首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
The compositions of coexisting orthopyroxene, clinopyroxene and garnet in the CaO-MgO-Al2O3-SiO2 system are fixed at any givenP andT. Reversed hydrothermal experiments over theP/T range 15–40 kb/900°–l,100° C indicate that the garnet composition is nearly constant at Py86Gr14; the Alcontent and Ca/Ca+Mg values of the pyroxenes vary significantly, however:
T  相似文献   

2.
Mn3+-bearing piemontites and orthozoisites, Ca2(Al3-pMn3+ p)-(Si2O7/SiO4/O/OH), have been synthesized on the join Cz (p = 0.0)-Pm (p = 3.0) of the system CaO-Al2O3-(MnO·MnO2)-SiO2-H2O atP = 15 kb,T= 800 °C, and \(f_{O_2 } \) of the Mn2O3/MnO2 buffer. Pure Al-Mn3+-piemontites were obtained with 0.5≦p≦1.75, whereas atp=0.25 Mn3+-bearing orthozoisite (thulite) formed as single phase product. The limit of piemontite solid solubility is found near p=1.9 at the above conditions. Withp>1.9, the maximum piemontite coexisted with a new high pressure phase CMS-X1, a Ca-bearing braunite (Mn 0.2 2+ Ca0.8)Mn 6 3+ O8(SiO4), and quartz. Al-Mn3+-piemontite lattice constants (LC),b 0,c 0,V 0, increase with increasingp:
  相似文献   

3.
4.
P, T, \(X_{{\text{CO}}_{\text{2}} }\) relations of gehlenite, anorthite, grossularite, wollastonite, corundum and calcite have been determined experimentally at P f =1 and 4 kb. Using synthetic starting minerals the following reactions have been demonstrated reversibly
  1. 2 anorthite+3 calcite=gehlenite+grossularite+3 CO2.
  2. anorthite+corundum+3 calcite=2 gehlenite+3 CO2.
  3. 3anorthite+3 calcite=2 grossularite+corundum+3CO2.
  4. grossularite+2 corundum+3 calcite=3 gehlenite+3 CO2.
  5. anorthite+2 calcite=gehlenite+wollastonite+2CO2.
  6. anorthite+wollastonite+calcite=grossularite+CO2.
  7. grossularite+calcite=gehlenite+2 wollastonite+CO2.
In the T, \(X_{{\text{CO}}_{\text{2}} }\) diagram at P f =1 kb two isobaric invariant points have been located at 770±10°C, \(X_{{\text{CO}}_{\text{2}} }\) =0.27 and at 840±10°C, \(X_{{\text{CO}}_{\text{2}} }\) =0.55. Formation of gehlenite from low temperature assemblages according to (4) and (2) takes place at 1 kb and 715–855° C, \(X_{{\text{CO}}_{\text{2}} }\) =0.1–1.0. In agreement with experimental results the formation of gehlenite in natural metamorphic rocks is restricted to shallow, high temperature contact aureoles.  相似文献   

5.
The single-crystal elastic moduli, c ij x, of the olivine (α) and spinel (γ) polymorphs of nickel orthosilicate have been measured at atmospheric pressure and 20° C by Brillouin spectroscopy. The results are (Mbar), Ni2SiO4 olivine: c 11=3.40(2), c 22=2.38(2), c 33=2.53(2), c 44=0.71(1), c 55=0.87(1), c 66=0.78(1), c 12=1.09(2), c 13=1.10(4), c 23=1.13(3), Ni2SiO4 spinel: c 11=3.66(3), c 44=1.06(1), c 12=1.55(3). In comparing these results with extant elasticity data for olivine- and spinel-type compounds we find distinctive elastic characteristics related to crystal structure, and systematic trends due only to compositional variation. For silicate olivines, the longitudinal moduli decrease in the order c 11>c 33>c 22, regardless of composition. The moduli c 55 and c 66 are approximately equal, and greater than c 44. The former relationship is related to differences in polyhedral linkages along the crystallographic axes, whereas the latter may result from rotational freedom of SiO4 tetrahedra in response to different directions of shear. Composition affects elasticity most directly through the relative magnitudes of \(\bar c_{12} > \; = (c_{12} + c_{13} + c_{23} )/3\) and \(\bar c_{44} = (c_{44} + c_{55} + c_{66} )/3\) . When transition-metal cations are six-coordinated by oxygen \(\bar c_{12} > \bar c_{44}\) , and when alkaline-earth cations are six-coordinated \(\bar c_{44} > \bar c_{12}\) . The longitudinal moduli along and normal to the close-packed directions of spinels are similar, reflecting the framework-like arrangement of octahedra. These longitudinal moduli exhibit little compositional dependence upon tetrahedral cations but vary dramatically with octahedral substitution. Our data indicate that tetrahedral cations affect elastic properties more as the oxygen positional parameter, u, decreases. The u parameter is also directly related to elastic anisotropy. While γ-Ni2SiO4 (u=0.244) is elastically isotropic, anisotropy increases rapidly as u approaches a limiting value near 0.27, and may be related to mechanical stability of the spinel structure. The longitudinal wave velocities along close-packed directions in α and γ Ni2SiO4 are equal. Thus, for an α-γ polymorphic pair, the assumptions of elastic isotropy of the γ phase and equal velocities in close-packed directions of α and γ allows the c ij's and shear modulus of a spinel-structure silicate to be estimated from c 11 of the corresponding α phase and the bulk modulus of the γ phase.  相似文献   

6.
The temperature dependence of the lattice parameters of pure anorthite with high Al/Si order reveals the predicted tricritical behaviour of the \(I\bar 1 \leftrightarrow P\bar 1\) phase transition at T c * =510 K. The spontaneous strain couples to the order parameter Q° as x iS xQ i 2 with S xQ 1 =4.166×10?3, S xQ 2 =0.771×10?3, S xQ 3 =?7.223×10?3 for the diagonal elements. The temperature dependence of Q° is $$Q^{\text{o}} = \left( {1 - \frac{T}{{510}}} \right)^\beta ,{\text{ }}\beta = \tfrac{{\text{1}}}{{\text{4}}}$$ A strong dependence of T c * , S xQ i and β is predicted for Al/Si disordered anorthite.  相似文献   

7.
This paper presents the point-defect thermodynamics for fayalite and olivine solid solutions (Fe x Mg1?x )2SiO4. By means of thermogravimetry, the metal-to-oxygen ratio of these silicates has been determined as a function of oxygen potential, compositionx and temperature. Experiments were performed in the range of 1,000° C≦T≦1,280° C and 0.2≦x≦1.0. It is found that V Me , Fe Me · and the associate {Fe′ Si Fe Me · } are the majority defects. With this knowledge it is possible to calculate the nonstoichiometry at given temperature as a function of \(p_{O_2 } \) and \(a_{SiO_2 } \) . The cation vacancy concentration shows a \(p_{O_2 }^{1/5} \) -dependence (forx≧0.2) and increases at givenT and \(p_{O_2 } \) almost exponentially with compositionx. In the composition range studied here, the silicates show an oxygen excess, and FeO is more soluble in the olivine than SiO2.  相似文献   

8.
Approximately 125 hydrothermal annealing experiments have been carried out in an attempt to bracket the stability fields of different ordered structures within the plagioclase feldspar solid solution. Natural crystals were used for the experiments and were subjected to temperatures of ~650°C to ~1,000°C for times of up to 370 days at \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) =600 bars, or \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) =1,200 bars. The structural states of both parent and product materials were characterised by electron diffraction, with special attention being paid to the nature of type e and type b reflections (at h+k=(2n+1), l=(2n+1) positions). Structural changes of the type C \(\bar 1\) I \(\bar 1\) , C \(\bar 1\) → “e” structure, I \(\bar 1\) → “e” and “e” structure → I \(\bar 1\) have been followed. There are marked differences between the ordering behaviour of crystals with compositions on either side of the C \(\bar 1\) ? I \(\bar 1\) transition line. In the composition range ~ An50 to ~ An70 the e structure appears to have a true field of stability relative to I \(\bar 1\) ordering, and a transformation of the type I \(\bar 1\) ? e has been reversed. It is suggested that the e structure is the more stable ordered state at temperatures of ~ 800°C and below. For compositions more albite-rich than ~ An50 the upper temperature limit for long range e ordering is lower than ~ 750°C, and there is no evidence for any I \(\bar 1\) ordering. The evidence for a true stability field for “e” plagioclase, which is also consistent with calorimetric data, necessitates reanalysis both of the ordering behaviour of plagioclase crystals in nature and of the equilibrium phase diagram for the albite-anorthite system. Igneous crystals with compositions of ~ An65, for example, probably follow a sequence of structural states C \(\bar 1\) I \(\bar 1\) e during cooling. The peristerite, Bøggild and Huttenlocher miscibility gaps are clearly associated with breaks in the albite, e and I \(\bar 1\) ordering behaviour but their exact topologies will depend on the thermodynamic character of the order/disorder transformations.  相似文献   

9.
Two natural clinopyroxene single crystals were investigated, an aegirine-augite (AEG) and a magnesian hedenbergite (HED). Both samples were carefully characterized by electron microprobe, X-ray diffraction, and Mössbauer spectroscopy. Magnetic susceptibility measurements of powdered samples reveal low temperature antiferromagnetic coupling and Curie-Weiss behaviour with T N =7.5(5)?K, Θ P =?19(1)?K for AEG, and T N =31(1)?K, Θ P =+21(1)?K for HED, respectively. Low temperature Mössbauer spectra exhibit relaxation phenomena. Magnetic susceptibility measurements of the single crystals show the direction of the magnetic moments to be lying within the a/c plane for both samples: 50(±2)° from a and 57(±2)° from c in AEG, and 45(±2)° from a and 60(±2)° from c in HED, respectively. The antiferromagnetic interchain interaction competes with the ferromagnetic intrachain interaction in both pyroxenes. In the magnesian hedenbergite a field induced magnetic transition is found. Its dependence on temperature, magnetic field and crystallographic direction is investigated and described.  相似文献   

10.
Using the rectangular parallelepiped resonance method we measured the temperature dependence of the adiabatic elastic moduli of single-crystal MgO over the temperature range 300–1800 K. The high temperature limit of our measurements extends by 500 K the upper limit over which elasticity data on MgO are now available. Although our measured temperature dependence of C ij s are generally in good agreement with previous measurements over a more narrow range in temperature, we found that C 44 s decreases more rapidly with temperature, for T > 1000 K, than previous studies suggest. We also found that each of the slopes (?C 11 s /?T)p, (?Ks/?T)p, and (C 44 s /?T)p become less negative with increasing temperature for T > 1400 K. From our measurements on elasticity we are able to confirm that the Grüneisen parameter at zero pressure is nearly constant with temperature up to 1800 K, with only a slight decrease above 1000 K. Utilizing our new data we present calculations showing the temperature dependence of thermodynamic parameters important in studies of earth's interior.  相似文献   

11.
Liquidus phase relationships determined on the join anorthite-forsterite-quartz at 20 kbar show primary phase fields for quartz (q), forsterite (fo), enstatite (en), spinel (sp), anorthite (an), sapphirine (sa), and corundum (cor). Increasing pressure causes (1) thefo andan primary phase fields to contract, (2) theen, q, andcor fields to expand, (3) thefo-en boundary line to move away from the Q apex, (4) theen-q boundary line to move also away from the Q apex but by a smaller amount, and (5) a primary phase field forsa to appear at a pressure between 10 and 20 kbar. Seven liquidus piercing points at 20 kbar have been located as follows:
Crystalline phases  相似文献   

12.
13.
In-situ powder diffraction measurements between 90 and 935?K on four anorthite-rich plagioclase samples (An100, An96Ab4, An89Ab11 and An78Ab22) were used to determine the detailed evolution of these samples through the $I \overline{1} $ $P \overline{1} $ phase transition. The c-type reflections indicative of $P \overline{1} $ symmetry were detected only in An100, An96Ab4, whereas deviations in the evolution of the unit-cell parameters with temperature were observed in all samples, most prominently in the β unit-cell angle. The c-type reflections disappear at ~510 and ~425?K in An100 and An96Ab4 respectively, and their intensity decreases according to a tricritical trend $ I^{2} \propto \left( {T - T_{\text{c}} } \right) $ . The cell parameter changes were used to determine the spontaneous strains arising from the transition which were modelled with Landau theory, allowing for low-temperature quantum saturation, in order to determine the thermodynamic behaviour. In An100 tricritical behaviour was observed [T c?=?512.7(4)?K; θs?=?394(4)] in good agreement with previous studies, and the c-type superlattice reflections indicative of $P \overline{1} $ symmetry persist up to the T c determined from the spontaneous strain, and then disappear. The evolution of the spontaneous strain in An96Ab4 is tricritical at low temperatures [T c?=?459(1) K, θs?=?396(5)] up to the temperature of disappearance of c-type reflections, but becomes second order beyond ~440?K. In An89Ab11 the strain displays second-order behaviour throughout [T c?=?500(1) and θs?=?212(5)], and the c-type reflections are not detected in the powder diffraction patterns at any temperature. The apparent discrepancy between the absence of c-type reflections in temperature ranges where the cell parameters display significant spontaneous strain is resolved through consideration of the sizes of the anti-phase domains within the crystals. It is deduced that the tricritical phase transition occurs in well-ordered crystals with large domains in which the behavior of individual domains is dominant (i.e. in pure anorthite) or where the $P \overline{1} $ distortions within the domains are large enough to dominate the structural coherency strains between the domains. When both the magnitude of the $P \overline{1} $ pattern of displacements of the tetrahedral framework become smaller and the influence of the structural coherency between anti-phase domains becomes significant, the thermodynamic behavior becomes 2nd-order in character, the c-type reflections disappear, and the orientation of the spontaneous strain changes.  相似文献   

14.
The temperature dependences of the crystal structure and superstructure intensities in sodium nitrate, mineral name nitratine, NaNO3, were studied using Rietveld structure refinements based on synchrotron powder X-ray diffraction. Nitratine transforms from $R{\overline{3}} c\;\hbox{to}\;R{\overline{3}} m$ at T c = 552(1) K. A NO3 group occupies, statistically, two positions with equal frequency in the disordered $R{\overline{3}} m$ phase, but with unequal frequency in the partially ordered $R{\overline{3}} c$ phase. One position for the NO3 group is rotated by 60° or 180° with respect to the other. The occupancy of the two orientations in the $R{\overline{3}} c$ phase is obtained from the occupancy factor, x, for the O1 site and gives rise to the order parameter, S = 2x ? 1, where S is 0 at T c and 1 at 0 K. The NO3 groups rotate in a rapid process from about 541 to T c, where the a axis contracts. Using a modified Bragg–Williams model, a good fit was obtained for the normalized intensities (that is, normalized, NI1/2) for the (113) and (211) reflections in $R{\overline{3}} c\hbox {\,NaNO}_{3},$ and indicates a second-order transition. Using the same model, a reasonable fit was obtained for the order parameter, S, and also supports a second-order transition.  相似文献   

15.
Data systematization using the constraints from the equation $$Cp = Cv + \alpha _P {}^2V_T K_T T$$ where C p, C v, α p, K T and V are respectively heat capacity at constant pressure, heat capacity at constant volume, isobaric thermal expansion, isothermal bulk modulus and molar volume, has been performed for tungsten and MgO. The data are $$K_T (W) = 1E - 5/(3.1575E - 12 + 1.6E - 16T + 3.1E - 20T^2 )$$ $$\alpha _P (W) = 9.386E - 6 + 5.51E - 9T$$ $$C_P (W) = 24.1 + 3.872E - 3T - 12.42E - 7T^2 + 63.96E - 11T^3 - 89000T^{ - 2} $$ $$K_T (MgO) = 1/(0.59506E - 6 + 0.82334E - 10T + 0.32639E - 13T^2 + 0.10179E - 17T^3 $$ $$\alpha _P (MgO) = 0.3754E - 4 + 0.7907E - 8T - 0.7836/T^2 + 0.9148/T^3 $$ $$C_P (MgO) = 43.65 + 0.54303E - 2T - 0.16692E7T^{ - 2} + 0.32903E4T^{ - 1} - 5.34791E - 8T^2 $$ For the calculation of pressure-volume-temperature relation, a high temperature form of the Birch-Murnaghan equation is proposed $$P = 3K_T (1 + 2f)^{5/2} (1 + 2\xi f)$$ Where $$K_T = 1/(b_0 + b_1 T + b_2 T^2 + b_3 T^3 )$$ $$f = (1/2)\{ [V(1,T)/V(P,T)]^{2/3} - 1\} $$ $$\xi = ({3 \mathord{\left/ {\vphantom {3 4}} \right. \kern-\nulldelimiterspace} 4})[K'_0 + K'_1 \ln ({T \mathord{\left/ {\vphantom {T {300}}} \right. \kern-\nulldelimiterspace} {300}}) - 4]$$ where in turn $$V(1,T) = V_0 [\exp (\int\limits_{300}^T {\alpha dT)]} $$ . The temperature dependence of the pressure derivative of the bulk modulus (K′1) is estimated by using the shock-wave data. For tungsten the data are K′0 = 3.5434, K′1 = 0.032; for MgO K′0 = 4.17 and K′1 = 0.1667. For calculating the Gibbs free energy of a solid at high pressure and at temperatures beyond that of melting at 1 atmosphere, it is necessary to define a high-temperature reference state for the fictive solid.  相似文献   

16.
Laihuite reported in the present paper is a new iron silicate mineral found in China with the following characteristics:
  1. This mineral occurs in a metamorphic iron deposit, associated with fayalite, hypersthene, quartz, magnetitc, etc.
  2. The mineral is opaque, black in colour, thickly tabular in shape with luster metallic to sub-metallic, two perfect cleavages and specific gravity of 3.92.
  3. Its main chemical components are Fe and Si with Fe3+>Fe2+. The analysis gave the formula of Fe Fe 1.00 3+ ·Fe 0.58 2+ ·Mg 0.03 2+ ·Si0.96O4.
  4. Its DTA curve shows an exothermic peak at 713°C.
  5. The mineral has its own infrared spectrum distinctive from that of other minerals.
  6. This mineral is of orthorhombic system; space group:C 2h /5 ?P21/c; unit cell:α=5.813ű0.005,b=4.812ű0.005,c=10.211ű0.005,β=90.87°.
  7. The Mössbauer spectrum of this mineral is given, too.
  相似文献   

17.
For the reaction: 1 diopside+3 dolomite ?2 forsterite+4 calcite+2 CO2 (14) the following P total?T-brackets have been determined experimentally in the presence of a gasphase consisting of 90 mole%CO2 and 10 mole%H2O∶1 kb, 544°±20° C; 3kb, 638°±15° C; 5kb, 708°±10° C; 10kb, 861°±10° C. The determination was carried out with well defined synthetic minerals in the starting mixture. The MgCO3-contents of the magnesian calcites formed by the reaction in equilibrium with dolomite agree very well with the calcite-dolomite miscibility gap, which can be recalculated from the activities and the activity coefficients of MgCO3 as given by Gordon and Greenwood (1970). The equilibrium constant K 14b was calculated with respect to the reference pressure P 0=1 bar using the experimentally determined \(P_{total} TX_{CO_2 }\) brackets, the activities of MgCO3 and CaCO3 (Gordon and Greenwood 1970; Skippen 1974) and the fugacities of CO2 Holloway (1977) considering the correction of Flowers (1979). Results are plotted as function of the absolute reciprocal temperature in Fig. 1. For the temperature range of 530° to 750° C the following linear expression can be given for the natural logarithm of K14b: (g) $$[ln K_{14b} ]_T^P = - \frac{{18064.43}}{{T\left( {^\circ K} \right)}} + 38.58 + \frac{{0.308(P - 1 bar)}}{{T\left( {^\circ K} \right)}}$$ where P is the total pressure in bars and T the temperature in degrees Kelvin. Combining Equation (g) with the activities of MgCO3 and CaCO3 gives the equilibrium fugacity \(f_{CO_2 }\) : (i) $$[ln f_{CO_2 } ]_T^P = - \frac{{11635.44}}{{T\left( {^\circ K} \right)}} + 21.09 + \frac{{0.154(P - 1 bar)}}{{T\left( {^\circ K} \right)}}$$ Equation (i) and the fugacities of CO2 permit to calculate the equilibrium data in terms of \(P_{CO_2 }\) and T (see Fig. 3) or P total, T and \(X_{CO_2 }\) (see Fig. 5). Combining the \(P_{total} TX_{CO_2 }\) equilibrium data of the above reaction with those of the previously investigated reaction (Metz 1976): 1 tremolite+11 dolomite ?8 forsterite+13 calcite+9 CO2+1 H2O yields the stability conditions of the four-mineral assemblage: diopside+calcian dolomite+forsterite +magnesian calcite and the stability conditions of the five-mineral assemblage: tremolite+calcian dolomite+forsterite +magnesian calcite+diopside both shown in Fig. 6. Since these assemblages are by no means rare in metamorphic siliceous dolomites (Trommsdorff 1972; Suzuki 1977; Puhan 1979) the data of Fig. 6 can be used to determine the pressure of metamorphism and to estimate the composition of the CO2-H2O fluid provided the temperature of the metamorphic event was determined using the calcite-dolomite geothermometer.  相似文献   

18.
Variations in the equilibrium degree of Al/Si order in anorthite have been investigated experimentally over the temperature range 800-1535° C. Spontaneous strain measurements give the temperature dependence of the macroscopic order parameter, Q, defined with respect to the \(C\bar 1 \rightleftharpoons I\bar 1\) phase transition, while high temperature solution calorimetric data allow the relationship between Q and excess enthalpy, H, to be determined. The thermodynamic behaviour can be described by a Landau expansion in one order parameter if the transition is first order in character, with an equilibrium transition temperature, T tr, of ~2595 K and a jump in Q from 0 to ~0.65 at Ttr. The coefficients in this Landau expansion have been allowed to vary with composition, using Q=1 at 0 K for pure anorthite as a reference point for the order parameter. Published data for H and Q at different compositions allow the calibration of the additional parameters such that the free energy due to the \(C\bar 1 \rightleftharpoons I\bar 1\) transition in anorthite-rich plagioclase feldspars may be expressed (in cal. mole-1) as: \(\begin{gathered}G = \tfrac{1}{2} \cdot 9(T - 2283 + 2525X_{Ab} )Q^2 \\ {\text{ + }}\tfrac{1}{4}( - 26642 + 121100X_{Ab} )Q^4 \\ {\text{ + }}\tfrac{1}{6}(47395 - 98663X_{Ab} )Q^6 \\ \end{gathered}\) where X Ab is the mole fraction of albite component. The nature of the transition changes from first order in pure anorthite through tricritical at ~An78 to second order, with increasing albite content. The magnitude of the free energy of \()\) ordering reduces markedly as X Ab increases. At ~700° C incommensurate ordering in crystals with compositions ~An50–An70 needs to have an associated free energy reduction of only a few hundred calories to provide a more stable structure. These results, together with a simple mixing model for the disordered ( \()\) ) solid solution, an assumed tricritical model for the incommensurate ordering and published data for ordering in albite have been used to calculate a set of possible free energy relations for the plagioclase system. The incommensurate structure should appear on the equilibrium phase diagram, but its apparent stability with respect to the assemblage albite plus anorthite at low temperatures depends on the values assigned to the mixing parameters of the $$$$ solid solution.  相似文献   

19.
For ABO 4 type ternary oxides, high pressure phase transformations known up to the present are reviewed, and an attempt is made to explain and predict crystal structures of their high pressure phases. When ABO 4 type compounds are plotted based on the two variables, k=r A /r B and t=(r A +r B )/2r O, where r A , r B , and r O are the ionic radii of A and B cations and divalent oxygen, they can be classified into the major structure types. It is found empirically that a compound basically transforms to the structure type isostructural with a compound lying in a classified area with the same k and larger t values in the diagram.  相似文献   

20.
According to Sakai-Ohmoto's theory regarding the evolution of sulfur isotopes in hydrothermal systems, in conjunction of new data on chemical resaction equilibrium constants and equilibrium isotopic fractionation factors as well as on individual ion activity coefficients of aqueous sulfur species, the following lgfo2.-pH diagrams are constructed:
  1. mole fractions of aqueous sulfur species (X i ),
  2. stability fields of some minerals in the Fe-S-O system,
  3. diagram depicting the oxidation-reduction-state ratio for aqueous sulfur species (R′)
  4. isotopic compositions of sulfur compounds ( \(\delta S_1 ^{34} \) ).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号