的年际变化与ENSO事件有着很好的对应关系。  相似文献   

16.
EntropyofseawaveheightfieldanditsannualvariationinNorthwestPacificOceanSunFuandGuoPeifang(ReceivedOctober6,1995;acceptedOctob...  相似文献   

17.
Significant wave height(SWH) can be computed from the returning waveform of radar altimeter, this parameter is only raw estimates if it does not calibrate. But accurate calibration is important for all applications, especially for climate studies. HY-2a altimeter has been operational since April 2012 and its products are available to the scientific community. In this work, SWH data from HY-2A altimeters are calibrated against in situ buoy data from the National Data Buoy Center(NDBC), Distinguished from previous calibration studies which generally regarded buoy data as "truth", the work of calibration for HY-2A altimeter wave data against in situ buoys was applied a more sophisticated statistical technique—the total least squares(TLS) method which can take into account errors in both variables. We present calibration results for HY-2A radar altimeter measurement of wave height against NDBC buoys. In addition, cross-calibration for HY-2A and Jason-2 wave data are talked over and the result is given.  相似文献   

18.
闻斌  于福江  程明  孙龙 《海洋预报》2007,24(3):6-15
本文应用WAVEWATCHⅢ海浪模式,进行全球海浪数值预报试验,通过同期TOPEX/Poseidon卫星观测有效波高的检验,获得令人满意的结果。在模式移植时采用多种优化处理,有效地节约了机时,为我国的全球海浪数值预报业务化打下基础。  相似文献   

19.
自然海况下波浪特性的初步研究   总被引:2,自引:0,他引:2  
通过分析大量的外海浮标观测资料 ,发现波龄和无因次波高之间存在非常好的相关性 ,自然海况下的波浪场满足 3/ 5指数律 ,其波龄可达到几十 ,远远超过风浪波龄的上限 1 .4,说明波浪组成波之间波 -波共振非线性相互作用是波浪内部结构的主要调节机制 ,使波高和周期之间具有很好的相关性。  相似文献   

20.
随着技术的进步和数据处理方法的完善,经过修正的卫星高度计数据已获得普遍认可。但在南大洋缺少波浪现场数据,卫星高度计在极端恶劣气候条件下获得数据的准确度仍受到一定程度的质疑。中国于2020年第36次南极考察中,在南大洋布放了一套感应耦合漂流浮标,可提供可靠的南大洋现场波浪数据。本文利用该漂流浮标2020年1月27日至9月29日共246天的有效波高数据与7颗卫星的高度计资料进行对比,研究了空间窗口的选取对卫星高度计与浮标数据比较的影响。选定了30 min、160 km的时空窗口,对两种波高数据进行了对比,两者具有较高的一致性,但存在一定的差异。最终得出了经过其他海域现场波浪数据修正的卫星高度计资料,不一定能准确刻画南大洋有效波高特征,需要更多的现场资料进行再次修正的结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号