首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents baseline data for future geochemical monitoring of the active Tacaná volcano–hydrothermal system (Mexico–Guatemala). Seven groups of thermal springs, related to a NW/SE-oriented fault scarp cutting the summit area (4,100m a.s.l.), discharge at the northwest foot of the volcano (1,500–2,000m a.s.l.); another one on the southern ends of Tacaná (La Calera). The near-neutral (pH from 5.8 to 6.9) thermal (T from 25.7°C to 63.0°C) HCO3–SO4 waters are thought to have formed by the absorption of a H2S/SO2–CO2-enriched steam into a Cl-rich geothermal aquifer, afterwards mixed by Na/HCO3-enriched meteoric waters originating from the higher elevations of the volcano as stated by the isotopic composition (δD and δ18O) of meteoric and spring waters. Boiling temperature fumaroles (89°C at ~3,600m a.s.l. NW of the summit), formed after the May 1986 phreatic explosion, emit isotopically light vapour (δD and δ18O as low as −128 and −19.9‰, respectively) resulting from steam separation from the summit aquifer. Fumarolic as well as bubbling gases at five springs are CO2-dominated. The δ13CCO2 for all gases show typical magmatic values of −3.6 ± 1.3‰ vs V-PDB. The large range in 3He/4He ratios for bubbling, dissolved and fumarolic gases [from 1.3 to 6.9 atmospheric 3He/4He ratio (R A)] is ascribed to a different degree of near-surface boiling processes inside a heterogeneous aquifer at the contact between the volcanic edifice and the crystalline basement (4He source). Tacaná volcano offers a unique opportunity to give insight into shallow hydrothermal and deep magmatic processes affecting the CO2/3He ratio of gases: bubbling springs with lower gas/water ratios show higher 3He/4He ratios and consequently lower CO2/3He ratios (e.g. Zarco spring). Typical Central American CO2/3He and 3He/4He ratios are found for the fumarolic Agua Caliente and Zarco gases (3.1 ± 1.6 × 1010 and 6.0 ± 0.9 R A, respectively). The L/S (5.9 ± 0.5) and (L + S)/M ratios (9.2 ± 0.7) for the same gases are almost identical to the ones calculated for gases in El Salvador, suggesting an enhanced slab contribution as far as the northern extreme of the Central American Volcanic Arc, Tacaná.  相似文献   

2.
The edifice of Mount Rainier, an active stratovolcano, has episodically collapsed leading to major debris flows. The largest debris flows are related to argillically altered rock which leave areas of the edifice prone to failure. The argillic alteration results from the neutralization of acidic magmatic gases that condense in a meteoric water hydrothermal system fed by the melting of a thick mantle of glacial ice. Two craters atop a 2000-year-old cone on the summit of the volcano contain the world's largest volcanic ice-cave system. In the spring of 1997 two active fumaroles (T=62°C) in the caves were sampled for stable isotopic, gas, and geochemical studies.Stable isotope data on fumarole condensates show significant excess deuterium with calculated δD and δ18O values (−234 and −33.2‰, respectively) for the vapor that are consistent with an origin as secondary steam from a shallow water table which has been heated by underlying magmatic–hydrothermal steam. Between 1982 and 1997, δD of the fumarole vapor may have decreased by 30‰.The compositions of fumarole gases vary in time and space but typically consist of air components slightly modified by their solubilities in water and additions of CO2 and CH4. The elevated CO2 contents (δ13CCO2=−11.8±0.7‰), with spikes of over 10,000 ppm, require the episodic addition of magmatic components into the underlying hydrothermal system. Although only traces of H2S were detected in the fumaroles, most notably in a sample which had an air δ13CCO2 signature (−8.8‰), incrustations around a dormant vent containing small amounts of acid sulfate minerals (natroalunite, minamiite, and woodhouseite) indicate higher H2S (or possibly SO2) concentrations in past fumarolic gases.Condensate samples from fumaroles are very dilute, slightly acidic, and enriched in elements observed in the much higher temperature fumaroles at Mount St. Helens (K and Na up to the ppm level; metals such as Al, Pb, Zn Fe and Mn up to the ppb level and volatiles such as Cl, S, and F up to the ppb level).The data indicate that the hydrothermal system in the edifice at Mount Rainier consists of meteoric water reservoirs, which receive gas and steam from an underlying magmatic system. At present the magmatic system is largely flooded by the meteoric water system. However, magmatic components have episodically vented at the surface as witnessed by the mineralogy of incrustations around inactive vents and gas compositions in the active fumaroles. The composition of fumarole gases during magmatic degassing is distinct and, if sustained, could be lethal. The extent to which hydrothermal alteration is currently occurring at depth, and its possible influence on future edifice collapse, may be determined with the aid of on site analyses of fumarole gases and seismic monitoring in the ice caves.  相似文献   

3.
This paper presents chemical and isotopic data for thermal waters, gases and S deposits from Volcan Puracé (summit elevation 4600 m) in SW Colombia. Hot gas discharges from fumaroles in and around the summit crater, and thermal waters discharge from three areas on its flanks. The waters from all areas have D values of-75±1, indicating a single recharge area at high elevation on the volcano. Aircorrected values of3He/4He in thermal waters range from 3.8 to 6.7 RA, and approach those for crater fumarole gas (6.1–7.1 RA), indicating widespread addition of magmatic volatiles. An economic S deposit (El Vinagre) is being mined in the Rio Vinagre fault zone at 3600 m elevation. Sulfur isotopic data are consistent with a magmatic origin for S species in thermal waters and gases, and for the S ore deposit. Isotopic equilibration between S species may have occurred at 220±40°C, which overlaps possible equilibration temperatures (170±40°C) determined by a variety of other geothermometers for neutral thermal waters. Apparent CH4–CO2 equilibration temperatures for gases from thermal springs (400±50°C) and crater fumaroles (520±60°C) reflect higher temperatures deeper in the system. Hot magmatic gas ascending through the Rio Vinagre fault zone is though to have precipitated S and generated thermal waters by interaction with descending meteoric waters.  相似文献   

4.
Systematic analysis of major and minor elements in groundwaters from springs and wells on the slopes of Mt. Etna in 1995–1998 provides a detailed geochemical mapping of the aquifer of the volcano and of the interactions between magmatic gas, water bodies and their host rocks. Strong spatial correlations between the largest anomalies in pCO2 (pH and alkalinity) K, Rb, Mg, Ca and Sr suggest a dominating control by magmatic gas (CO2) and consequent basalt leaching by acidified waters of the shallow (meteoric) Etnean aquifer. Most groundwaters displaying this magmatic-type interaction discharge within active faulted zones on the S–SW and E lower flanks of the volcanic pile, but also in a newly recognised area on the northern flank, possibly tracking a main N–S volcano-tectonic structure. In the same time, the spatial distribution of T°C, TDS, Na, Li, Cl and B allows us to identify the existence of a deeper thermal brine with high salinity, high content of B, Cl and gases (CO2, H2S, CH4) and low K/Na ratio, which is likely hosted in the sedimentary basement. This hot brine reaches the surface only at the periphery of the volcano near the Village of Paternò, where it gives rise to mud volcanoes called “Salinelle di Paternò”. However, the contribution of similar brines to shallower groundwaters is also detected in other sectors to the W (Bronte, Maletto), SW (Adrano) and SE (Acireale), suggesting its possible widespread occurrence beneath Etna. This thermal brine is also closely associated with hydrocarbon fields all around the volcano and its rise, generally masked by the high outflow of the shallow aquifer, may be driven by the ascent of mixed sedimentary–magmatic gases through the main faults cutting the sedimentary basement.  相似文献   

5.
Excessive degassing of Izu-Oshima volcano: magma convection in a conduit   总被引:2,自引:0,他引:2  
Excess degassing of magmatic H2O and SO2 was observed at Izu-Oshima volcano during its latest degassing activity from January 1988 to March 1990. The minimum production rate for degassed magma was calculated to be about 1×104 kg/s using emission rates of magmatic H2O and SO2, and H2O and S contents of the magma. The minimum total volume of magma degassed during the 27-month period is estimated to be 2.6×108 m3. This volume is 20 times larger than that of the magma ejected during the 1986 summit eruption. Convective transport of magma through a conduit is proposed as the mechanism that causes degassing from a magma reservoir at several kilometers depth. The magma transport rate is quantitatively evaluated based on two fluid-dynamic models: Poiseuille flow in a concentric double-walled pipe, and ascent of non-degassed magma spheres through a conduit filled with degassed magma. This process is further tested for an andesitic volcano and is concluded to be a common process for volcanoes that discharge excess volatiles.  相似文献   

6.
The chemical and isotopic compositions of volcanic gases at a borehole and a natural fumarole in the Owakudani geothermal area, Hakone volcano, Japan, have been repeatedly measured since 2001, when a seismic swarm occurred in the area. The CO2/H2O and CO2/H2S ratios were high in 2001. It increased in 2006 and again in 2008 when seismic swarms occurred beneath the geothermal area. The observed increases suggest the injection of CO2- and SO2-rich magmatic gas into the underlying hydrothermal reservoir, implying that the magmatic gas was episodically supplied to the hydrothermal system in 2006 and 2008. The earthquake swarms probably resulted from the injection of gas through the shallow crust accompanying the break of the sealing zone.  相似文献   

7.
Comparison of the chemical characteristics of spring and river water draining the flanks of Poa´s Volcano, Costa Rica indicates that acid chloride sulfate springs of the northwestern flank of the volcano are derived by leakage and mixing of acid brines formed in the summit hydrothermal system with dilute flank groundwater. Acid chloride sulfate waters of the Rio Agrio drainage basin on the northwestern flank are the only waters on Poa´s that are affected by leakage of acid brines from the summit hydrothermal system. Acid sulfate waters found on the northwestern flank are produced by the interaction of surface and shallow groundwater with dry and wet acid deposition of SO2 and H2SO4 aerosols, respectively. The acid deposition is caused by a plume of acid gases that is released by a shallow magma body located beneath the active crater of Poa´s.No evidence for a deep reservoir of neutral pH sodium chloride brine is found at Poa´s. The lack of discharge of sodium chloride waters at Poa´s is attributed to two factors: (1) the presence of a relatively volatile-rich magma body degassing at shallow depths (< 1 km) into a high level summit groundwater system; and (2) the hydrologic structure of the volcano in which high rates of recharge combine with rapid lateral flow of shallow groundwater to prevent deep-seated sodium chloride fluids from ascending to the surface. The shallow depth of the volatile-rich magma results in the degassing of large quantities of SO2 and HCl. These gases are readily hydrolyzed and quickly mix with meteoric water to form a reservoir of acid chloride-sulfate brine in the summit hydrothermal system. High recharge rates and steep hydraulic gradients associated with elevated topographic features of the summit region promote lateral flow of acid brines generated in the summit hydrothermal system. However, the same high recharge rates and steep hydraulic gradients prevent lateral flow of deep-seated fluids, thereby masking the presence of any sodium chloride brines that may exist in deeper parts of the volcanic edifice.Structural, stratigraphic, and topographic features of Poa´s Volcano are critical in restricting flow of acid brines to the northwestern flank of the volcano. A permeable lava-lahar sequence that outcrops in the Rio Agrio drainage basin forms a hydraulic conduit between the crater lake and acid chloride sulfate springs. Spring water residence times are estimated from tritium data and indicate that flow of acid brines from the active crater to the Rio Agrio source springs is relatively rapid (3 to 17 years). Hydraulic conductivity values of the lava-lahar sequence calculated from residence time estimates range from 10−5 to 10−7 m/s. These values are consistent with hydraulic conductivity values determined by aquifer tests of fractured and porous lava/pyroclastic sequences at the base of the northwestern flank of the volcano.Fluxes of dissolved rock-forming elements in Rio Agrio indicate that approximately 4300 and 1650 m3 of rock are removed annually from the northwest flank aquifer and the active crater hydrothermal system, respectively. Over the lifetime of the hydrothermal system (100's to 1000's of years), significant increases in aquifer porosity and permeability should occur, in marked contrast to the reduction in permeability that often accompanies hydrothermal alteration in less acidic systems. Average fluxes of fluoride, chloride and sulfur calculated from discharge and compositional data collected in the Rio Agrio drainage basin over the period 1988–1990 are approximately 2, 38 and 30 metric tons/day. These fluxes should be representative of minimum volatile release rates at Poa´s in the last 10 to 20 years.  相似文献   

8.
Mount Nemrut, an active stratovolcano in eastern Turkey, is a great danger for its vicinity. The volcano possesses a summit caldera which cuts the volcano into two stages, i.e. pre- and post-caldera. Wisps of smoke and hot springs are to be found within the caldera. Although the last recorded volcanic activity is known to have been in 1441, we consider here that the last eruption of Nemrut occurred more recently, probably just before 1597. The present active tectonic regime, historical eruptions, occurrence of mantle-derived magmatic gases and the fumarole and hot spring activities on the caldera floor make Nemrut Volcano a real danger for its vicinity. According to the volcanological past of Nemrut, the styles of expected eruptions are well-focused on two types: (1) occurrence of water within the caldera leads to phreatomagmatic (highly energetic) eruptions, subsequently followed by lava extrusions, and (2) effusions–extrusions (non-explosive or weakly energetic eruptions) on the flanks from fissures. To predict the impact area of future eruptions, a series of morphological analyses based on field observations, Digital Elevation Model and satellite images were realized. Twenty-two valleys (main transport pathways) were classified according to their importance, and the physical parameters related to the valleys were determined. The slope values in each point of the flanks and the Heim parameters H/L were calculated. In the light of morphological analysis the possible impact areas around the volcano and danger zones were proposed. The possible transport pathways of the products of expected volcanic events are unified in three main directions: Bitlis, Guroymak, Tatvan and Ahlat cities, the about 135 000 inhabitants of which could be threatened by future eruptions of this poorly known and unsurveyed volcano.  相似文献   

9.
Magmatic gas scrubbing: implications for volcano monitoring   总被引:1,自引:0,他引:1  
Despite the abundance of SO2(g) in magmatic gases, precursory increases in magmatic SO2(g) are not always observed prior to volcanic eruption, probably because many terrestrial volcanoes contain abundant groundwater or surface water that scrubs magmatic gases until a dry pathway to the atmosphere is established. To better understand scrubbing and its implications for volcano monitoring, we model thermochemically the reaction of magmatic gases with water. First, we inject a 915°C magmatic gas from Merapi volcano into 25°C air-saturated water (ASW) over a wide range of gas/water mass ratios from 0.0002 to 100 and at a total pressure of 0.1 MPa. Then we model closed-system cooling of the magmatic gas, magmatic gas-ASW mixing at 5.0 MPa, runs with varied temperature and composition of the ASW, a case with a wide range of magmatic–gas compositions, and a reaction of a magmatic gas–ASW mixture with rock. The modeling predicts gas and water compositions, and, in one case, alteration assemblages for a wide range of scrubbing conditions; these results can be compared directly with samples from degassing volcanoes. The modeling suggests that CO2(g) is the main species to monitor when scrubbing exists; another candidate is H2S(g), but it can be affected by reactions with aqueous ferrous iron. In contrast, scrubbing by water will prevent significant SO2(g) and most HCl(g) emissions until dry pathways are established, except for moderate HCl(g) degassing from pH<0.5 hydrothermal waters. Furthermore, it appears that scrubbing will prevent much, if any, SO2(g) degassing from long-resident boiling hydrothermal systems. Several processes can also decrease or increase H2(g) emissions during scrubbing making H2(g) a poor choice to detect changes in magma degassing.We applied the model results to interpret field observations and emission rate data from four eruptions: (1) Crater Peak on Mount Spurr (1992) where, except for a short post-eruptive period, scrubbing appears to have drastically diminished pre-, inter-, and post-eruptive SO2(g) emissions, but had much less impact on CO2(g) emissions. (2) Mount St. Helens where scrubbing of SO2(g) was important prior to and three weeks after the 18 May 1980 eruption. Scrubbing was also active during a period of unrest in the summer of 1998. (3) Mount Pinatubo where early drying out prevented SO2(g) scrubbing before the climactic 15 June 1991 eruption. (4) The ongoing eruption at Popocatépetl in an arid region of Mexico where there is little evidence of scrubbing.In most eruptive cycles, the impact of scrubbing will be greater during pre- and post-eruptive periods than during the main eruptive and intense passive degassing stages. Therefore, we recommend monitoring the following gases: CO2(g) and H2S(g) in precursory stages; CO2(g), H2S(g), SO2(g), HCl(g), and HF(g) in eruptive and intense passive degassing stages; and CO2(g) and H2S(g) again in the declining stages. CO2(g) is clearly the main candidate for early emission rate monitoring, although significant early increases in the intensity and geographic distribution of H2S(g) emissions should be taken as an important sign of volcanic unrest and a potential precursor. Owing to the difficulty of extracting SO2(g) from hydrothermal waters, the emergence of >100 t/d (tons per day) of SO2(g) in addition to CO2(g) and H2S(g) should be taken as a criterion of magma intrusion. Finally, the modeling suggests that the interpretation of gas-ratio data requires a case-by-case evaluation since ratio changes can often be produced by several mechanisms; nevertheless, several gas ratios may provide useful indices for monitoring the drying out of gas pathways.  相似文献   

10.
Phreatic eruptions occurred at the Meakandake volcano in 1988, 1996, 1998, 2006, and 2008. We conducted geochemical surveillance that included measurements of temperature, SO2 emission rates, and volcanic gas composition from 2003 to 2008 at the Nakamachineshiri (NM), Northwest (NW), and Akanuma (AK) fumarolic areas, and the 96–1 vent, where historical eruptions had occurred. The elemental compositions of the gases discharged from the different areas are similar compared with the large variations observed in volcanic gases discharged from subduction zones. All the gases showed high apparent equilibrium temperatures, suggesting that all these gases originated from a common magmatic gas. The gases discharged from each area also exhibited different characteristics, which are probably the results of differences in the conditions of meteoric water mixing, quenching of chemical reactions, and vapor-liquid separation. The highest apparent equilibrium temperatures (about 500°C) were observed in the case of NW fumarolic gases, despite the low outlet temperature of about 100°C at these fumaroles. Since the NW fumaroles were formed as a result of the 2006 phreatic eruption, the high-temperature gas supply to the NW fumarole suggests that the phreatic eruption was caused by the ascent of high-temperature magmatic gases. The temperatures, compositions, and emission rates of the NM and 96–1 gases did not show any appreciable change after the 2006 eruption, indicating that each fumarolic system had a separate magmatic-hydrothermal system. The temperatures, compositions, and emission rates of the NM fumarolic gases were apparently constant, and these fumaroles are inferred to be formed by the evaporation of a hydrothermal system with a constant temperature of about 300°C. The 96–1 gas compositions showed large changes during continuous temperature decrease from 390° to 190°C occurred from 2003 to 2008, but the sulfur gas emission rates were almost constant at about four tons/day. At the 96–1 vent, the SO2/H2S ratio decreased, while the H2/H2O ratio remained almost constant; this was probably caused by the rock-buffer controlled chemical reaction during the temperature decrease.  相似文献   

11.
A new continuous monitoring system has been developed for the measurement of volcanic gas from the steam well located 3 km north from the summit of Izu-Oshima volcano, Japan. After removing the water vapor using three sequential dehydration methods, CO2 and SO2 contents are measured using IR sensors, and O2 and H2 using a zirconia sensor and a semiconductor sensor, respectively. This system has been in operation without any significant trouble for 3 years.The dehydrated volcanic gas from the well consists of a mixture of CO2, O2 and N2. A decreasing trend of the CO2 content was observed from 1995 to 1998 together with a decrease of volcanic activity. Seasonal changes have also been observed in CO2 and O2 contents, CO2 being higher and O2 lower in summer, which suggests larger contribution of magmatic components in summer. While changes in short-term variation in CO2 and O2 are influenced by atmospheric pressure changes; the CO2 content correlates inversely with atmospheric pressure unlike O2 with some hours delay. In contrast, the H2 content increased intermittently up to 1200 ppm one to several hours after a sudden drop in the atmospheric pressure and without any apparent correlation with seasonal changes.This system allows us to study temporal variation in chemical composition of volcanic gas during quiescent periods of volcanic activity of Izu-Oshima volcano, and might help us detect anomalous changes before future eruptive events.  相似文献   

12.
On 27 February 2007, a new eruption occurred on Stromboli which lasted until 2 April. It was characterized by effusive activity on the Sciara del Fuoco and by a paroxysmal event (15 March). This crisis represented an opportunity for us to refine the model that had been developed previously (2002–2003 eruption) and to improve our understanding of the relationship between the magmatic dynamics of the volcano and the geochemical variations in the fluids. In particular, the evaluation of the dynamic equilibrium between the volatiles (CO2 and SO2) released from the magma and the corresponding fluids discharged from the summit area allowed us to evaluate the level of criticality of the volcanic activity. One of the major accomplishments of this study is a 4-year database of summit soil CO2 flux on the basis of which we define the thresholds (low–medium–high) for this parameter that are empirically based on the natural volcanological evolution of Stromboli. The SO2 fluxes of the degassing plume and the CO2 fluxes emitted from the soil at Pizzo Sopra la Fossa are also presented. It is noteworthy that geochemical signals of volcanic unrest have been clearly identified before, during and after the effusive activity. These signals were found almost simultaneously in the degassing plume (SO2 flux) and in soil degassing (CO2 flux) at the summit, although the two degassing processes are shown to be clearly different. The interpretation of the results will be useful for future volcanic surveillance at Stromboli.  相似文献   

13.
Soil temperature and gas (CO2 concentration and flux) have been investigated at Merapi volcano (Indonesia) during two inter-eruptive periods (2002 and 2007). Precise imaging of the summit crater and the spatial pattern of diffuse degassing along a gas traverse on the southern slope are interpreted in terms of summit structure and major caldera organization. The summit area is characterized by decreasing CO2 concentrations with distance from the 1932 crater rim, down to atmospheric levels at the base of the terminal cone. Similar patterns are measured on any transect down the slopes of the cone. The spatial distribution of soil gas anomalies suggests that soil degassing is controlled by structures identified as concentric historical caldera rims (1932, 1872, and 1768), which have undergone severe hydrothermal self-sealing processes that dramatically lower the permeability and porosity of soils. Temperature and CO2 flux measurements in soils near the dome display heterogeneous distributions which are consistent with a fracture network identified by previous geophysical studies. These data support the idea that the summit is made of isolated and mobile blocks, whose boundaries are either sealed by depositional processes or used as pathways for significant soil degassing. Within this context, self-sealing both prevents long-distance soil degassing and controls heat and volatile transfers near the dome. A rough estimate of the CO2 output through soils near the dome is 200–230 t day−1, i.e. 50% of the estimated total gas output from the volcano summit during these quiescent periods. On Merapi’s southern slope, a 2,500 m long CO2 traverse shows low-amplitude anomalies that fit well with a recently observed electromagnetic anomaly, consistent with a faulted structure related to an ancient avalanche caldera rim. Sub-surface soil permeability is the key parameter that controls the transfer of heat and volatiles within the volcano, allowing its major tectonic architecture to be revealed by soil gas and soil temperature surveys.  相似文献   

14.
On January 16, 2002, short-term unrest occurred at San Miguel volcano. A gas-and-steamash plume rose a few hundred meters above the summit crater. An anomalous microseismicity pattern, about 75 events between 7:30 and 10:30 hours, was also observed. Continuous monitoring of CO2 efflux on the volcano started on November 24, 2001, in the attempt to provide a multidisciplinary approach for its volcanic surveillance. The background mean of the diffuse CO2 emission is about 16 g m-2 d-1, but a 17- fold increase, up to 270 g m-2 d-1, was detected on January 7, nine days before the January 2002 short-term unrest at San Miguel volcano. These observed anomalous changes on diffuse CO2 degassing could be related to either a sharp increase of CO2 pressure within the volcanic-hydrothermal system or degassing from an uprising fresh gas-rich magma within the shallow plumbing system of the volcano since meteorological fluctuations cannot explain this observed increase of diffuse CO2 emission.  相似文献   

15.
Chemical analyses of 30 melt inclusions from Satsuma-Iwojima volcano, Japan, were carried out to investigate volatile evolution in a magma chamber beneath the volcano from about 6300 yr BP to the present. Large variations in volatile concentrations of melts were observed. (1) Water concentration of rhyolitic melts decreases with time; 3–4.6 wt.% at the time of latest caldera-forming eruption of Takeshima pyroclastic flow deposit (ca. 6300 yr BP), 3 wt.% for small pyroclastic flow (ca. 1300 yr BP) of Iwodake, post-caldera rhyolitic dome, and 0.7–1.4 wt.% for submarine lava eruption (Showa-Iwojima) in 1934. (2) Rhyolitic melts of the Takeshima and Iwodake eruptions contained CO2 of less than 40 ppm, while the Showa-Iwojima melt has higher CO2 concentration of up to 140 ppm. (3) Water and CO2 concentrations of basaltic to andesitic melt of Inamuradake, a post-caldera basaltic scoria cone, are 1.2–2.8 wt.% and ≤290 ppm, respectively.Volatile evolution in the magma chamber is interpreted as follows: (1) the rhyolitic magma at the time of the latest caldera-forming eruption (ca. 6300 yr BP) was gas-saturated due to pressure variation in the magma chamber because the large variation in water concentration of the melt was attributed to exsolution of volatile in the magma prior to the eruption. Iwodake eruption (ca. 1300 yr BP) was caused by a remnant of the caldera-forming rhyolitic magma, suggested from the similarity of major element composition between these magmas. (2) Volatile composition of the Showa-Iwojima rhyolitic melt agrees with that of magmatic gases presently discharging from a summit of Iwodake, indicating the low pressure degassing condition. (3) The degassing of the magma chamber by magma convection in a conduit of Iwodake during non-eruptive but active degassing period for longer than 800 years decreased water concentration of the rhyolitic magma. (4) Geological and petrological observations indicate that a stratified magma chamber, which consists of a lower basaltic layer and an upper rhyolitic layer, might have existed during the post-caldera stage. Addition of CO2 from the underlying basaltic magma to the upper gas-undersaturated (degassed) rhyolitic magma increased CO2 concentration of the rhyolitic magma.  相似文献   

16.
We have collected 14 water and gas samples from 9 thermal springs and gas vents near Nevado del Ruiz volcano, Colombia. The 3He/4He and 4He/20Ne ratios vary significantly from 0.98 Ratm (where Ratm is the atmospheric 3He/4He ratio of 1.4 × 10−6) to 6.30 Ratm, and from 0.37 to 7.0, respectively. The 3He/4He ratio (corrected for air contamination) decreases with increasing distance from the central crater of the volcano to the sampling site. The trend is very similar to that observed at Ontake volcano, Japan. A hydrodynamic porous-media dispersion model can explain the 3He/4He trend. The temporal variations in the 3He/4He ratio at four sites provide useful information on the apparent velocity of the magmatic fluid flow brought on by a volcanic eruption. The estimated value of several tens m day−1 agrees well with the inferred velocity of flow in Oshima volcano, Japan and is comparable to the largest rate of groundwater movement in a deep sedimentary basin.  相似文献   

17.
Gas emissions from Erebus volcano, Antarctica, were measured by open-path Fourier transform infrared spectroscopy to understand degassing of its magmatic system. Two degassing phonolite lava lakes were present in the summit crater during observation in December 2004. We report analyses of H2O, CO2, CO, SO2, HF, HCl and OCS, (in order of molar abundance) in the plumes. Variations in the proportions of these species strongly reflect the dynamics of degassing, and sourcing of gas from different depths in the magmatic network. The highest observed ratios of CO2 and H2O are consistent with gas extracted from the melt at a depth of up to ∼ 2 km below the lava lakes. Magma degassing above this depth contributes to a higher H2O/CO2 proportion in the airborne plume. The ratio therefore reflects the balance of deeper vs. shallower contributions of volatiles and, possibly, a combination of closed- and open-system degassing. We observe a strong contrast in HF content in emissions from the two lava lakes, which we attribute to differing levels of magma ascent and/or cooling and crystallization of the magma supply. Fluxes of all gas species were determined using independent SO2 flux determinations and measured gas ratios. In the case of CO2 and water, ∼ 1 and ∼ 0.4 m3 s− 1, respectively, of parental basanite magma are required to sustain the calculated output. The discrepancy between the two figures is readily explained by sequestration of part of the magma supply at depth such that it only partially degasses its complement of water.  相似文献   

18.
This paper reports a detailed geochemical study of thermal occurrences as observed in the edifice and on the flanks of Mendeleev Volcano, Kunashir Island in August and September 2015. We showed that three main types of thermal water are discharged there (neutral chloride sodium, acid chloride sulfate, and acid sulfate types); these waters exhibit a zonality that is typical of volcano-hydrothermal island arc systems. Spontaneous and solfataric gases have relatively low 3He/4He ratios, ranging between 5.4Ra and 5.6Ra, and δ13C-CO2 between –4.8‰ and –3.1‰, and contain a light isotope of carbon in methane (δ13C ≈ –40‰). Gas and isotope geothermometers yield relatively low temperatures around 200°C. The isotope compositions in all types of water are similar to that of local meteoric water. The distribution of microcomponents varies among different types. The isotope composition of dissolved Sr varies considerably, from 0.7034 as observed in Kunashir rocks on an average to 0.7052 in coastal springs, which may have resulted from admixtures of seawater. The total hydrothermal transport rates of magmatic Cl and SO4, as observed for Mendeleev Volcano, are 7.8 t/d and 11.6 t/d, respectively. The natural outward transport of heat by the volcano’s hydrothermal system is estimated as 21 MW.  相似文献   

19.
Hot springs and steam vents on the slopes of Nevado del Ruiz volcano provide evidence regarding the nature of hydrothermal activity within the summit and flanks of the volcano. At elevations below 3000 m, alkali-chloride water is discharged from two groups of boiling springs and several isolated warm springs on the western slope of Nevado del Ruiz. Chemical and isotopic geothermometers suggest that the boiling springs are fed by an aquifer having a subsurface equilibration temperature of at least 175°C, and the sampled warm spring is fed by an aquifer having a subsurface equilibration temperature near 150°C. Similarities in conservative solute ratios (e.g., B/Cl) indicate that the alkali-chloride waters may be related to a single reservoir at depth. Isotopic ratios of hydrogen and oxygen indicate that recharge for the alkali-chloride aquifers comes mostly from higher elevations on the volcano. Steam vents and steam-heated bicarbonate-sulfate springs at higher elevations, along a linear structural trend with the alkali-chloride springs, may be derived partly from the alkali-chloride water at depth by boiling. Steam from the vents (84°C) yields a gas geothermometer temperature of 209°C. Acid-sulfate-chloride and acid-sulfate waters are discharged widely from warm springs above 3000 m on the northern and eastern slopes of Nevado del Ruiz. Similarities in B/Cl and SO4/Cl ratios suggest that the acid waters are mixtures of water from an acid-sulfate-chloride reservoir with various proportions of shallow, dilute groundwater. The major source of sulfate, halogens, and acidity for the acid waters may be high-temperature magmatic gases. Available data on hot spring temperatures and compositions indicate that they have remained fairly stable since 1968. However, the eruption of November 13, 1985 apparently caused an increase in sulfate concentration in some of the acid springs that peaked about a year after the eruption. Long-term monitoring of hot spring compositions over many years will be required to better define the effects of volcanic activity on the Nevado del Ruiz hydrothermal system.  相似文献   

20.
Here we report measurements of the chemical composition and flux of gas emitted from the central lava lake at Erta 'Ale volcano (Ethiopia) made on 15 October 2005. We determined an average SO2 flux of ∼ 0.69 ± 0.17 kg s− 1 using zenith sky ultraviolet spectroscopy of the plume, and molar proportions of magmatic H2O, CO2, SO2, CO, HCl and HF gases to be 93.58, 3.66, 2.47, 0.06, 0.19 and 0.04%, respectively, by open-path Fourier transform infrared (FTIR) spectrometry. Together, these data imply fluxes of 7.3, 0.7, 0.008, 0.03 and 0.004 kg s− 1 for H2O, CO2, CO, HCl and HF, respectively. These are the first FTIR spectroscopic observations at Erta 'Ale, and are also some of the very few gas measurements made at the volcano since the early 1970s (Gerlach, T.M., 1980b. Investigation of volcanic gas analyses and magma outgassing from Erta 'Ale lava lake, Afar, Ethiopia. Journal of Volcanology and Geothermal Research, 7(3–4): 415–441). We identify significant increases in the proportion of H2O in the plume with respect to both CO2 and SO2 across this 30-year interval, which we attribute to the depletion of volatiles in magma that sourced effusive eruptions during the early 1970s and/or to fractional magma degassing between the two active pit craters located in the summit caldera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号