首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
The Upper Cretaceous-Eocene Purilactis Group of the north Chilean Precordillera consists of over 4100 meters of continental strata deposited in a retro-arc extensional basin. Deposited in an arid/semi-arid climate with no marine influence, the group comprises alluvial fan (51%), playa (35%), aeolian (8%), and lacustrine (6%) facies associations locally interbedded with volcaniclastic material. The basin-fill has an overall coarsening-upward profile and shows an increase in proximal fan facies up section, indicating basinward (eastward) fan progradation. Within the coarsening-upward profile, fan and playa facies are organized into: 1) large-scale (50–700 m thick) coarsening- (CU) and fining- (FU) upward cycles extending tens of kilometers, in which CU cycles represent tectonically induced (allocyclic) fan progradation during periods of decreased accomodation space (FU cycles reflect vertical aggradation and fan retreat during periods of increased accomodation space); 2) medium-scale cycles (15–50 m thick) extending up to 9 km, also representing tectonically induced fan progradation and retreat but superimposed on the larger scale cycles; and 3) small-scale, predominantly FU cycles (up to 15 m thick) extending only a few hundred meters and reflecting minor, autocyclically induced changes in sedimentation. Purilactis Group sediments were derived from a westerly (footwall) source of: 1) Upper Triassic to Lower Cretaceous sediments and volcanics (back-arc basin-fill), and 2) an andesite-dominated Upper Cretaceous volcanic arc sequence, unroofing of which is indicated by a systematic provenance change in the upper 500 meters of the group from dominantly andesitic to granodioritic detritus. Localized development of volcaniclastics in the uppermost part of the group — together with evidence of arc unroofing — indicates that arc activity, although synchronous, did not contribute significantly to the overall Purilactis basin-fill. Basin subsidence may have been influenced by thermal contraction related to cooling of the Late Cretaceous arc and/or isostatic uplift following arc unroofing, processes likely to result in relatively localized extension. A larger scale cause of extension may have resulted from the relatively slow convergence rates along the Andean margin during Late Cretaceous to Eocene times (< 55 mm/yr), which would have promoted subduction roll-back and, together with the slab pull force active at the subduction zone, resulted in the development of an extensional tectonic regime across the Andean margin.  相似文献   

3.
北羌塘盆地晚中生代地层:早白垩世海相地层的发现   总被引:5,自引:0,他引:5  
针对羌塘盆地是否存在早白垩世海相沉积,以那底岗日地区主干剖面为依托,结合胜利河、托纳木、长蛇山等已初步判断为早白垩世的油页岩剖面为辅助剖面,采用古生物化石定年和同位素定年相结合的研究方法,对胜利河-托纳木地区原初步定为晚侏罗世-早白垩世的海相地层时代作了进一步研究,结果表明,其时代为早白垩世。这些海相地层在胜利河-托纳木地区广泛分布,但岩性组合存在一定的差异,在胜利河-长蛇山地区为油页岩,厚度最大,向东逐渐变薄,过渡为页岩沉积,向西过渡为灰岩沉积。区域上该套地层对下伏油气藏的保存具有重要意义。  相似文献   

4.
库车坳陷晚白垩世地层存在的证据和沉积相分析   总被引:1,自引:0,他引:1  
库车坳陷是我国重要的能源基地之一,白垩系是其主要储层。长期以来,该坳陷白垩系的地层划分存在较大争议,其中是否存在上白垩统是争议问题焦点之一。笔者等根据发现的晚白垩世钙质超微化石,证实了库车坳陷巴什基奇克组上部地层属于晚白垩世并存在海相沉积;根据前人在库车坳陷及塔东北井下发现的晚白垩世介形虫、轮藻等化石,证实了这些地区也同样存在上白垩统,古城组是其晚白垩世陆相沉积的代表。若干露头剖面和井下岩芯晚白垩世钙质超微化石的发现,表明特提斯海水曾侵进到该盆地。该坳陷及塔东北地区晚白垩世存在海相和陆相两类沉积体系。  相似文献   

5.
赵志刚  王鹏  祁鹏  郭瑞 《地球科学》2016,41(3):546-554
东海盆地处于西太平洋俯冲带前缘,是发育在华南克拉通基底之上的,以晚白垩世-新生代沉积为主的新生代盆地.东海盆地性质是在活动大陆边缘减薄陆壳之上的,由于洋-陆俯冲消减所引起的张裂、拉伸作用而形成的弧后裂谷型盆地,是西太平洋众多“沟-弧-盆”体系的一部分.东海盆地陆架外缘隆起控制着东海盆地的演化过程,该地质单元形成于晚白垩世,是陆缘隆起和增生楔的复合体,中新世后由于菲律宾海板块的活动而解体为现今的钓鱼岛隆褶带和琉球隆起.结合对陆架外缘隆起的研究后认为,东海盆地晚白垩世以来的演化历程具有3大构造阶段,即:第一阶段,古新世-中始新世西部坳陷形成发展期;第二阶段,中始新世-渐新世东部坳陷形成发展期,其中,中晚始新世太平洋板块的转向是东、西部坳陷构造迁移的分界点;第三阶段,中新世-全新世,东海盆地进入到菲律宾板块影响时期,原先的构造格局开始分解.   相似文献   

6.
The Mesozoic stratigraphy in the subsurface of the West Siberian Basin contains prolific hydrocarbon accumulations, and thus the depositional environments of marine and marginal marine Jurassic and Cretaceous age sediments are well-established. However, no information is currently available on strata of equivalent age that crop out along the SE basin margin in the Mariinsk–Krasnoyarsk region, despite the potential of these exposures to supply important information on the sediment supply routes into the main basin. Detailed sedimentological analysis of Jurassic–Cretaceous clastic sediments, in conjunction with palaeo-botanical data, reveals five facies associations that reflect deposition in a range of continental environments. These include sediments that were deposited in braided river systems, which were best developed in the Early Jurassic. These early river systems infilled the relics of a topography that was possibly inherited from earlier Triassic rifting. More mature fluvial land systems evolved in the Mid to Late Jurassic. By the Mid Jurassic, well-defined overbank areas had become established, channel abandonment was commonplace, and mudrocks were deposited on floodplains. Coal deposition occurred in mires, which were subject to periodic incursions by crevasse splay processes. Cretaceous sedimentation saw a renewed influx of sand-grade sediment into the region. It is proposed that landscape evolution throughout the Jurassic was driven simply by peneplanation rather than tectonic processes. By contrast, the influx of sandstones in the Cretaceous is tentatively linked to hinterland rejuvenation/ tectonic uplift, possibly coeval with the growth of large deltaic clinoform complexes of the Neocomian in the basin subsurface.  相似文献   

7.
南海北部珠江口—琼东南盆地白垩系—下渐新统记录了华南大陆边缘从主动陆缘向被动陆缘的转换过程。基于盆地构造-地层、单井相、地震相等特征的综合分析,结合南海中南部的沉积环境和区域构造演化,探讨南海北部白垩纪—渐新世早期的沉积环境演变及构造控制背景。研究发现: (1)南海北部白垩系广泛分布,古新统分布极为有限; 始新世早-中期,琼东南盆地只在部分凹陷深部发育了小规模的滨浅湖相和扇三角洲相沉积,珠江口盆地白云凹陷以大规模发育的湖泊相为特征; 始新世晚期—渐新世早期,琼东南盆地和珠江口盆地白云凹陷都受到海侵作用的影响,以海岸平原相和滨浅海相为主。 (2)构造演变包括5期:包括白垩纪安第斯型大陆边缘的“弧—盆”体系发育期,古新世区域隆升剥蚀山间盆地发育期,始新世早-中期裂陷发育,始新世晚期—渐新世早期陆缘破裂期,渐新世晚期东部海盆稳定扩张期。最后,探讨了南海盆地中生代末/新生代初的动力学转换过程及特征。  相似文献   

8.
印度与亚洲大陆的碰撞是青藏高原演化的重要构造事件,碰撞过程被记录在拉萨地块南部的晚白垩世到古新世的沉积-岩浆作用中。林周盆地的晚白垩世设兴组及其之后不整合覆盖的林子宗火山岩,是解析碰撞过程的重要记录。本文对设兴组最高层位的砂岩和玄武岩夹层进行了岩石学、地球化学和年代学研究,探讨了岩石成因和构造意义。设兴组砂岩属于杂砂岩,碎屑物质主要来自中酸性岩浆岩源区;锆石Hf同位素指示设兴组大部分碎屑物质来源于盆地北面的中部拉萨地块,少部分来自盆地南部的冈底斯岩基;砂岩中最年轻的碎屑锆石年龄指示林周盆地设兴组是在98Ma之后接受沉积的。以夹层产出在设兴组顶部的玄武岩和玄武安山岩,富集轻稀土元素、亏损重稀土元素、弱负Eu异常,强烈富集Ba、Th、U、Pb等大离子亲石元素,显著亏损Nb、Ta等高场强元素,属于高钾钙碱性玄武岩系列,与典型安第斯型玄武岩特征吻合。玄武岩和玄武安山岩的锆石均为捕获锆石,其最年轻碎屑锆石年龄限定了设兴组玄武岩的喷发晚于110Ma。综合分析表明,林周盆地晚白垩世时期为夹持在冈底斯岩浆弧与中部拉萨地块之间的弧后盆地,新特提斯洋壳晚白垩世俯冲到冈底斯弧和弧后盆地之下,大约在98~110Ma之后喷发到林周盆地的很少量中基性岩浆构成了设兴组顶部的玄武岩和玄武安山岩夹层,是新特提斯洋俯冲相关的幔源岩浆作用。林周盆地设兴组(晚于98Ma)与上覆的林子宗火山岩(底部约为65Ma)之间呈大约33Myr的构造间断,可能代表了冈底斯弧的碰撞之前的隆升剥蚀过程。  相似文献   

9.
鸡西、勃利盆地白垩纪砂岩的物源分析及构造意义   总被引:7,自引:0,他引:7       下载免费PDF全文
鸡西、勃利盆地白垩纪砂岩骨架矿物成分的模式分析显示:下白垩统城子河组和穆棱组砂岩的源区主要为切割型岛弧,结合古水流方向和砂岩地球化学特征研究,物源区主要为小兴安岭-张广才岭;上白垩统猴石沟组砂岩的源区主要为基底隆升和切割型岛弧。结合古水流方向和砾石的统计结果认为,鸡西、勃利盆地物源区主要为桦南隆起和密山隆起,以及小兴安岭-张广才岭。据白垩纪砂岩物源,晚白垩世砾岩成分,以及区域地质资料分析,下白垩统城子河组和穆棱组时期,鸡西盆地、勃利盆地和黑龙江东部各盆地为统一的原型盆地,早白垩世末期随着桦南隆起和密山隆起的隆升而破坏。并在晚白垩世早期已隆升,并为周缘盆地提供物源,形成现今黑龙江东北部地区的盆岭格局。  相似文献   

10.
The Luning–Fencemaker fold-thrust belt (LFTB) of central Nevada reflects major Mesozoic shortening in the western US Cordillera, and involved contractional deformation in Triassic and lower Jurassic back-arc basinal strata. Structural analyses in the Santa Rosa Range, in the northern LFTB, provide new insight into the evolution of this belt. Four phases of deformation are recognized in the Santa Rosa Range. D1 involved tight to isoclinal folding, cleavage development under low-grade metamorphic conditions, and reverse faulting. This deformation phase reflects NW–SE shortening of 55–70% in the Early and/or Middle Jurassic. D2 structures are similar in orientation to D1 but involved much less overall strain and are well developed only to the southeast. D2 appears to be related to thrusting along the eastern margin of the LFTB in the Middle and/or Late Jurassic. D3 deformation reflects very minor shortening (<5%) in a subvertical direction, and is tentatively interpreted to reflect stresses generated during initial intrusion of mid-Cretaceous plutons in the area. D4 deformation demonstrably occurred synchronously with emplacement of Cretaceous granitoids dated at 102 Ma (U–Pb zircon) based on syntectonic relations between D4 structures and thermal metamorphism associated with intrusion, and an upgrade in D4 strain in the thermally softened metamorphic aureoles of the intrusions. This last phase of deformation reflects minor regional NE–SW shortening, coupled with localized strain associated with pluton emplacement.Formation of the LFTB structural province was accomplished during the D1 and D2 phases of deformation, and most shortening occurred during the D1 event. This Jurassic deformation led to structural closure of the back-arc basin by top-to-the-SE tectonic transport and development of a largely ductile fold-thrust belt. Subsequent deformation (D3 and D4) is >50 m.y. younger and unrelated to development of the LFTB. The younger deformation reflects a combination of minor regional shortening, interpreted to be related to the Cretaceous Sevier orogeny, plus localized shortening related to emplacement of Cretaceous intrusions.  相似文献   

11.
羌塘盆地是我国陆域上面积最大的海相盆地,前人对该盆地构造演化过程及其油气远景存在截然不同的观点。以最近完成的1︰ 5万地质调查为基础,本文再次讨论了南羌塘盆地构造演化过程及其油气远景。羌塘盆地中央近东西向的羌中隆起山脉将羌塘盆地分为南、北两部分。最近的研究表明,在寒武-奥陶纪之交,南、北羌塘块体被古大洋分隔开。北羌塘盆地南缘形成的晚三叠-早侏罗世的那底岗日组火山岩,其上部为流纹岩,表明晚三叠世南羌塘块体北向俯冲于北羌塘块体之下,在南羌塘块体北部形成了富含有机质的前陆盆地。南羌塘盆地南缘发育一套代表成熟海盆的侏罗纪复理石建造,表明南羌塘南部地区在早侏罗世具有被动大陆边缘的特点,随着南部班公-怒江洋的扩张,在南、北羌塘块体内分别沉积了侏罗纪-早白垩世的浅海相地层,以富含有机质礁灰岩为特征。盆地内部孕育了巨厚的晚白垩-古新世陆源碎屑岩,不整合覆盖于早期海相沉积岩之上,表明在该时期南羌塘块体逐渐从被动大陆边缘海相盆地转变为陆相盆地。新生代时期,印度与亚洲大陆持续汇聚,南羌塘盆地南向逆冲于拉萨块体之上,盆地内发育了多条大型逆冲断裂带,再次将盆地内部的上三叠统、侏罗系、白垩系富含有机质的海相礁灰岩深埋,这有利于油气资源的生成与保存。横跨南羌塘盆地的构造剖面显示盆地内部主要大型逆冲断裂带之间,构造变形较弱,发育宽缓的向斜构造,向斜核部发育新生代陆相地层,推测该新生代陆相地层之下保存有深埋的富含有机质的海相地层,因此,南羌塘盆地逆冲断裂带下盘和宽缓向斜核部区域可能具有良好的油气资源前景。  相似文献   

12.
《Geodinamica Acta》2013,26(1-3):83-100
The Magura Basin domain developed in its initial stage as a Jurassic-Early Cretaceous rifted passive margin that faced the eastern parts of the oceanic Alpine Tethys. In the pre- and syn-orogenic evolution of the Magura Basin the following prominent periods can be distinguished: Middle Jurassic-Early Cretaceous syn-rift opening of basins (1) followed by Early Cretaceous post-rift thermal subsidence (2), latest Cretaceous–Paleocene syn-collisional inversion (3), Late Paleocene to Middle Eocene flexural subsidence (4) and Late Eocene - Early Miocene synorogenic closing of the basin (5). The driving forces of tectonic subsidence of the basin were syn-rift and thermal post-rift processes, as well as tectonic loads related to the emplacement of accretionary wedge. This process was initiated at the end of the Paleocene at the Pieniny Klippen Belt (PKB)/Magura Basin boundary and was completed during Late Oligocene in the northern part of the Magura Basin. During Early Miocene the Magura Basin was finally folded, thrusted and uplifted as the Magura Nappe.  相似文献   

13.
The Malatya Basin is situated on the southern Taurus-Anatolian Platform. The southern part of the basin contains a sedimentary sequence which can be divided into four main units, each separated by an unconformity. From base to top, these are: (1) Permo-Carboniferous; (2) Upper Cretaceous–Lower Paleocene, (3) Middle-Upper Eocene and (4) Upper Miocene. The Upper Cretaceous–Tertiary sedimentary sequence resting on basement rocks is up to 700 m thick.The Permo-Carboniferous basement consist of dolomites and recrystallized limestones. The Upper Cretaceous–Lower Paleocene transgressive–regressive sequence shows a transition from terrestrial environments, via lagoonal to shallow-marine limestones to deep marine turbiditic sediments, followed upwards by shallow marine cherty limestones. The marine sediments contain planktic and benthic foraminifers indicating an upper Campanian, Maastrichtian and Danian age. The Middle-Upper Eocene is a transgressive–regressive sequence represented by terrestrial and lagoonal clastics, shallow-marine limestones and deep marine turbidites. The planktic and benthic foraminifers in the marine sediments indicate a Middle-Upper Eocene age. The upper Miocene sequence consists of a reddish-brown conglomerate–sandstone–mudstone alternation of alluvial and fluvial facies.During Late Cretaceous–Early Paleocene times, the Gündüzbey Group was deposited in the southern part of a fore-arc basin, simultaneously with volcanics belonging to the Yüksekova Group. During Middle-Late Eocene times, the Yeşilyurt Group was deposited in the northern part of the Maden Basin and the Helete volcanic arc. The Middle-Upper Eocene Malatya Basin was formed due to block faulting at the beginning of the Middle Eocene time. During the Late Paleocene–Early Eocene, and at the end of the Eocene, the study areas became continental due to the southward advance of nappe structures.The rock sequences in the southern part of the Malatya Basin may be divided into four tectonic units, from base to top: the lower allochthon, the upper allochthon, the parautochthon and autochthonous rock units.  相似文献   

14.
Genesis of the so‐called Bentong‐Raub Suture of Malay Peninsula does not fit to the model of subduction‐related collision. It has evolved from transpression tectonics resulting closure and exhumation of the inland basin which underwent extensive back‐arc extension during Triassic. Crust having similar thickness (average ~35 km) below entire Malay Peninsula nagate collision of two separate continental blocks rather supports single continental block that collided with South China continental block during Permo‐Triassic. Westward subduction of intervening sea (Proto South China Sea) below Malay Peninsula resulted in widespread I‐ and S‐Type granitization and volcanism in the back‐arc basins during Triassic. Extensive occurrence of Permo‐Triassic Pahang volcanics of predominantly rhyolitic tuff suggest its derivation from back‐arc extension. Back‐arc extension, basin development and sedimentation of the central belt of the peninsula continued until Cretaceous. A‐Type granite of metaluminous to peraluminous character indicates their emplacement in an intraplate tectonic setting. Malay Peninsula suffered an anticlockwise rotation due to the rifting of Luconia–Dangerous Grounds from the east Asia in the Late Cretaceous–Early Tertiary. Extensive ductile and brittle deformation including crustal segmentation, pull‐apart fracturing and faulting occurred during the closure and exhumation of the basins developed in the peninsula during Late Cretaceous–Early Tertiary. Crustal shortening in the central belt of the peninsula has been accomodated through strike‐slip displacement, shearing and uplift.  相似文献   

15.
祁凯  任战利  张梦婷  马骞  杨燕  刘润川 《岩石学报》2020,36(6):1897-1912
本文在对渭河地区及周缘晚古生代-中生代残存地层分布研究的基础上,采用岩石学、锆石同位素年代学、主微量元素地球化学分析方法,对渭河地区南北两侧上古生界二叠系及中生界三叠系进行对比,进而恢复了研究区晚古生代晚期、中生代早期沉积面貌,并结合裂变径迹构造抬升的研究结果,探讨了渭河地区中生代后期改造过程及演化阶段。结果显示:渭河盆地内部主要凹陷可能仅残留小范围的、不连续的C-P地层,未发现中生代地层。岩石学、锆石U-Pb年龄、主微量元素表明鄂尔多斯南部和北秦岭地区二叠系、三叠系具有很好的对比性,两者在相同时期为同一盆地。二叠系碎屑岩源区可能为再旋回造山带及陆块源区,主要来自北秦岭中-新元古界宽坪群变质碎屑岩及南部二郎坪群火山-沉积岩;三叠系沉积岩物源主要来自北秦岭地区的宽坪群、秦岭群或同期发育的火山岩。裂变径迹资料暗示渭河地区与渭北隆起及秦岭造山带中生代抬升期次具有一致性:晚侏罗世-早白垩世末,地层以强烈的构造变形、弱抬升为主;早白垩世末以来,地层发生大规模抬升、剥蚀,致使上古生界-中生界在渭河地区残留较少。在以上研究的基础上,将渭河地区晚古生代-中生代演化过程分为晚古生代二叠纪、中生代三叠纪-早中侏罗世、晚侏罗世-早白垩世末、早白垩世末-白垩纪末几个演化阶段。  相似文献   

16.
准噶尔盆地西部油气资源丰富,油气分布受构造演化过程控制作用显著。本文根据地表露头、地震、钻井、同位素年代学资料对盆地西部多期构造演化进行了研究,发现现今的盆地结构是造山带与盆地的相互作用下多期成盆演化与构造叠加演变的结果。根据地层不整合接触关系与空间展布特征,将该区构造地层层序划分为石炭系、中下二叠统、上二叠统—三叠系、侏罗系、白垩系、新生界等6个构造地层层序。石炭纪末的构造事件为车排子、中拐凸起和玛湖、沙湾、四棵树凹陷的形成奠定了基础。早二叠世为伸展构造环境,形成玛湖、沙湾及四棵树3个沉降、沉积中心,盆地西部重要烃源岩形成。中二叠世形成坳陷型盆地,沉积、沉降中心由山前向盆地内迁移。中二叠世末构造运动导致了西部山前沉积地层反转与隆升剥蚀,断裂向盆地逆冲。晚二叠世—三叠纪大型坳陷盆地的沉积、沉降中心在沙湾凹陷,受车排子凸起北翼断裂控制,地层向北、西超覆沉积,相继将中拐凸起、玛湖凹陷及山前断裂带埋藏。三叠纪末的构造运动在乌-夏和车排子地区形成向盆地方向的逆冲构造带。前侏罗纪,造山带与盆地表现出不同方式、不同强度构造耦合作用。侏罗纪—白垩纪,西准噶尔的构造活动弱,湖盆地不断扩张,沉积地层不断向造山带方向超覆;沉积、沉降中心由西向东,再由东向西,最后向南迁移演化。新生代,北天山山前强烈拗陷,盆地整体南北向掀斜,形成新近纪前陆盆地。盆地的多期翘倾掀斜作用与后期沉积地层向造山带的超覆沉积作用控制了油气的聚集,被后期埋藏的冲断带成为油气富集带。  相似文献   

17.
Age-dating of detrital zircons from 22 samples collected along, and adjacent to, the Yarlung-Tsangpo suture zone, southern Tibet provides distinctive age-spectra that characterize important tectonostratigraphic units. Comparisons with data from Nepal, northern India and the Lhasa and Qiangtang terranes of central Tibet constrain possible sources of sediment, and the history of tectonic interactions.Sedimentary rocks in the Cretaceous–Paleogene Xigaze terrane exhibit strong Mesozoic detrital zircon peaks (120 and 170 Ma) together with considerable older inheritance in conglomeratic units. This forearc basin succession developed in association with a continental volcanic arc hinterland in response to Neotethyan subduction under the southern edge of the Eurasia. Conspicuous sediment/source hinterland mismatches suggest that plate convergence along this continental margin was oblique during the Late Cretaceous. The forearc region may have been translated > 500 km dextrally from an original location nearer to Myanmar.Tethyan Himalayan sediments on the other side of the Yarlung-Tsangpo suture zone reveal similar older inheritance and although Cretaceous sediments formed 1000s of km and across at least one plate boundary from those in the Xigaze terrane they too contain an appreciable mid-Early Cretaceous (123 Ma) component. In this case it is attributed to volcanism associated with Gondwana breakup.Sedimentary overlap assemblages reveal interactions between colliding terranes. Paleocene Liuqu conglomerates contain a cryptic record of Late Jurassic and Cretaceous rock units that appear to have foundered during a Paleocene collision event prior the main India–Asia collision. Detrital zircons as young as 37 Ma from the upper Oligocene post-collisional Gangrinboche conglomerates indicate that subduction-related convergent margin magmatism continued through until at least Middle and probably Late Eocene along the southern margin of Eurasia (Lhasa terrane).Although the ages of detrital zircons in some units appear compatible with more than one potential source with care other geological relationships can be used to further constrain some linkages and eliminate others. The results document various ocean closure and collision events and when combined with other geological information this new dataset permits a more refined understanding of the time–space evolution of the Cenozoic India–Asia collision system.  相似文献   

18.
A succession of quartz-rich fluvial sandstones and siltstones derived from a mainly rhyolitic source and minor metamorphic rocks, located to the west, represent the first Upper Paleocene–Early Eocene deposits described in Chilean eastern central Patagonian Cordillera (46°45′S). This unit, exposed 25 km south of Chile Chico, south of lago General Carrera, is here defined as the Ligorio Márquez Formation. It overlies with an angular unconformity Lower Cretaceous shallow marine sedimentary rocks (Cerro Colorado Formation) and subaerial tuffs that have yielded K–Ar dates of 128, 125 and 123 Ma (Flamencos Tuffs, of the Divisadero Group). The Ligorio Márquez Formation includes flora indicative of a tropical/subtropical climate, and its deposition took place during the initial part of the Late Paleocene–Early Eocene Cenozoic optimum. The underlying Lower Cretaceous units exhibit folding and faulting, implying a pre-Paleocene–Lower Eocene contractional tectonism. Overlying Oligocene–Miocene marine and continental facies in the same area exhibit thrusts and normal faults indicative of post-Lower Miocene contractional tectonism.  相似文献   

19.
卜香萍  石永红  李忠 《地质科学》2012,(4):1116-1129
本文以鲁西隆起区盆地及周边盆地砂岩中碎屑重矿物为研究对象,通过重矿物的稳定性分析,以及通过不同源区重矿物组合的差异,探讨了鲁西隆起及周边地区晚中生代以来的物源及构造演化过程。研究结果显示,鲁西盆地中生代早期早中侏罗纪时期主要源区为鲁西隆起,中晚侏罗纪时期主要物源为胶东地区和鲁西隆起,而早白垩世时期主要物源为胶东地区,其次才是鲁西隆起。晚白垩世沂沭断裂带盆地物源主要是鲁西隆起和胶东地区,鲁西隆起贡献量大于胶东地区。重矿物的稳定性也折射出源区构造演化历史。早-中侏罗世至中-晚侏罗世,鲁西盆地重矿物物源由鲁西隆起向胶东地区的显著转变,暗示着苏鲁造山带自三叠纪形成之后,经折返抬升,至晚侏罗世之前已经到达地表。重矿物的含量变化显示,早白垩世中期和晚白垩世中期鲁西盆地内沉积了大量的鲁西变质岩矿物组合,并且不稳定重矿物含量急剧增加,我们推测鲁西在早白垩世晚期、晚白垩世中期存在两次构造抬升。  相似文献   

20.
赣杭构造带中、新生代红色粗碎屑岩发育,对红层中砾石组构分析有助于理解红盆形成、演化过程.运用砾组分析方法,对江西抚崇盆地晚白垩世—古新世莲荷组砾岩层的砾性、砾度、砾态及砾向进行分析,并在此基础上对研究区红盆砾岩的物质来源、成因和形成条件等进行综合判断.研究结果表明,莲荷组砾岩为晚白垩世—古新世半干旱—干旱条件下的一套冲积扇相粗碎屑沉积,具有多物源和快速堆积的特点.总体上,砾石成分复杂,风选程度较差,呈次棱角—次圆状,风化程度较低.盆地不同地区砾石成分组合特征具有明显差别,反映了盆地周围复杂的物源供应条件.根据盆地周边出露基岩地层和扁平状砾石产状统计玫瑰花图判断,莲荷组沉积时期,物源主要来自盆地内部的基岩地层以及盆地西南部、西部和东北部.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号