首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we discuss a perturbed extension of hyperbolic twist mappings to a 3-dimensional measure-preserving mapping $$\begin{array}{*{20}c} {T:\left\{ {\begin{array}{*{20}c} {x_{n + 1} = s(x_n \cos \varphi _n - y_n \sin \varphi _n ) + A\cos z_n ,} \\ {y_{n + 1} = s^{ - 1} (x_n \sin \varphi _n + y_n \cos \varphi _n ) + B\sin z_n ,} \\ {z_{n + 1} = z_n + C\cos (x_{n + 1} + y_{n + 1} ) + D,(\bmod 2\pi )} \\ \end{array} } \right.} \\ {\varphi _n = (x_n^2 + y_n^2 )^k } \\ \end{array}$$ wheres, k are parameters andA, B, C, D are perturbation parameters. We find that the ordered regions near the fixed point of the hyperbolic twist mapping is destroyed by the perturbed extension more easily than the ones distant from it. The size of the ordered region decreases with increasing perturbation parameters and is insensitive to the parameterD for the same parametersA, B, C.  相似文献   

2.
In this paper, we study the following three-dimensional mappings $$T:\left\{ \begin{gathered} x_{n + 1} = x_n + y_n + B sin z_n , \hfill \\ y_{n + 1} = y_n + A sin x_{n + 1} , \hfill \\ z_{n + 1} = z_n + C sin y_{n + 1} + D, \hfill \\ \end{gathered} \right.\left( {\bmod 2\Pi } \right)$$ where A, B, C, D are parameters. When D>BC and 2π/D is an irrational number, we find numerically-two-dimensional and one-dimensional invariant manifolds, but when DBC and 2π/D is a rational number we find numerically one-dimensional manifolds and the fixed points for some cycles.  相似文献   

3.
Dynamical systems with three degrees of freedom can be reduced to the study of a fourdimensional mapping. We consider here, as a model problem, the mapping given by the following equations: $$\left\{ \begin{gathered} x_1 = x_0 + a_1 {\text{ sin (}}x_0 {\text{ + }}y_0 {\text{)}} + b{\text{ sin (}}x_0 {\text{ + }}y_0 {\text{ + }}z_{\text{0}} {\text{ + }}t_{\text{0}} {\text{)}} \hfill \\ y_1 = x_0 {\text{ + }}y_0 \hfill \\ z_1 = z_0 + a_2 {\text{ sin (}}z_0 {\text{ + }}t_0 {\text{)}} + b{\text{ sin (}}x_0 {\text{ + }}y_0 {\text{ + }}z_{\text{0}} {\text{ + }}t_{\text{0}} {\text{) (mod 2}}\pi {\text{)}} \hfill \\ t_1 = z_0 {\text{ + }}t_0 \hfill \\ \end{gathered} \right.$$ We have found that as soon asb≠0, i.e. even for a very weak coupling, a dynamical system with three degrees of freedom has in general either two or zero isolating integrals (besides the usual energy integral).  相似文献   

4.
We study an extension of the Hénon mapping to a dissipative dynamical system with three-dimensions and discuss the behavior of the attractors of the Hénon mapping in the extended mapping $$T:\left\{ {\begin{array}{*{20}c} {X_{i + 1} = Y_i + 1 - AX_i^2 + C cos Z_i } \\ {Y_{i + 1} = BX_i + D \sin Z_i } \\ {Z_{i + 1} = Z_i + E \sin Y_{i + 1} + F, (\bmod 2\pi ).} \\ \end{array} } \right.$$ The results show that the strange attractor is destroyed by perturbed extension more easily than the trivial attractor and the invariant manifold of the conservative dynamical system.  相似文献   

5.
If a dynamical problem ofN degress of freedom is reduced to the Ideal Resonance Problem, the Hamiltonian takes the form 1 $$\begin{array}{*{20}c} {F = B(y) + 2\mu ^2 A(y)\sin ^2 x_1 ,} & {\mu \ll 1.} \\ \end{array} $$ Herey is the momentum-vectory k withk=1,2?N, x 1 is thecritical argument, andx k fork>1 are theignorable co-ordinates, which have been eliminated from the Hamiltonian. The purpose of this Note is to summarize the first-order solution of the problem defined by (1) as described in a sequence of five recent papers by the author. A basic is the resonance parameter α, defined by 1 $$\alpha \equiv - B'/\left| {4AB''} \right|^{1/2} \mu .$$ The solution isglobal in the sense that it is valid for all values of α2 in the range 1 $$0 \leqslant \alpha ^2 \leqslant \infty ,$$ which embrances thelibration and thecirculation regimes of the co-ordinatex 1, associated with α2 < 1 and α2 > 1, respectively. The solution includes asymptotically the limit α2 → ∞, which corresponds to theclassical solution of the problem, expanded in powers of ε ≡ μ2, and carrying α as a divisor. The classical singularity at α=0, corresponding to an exact commensurability of two frequencies of the motion, has been removed from the global solution by means of the Bohlin expansion in powers of μ = ε1/2. The singularities that commonly arise within the libration region α2 < 1 and on the separatrix α2 = 1 of the phase-plane have been suppressed by means of aregularizing function 1 $$\begin{array}{*{20}c} {\phi \equiv \tfrac{1}{2}(1 + \operatorname{sgn} z)\exp ( - z^{ - 3} ),} & {z \equiv \alpha ^2 } \\ \end{array} - 1,$$ introduced into the new Hamiltonian. The global solution is subject to thenormality condition, which boundsAB″ away from zero indeep resonance, α2 < 1/μ, where the classical solution fails, and which boundsB′ away from zero inshallow resonance, α2 > 1/μ, where the classical solution is valid. Thedemarcation point 1 $$\alpha _ * ^2 \equiv {1 \mathord{\left/ {\vphantom {1 \mu }} \right. \kern-\nulldelimiterspace} \mu }$$ conventionally separates the deep and the shallow resonance regions. The solution appears in parametric form 1 $$\begin{array}{*{20}c} {x_\kappa = x_\kappa (u)} \\ {y_1 = y_1 (u)} \\ {\begin{array}{*{20}c} {y_\kappa = conts,} & {k > 1,} \\ \end{array} } \\ {u = u(t).} \\ \end{array} $$ It involves the standard elliptic integralsu andE((u) of the first and the second kinds, respectively, the Jacobian elliptic functionssn, cn, dn, am, and the Zeta functionZ (u).  相似文献   

6.
Techniques are developed to facilitate the transformation of a perturbed Keplerian system into Deláunay normal form at first order. The implicit dependence of the Hamiltonian on 1, the mean anomaly, through the explicit variable f, the true anomaly, or E, the eccentric anomaly, is removed through first order for terms of the form:
  相似文献   

7.
The multivariable hypergeometric function $$F_{q_0 :q_1 ;...;q_n }^{P_0 :P_1 ;...;P_n } \left( {\begin{array}{*{20}c} {x_1 } \\ \vdots \\ {x_n } \\ \end{array} } \right),$$ considered recently by A. W. Niukkanen and H.M. Srivastava, is known to provide an interesting unification of the generalized hypergeometric functionp F q of one variable, Appell and Kampé de Fériet functions of two variables, and Lauricella functions ofn variables, as also of many other hypergeometric series which arise naturally in various physical, astrophysical, and quantum chemical applications. Indeed, as already pointed out by Srivastava, this multivariable hypergeometric function is an obvious special case of the generalized Lauricella function ofn variables, which was first introduced and studied by Srivastava and M. C. Daoust. By employing such fruitful connections of this multivariable hypergeometric function with much more general multiple hypergeometric functions studied in the literature rather systematically and widely, Srivastava presented several interesting and useful properties of this function, most of which did not appear in the work of Niukkanen. The object of this sequel to Srivastava's work is to derive a further reduction formula for the multivariable hypergeometric function from substantially more general identities involving multiple series with essentially arbitrary terms. Some interesting connections of the results considered here with those given in the literature, and some indication of their applicability, are also provided.  相似文献   

8.
From the values of period changes for 6 close binary stars the mass transfer rate was calculated. Comparing these values Mt with the values of shell masses Msh, the expression $$lg \dot M_t = \begin{array}{*{20}c} {4.24} \\ { \pm 24} \\ \end{array} + \begin{array}{*{20}c} {0.63} \\ { \pm 6} \\ \end{array} lg M_{sh} $$ Was derived. The analysis of this expression points out the initial character of the outflow of matter, and one may determine the time interval of the substitution of the shell matter. So one may conclude that for a certain mass transfer rate, a certain amount of matter accumulates in the nearby regions of the system. The study of orbital period changes of close binary stellar systems led to the idea that these secular and irregular changes are due to the mass loss and to the redistribution of masses in a close binary. Secular changes of orbital periods are known for approximately 400 eclipsing binary stars. For many stars, including cataclysmic binaries, irregular period changes are known. Thus, the mass loss and the matter redistribution in close binaries are often observed phenomena.  相似文献   

9.
The author's previous studies concerning the Ideal Resonance Problem are enlarged upon in this article. The one-degree-of-freedom Hamiltonian system investigated here has the form $$\begin{array}{*{20}c} { - F = B(x) + 2\mu ^2 A(x)\sin ^2 y + \mu ^2 f(x,y),} \\ {\dot x = - F_y ,\dot y = F_x .} \\ \end{array}$$ The canonically conjugate variablesx andy are respectively the momentum and the coordinate, andμ 2 is a small positive constant parameter. The perturbationf is o (A) and is represented by a Fourier series iny. The vanishing of ?B/?xB (1) atx=x 0 characterizes the resonant nature of the problem. With a suitable choice of variables, it is shown how a formal solution to this perturbed form of the Ideal Resonance Problem can be constructed, using the method of ‘parallel’ perturbations. Explicit formulae forx andy are obtained, as functions of time, which include the complete first-order contributions from the perturbing functionf. The solution is restricted to the region of deep resonance, but those motions in the neighbourhood of the separatrix are excluded.  相似文献   

10.
Stars are gravitationally stabilized fusion reactors changing their chemical composition while transforming light atomic nuclei into heavy ones. The atomic nuclei are supposed to be in thermal equilibrium with the ambient plasma. The majority of reactions among nuclei leading to a nuclear transformation are inhibited by the necessity for the charged participants to tunnel through their mutual Coulomb barrier. As theoretical knowledge and experimental verification of nuclear cross sections increases it becomes possible to refine analytic representations for nuclear reaction rates. Over the years various approaches have been made to derive closed-form representations of thermonuclear reaction rates (Critchfield, 1972; Haubold and John, 1978; Haubold, Mathai and Anderson, 1987). They show that the reaction rate contains the astrophysical cross section factor and its derivatives which has to be determined experimentally, and an integral part of the thermonuclear reaction rate independent from experimental results which can be treated by closed-form representation techniques in terms of generalized hypergeometric functions. In this paper mathematical/statistical techniques for deriving closed-form representations of thermonuclear functions, particularly the four integrals $$\begin{gathered} I_1 (z,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_2 (z,d,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_3 (z,t,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - z(y + 1)^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_4 (z,\delta ,b,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - by^\delta } e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ \end{gathered} $$ will be summarized and numerical results for them will be given. The separation of thermonuclear functions from thermonuclear reaction rates is our preferred result. The purpose of the paper is also to compare numerical results for approximate and closed-form representations of thermonuclear functions. This paper completes the work of Haubold, Mathai, and Anderson (1987).  相似文献   

11.
Two flights from Alice Springs, Australia, were achieved in November 1977 and November 1978 with a plastic scintillator -burst detector, effective area 6.3 m2, thickness 5 cm, energy response in the range 50 keV to 2 MeV. In 33 hr of good, high altitude data, two bursts were detected, yielding a rate corrected to an isotropic flux of at a size of 8.5×10–9 erg cm–2. One event, seen at 22.14 on 15 Nov 1978, was confirmed by spacecraft measurements. The second, too small to be detected by spacecraft, arrived from 0 hr RA, –13.2° Decl. ±12° and possibly comes from a confirmed -burst source location. A galactic origin with a source distribution originating from a relatively thick disk, is favoured by these results.  相似文献   

12.
The development of the post-nova light curve of V1500 Cyg inUBV andHβ, for 15 nights in September and October 1975 are presented. We confirm previous reports that superimposed on the steady decline of the light curve are small amplitude cyclic variations. The times of maxima and minima are determined. These together with other published values yield the following ephemerides from JD 2 442 661 to JD 2 442 674: $$\begin{gathered} {\text{From}} 17 {\text{points:}} {\text{JD}}_{ \odot \min } = 2 442 661.4881 + 0_{^. }^{\text{d}} 140 91{\text{n}} \hfill \\ \pm 0.0027 \pm 0.000 05 \hfill \\ {\text{From}} 15 {\text{points:}} {\text{JD}}_{ \odot \max } = 2 442 661.5480 + 0_{^. }^{\text{d}} 140 89{\text{n}} \hfill \\ \pm 0.0046 \pm 0.0001 \hfill \\ \end{gathered} $$ with standard errors of the fits of ±0 . d 0052 for the minima and ±0 . d 0091 for the maxima. Assuming V1500 Cyg is similar to novae in M31, we foundr=750 pc and a pre-nova absolute photographic magnitude greater than 9.68.  相似文献   

13.
The paper presents the intensity and spectral nature of the X-ray emission from Sco X-1 in the energy interval 17–106 keV based on the observations made by a balloon borne scintillation telescope system flown on November 15, 1971 from Hyderabad, India. In the 25–53 keV interval, the spectral distribution is observed to correspond to akT value of keV assuming the shape to be exponential. Over the complete energy range of observation, a power law function with the value of exponent equal to 3.6±0.5 seems to yield an adequate fit. Comparing the present data with those obtained elsewhere, the temporal characteristics of the X-ray emission from Sco X-1 are discussed.  相似文献   

14.
The Ideal Resonance Problem, defined by the Hamiltonian $$F = B(y) + 2\mu ^2 A(y)\sin ^2 x,\mu \ll 1,$$ has been solved in Garfinkelet al. (1971). As a perturbed simple pendulum, this solution furnishes a convenient and accurate reference orbit for the study of resonance. In order to preserve the penduloid character of the motion, the solution is subject to thenormality condition, which boundsAB" andB' away from zero indeep and inshallow resonance, respectively. For a first-order solution, the paper derives the normality condition in the form $$pi \leqslant max(|\alpha /\alpha _1 |,|\alpha /\alpha _1 |^{2i} ),i = 1,2.$$ Herep i are known functions of the constant ‘mean element’y', α is the resonance parameter defined by $$\alpha \equiv - {\rm B}'/|4AB\prime \prime |^{1/2} \mu ,$$ and $$\alpha _1 \equiv \mu ^{ - 1/2}$$ defines the conventionaldemarcation point separating the deep and the shallow resonance regions. The results are applied to the problem of the critical inclination of a satellite of an oblate planet. There the normality condition takes the form $$\Lambda _1 (\lambda ) \leqslant e \leqslant \Lambda _2 (\lambda )if|i - tan^{ - 1} 2| \leqslant \lambda e/2(1 + e)$$ withΛ 1, andΛ 2 known functions of λ, defined by $$\begin{gathered} \lambda \equiv |\tfrac{1}{5}(J_2 + J_4 /J_2 )|^{1/4} /q, \hfill \\ q \equiv a(1 - e). \hfill \\ \end{gathered}$$   相似文献   

15.
Non-linear stability of the libration point L 4 of the restricted three-body problem is studied when the more massive primary is an oblate spheroid with its equatorial plane coincident with the plane of motion, Moser's conditions are utilised in this study by employing the iterative scheme of Henrard for transforming the Hamiltonian to the Birkhoff's normal form with the help of double D'Alembert's series. It is found that L 4 is stable for all mass ratios in the range of linear stability except for the three mass ratios: $$\begin{gathered} \mu _{c1} = 0.0242{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.1790{\text{ }}...{\text{ }}A_1 , \hfill \\ \mu _{c2} = 0.0135{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.0993{\text{ }}...{\text{ }}A_1 , \hfill \\ \mu _{c3} = 0.0109{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.0294{\text{ }}...{\text{ }}A_1 . \hfill \\ \end{gathered} $$   相似文献   

16.
Generalized Jacobian coordinates can be used to decompose anN-body dynamical system intoN-1 2-body systems coupled by perturbations. Hierarchical stability is defined as the property of preserving the hierarchical arrangement of these 2-body subsystems in such a way that orbit crossing is avoided. ForN=3 hierarchical stability can be ensured for an arbitrary span of time depending on the integralz=c 2 h (angular momentum squared times energy): if it is smaller than a critical value, defined by theL 2 collinear equilibrium configuration, then the three possible hierarchical arrangements correspond to three disconnected subsets of the invariant manifold in the phase space (and in the configuration space as well; see Milani and Nobili, 1983a). The same definitions can be extended, with the Jacobian formalism, to an arbitrary hierarchical arrangement ofN≥4 bodies, and the main confinement condition, the Easton inequality, can also be extended but it no longer provides separate regions of trapped motion, whatever is the value ofz for the wholeN-body system,N≥4. However, thez criterion of hierarchical stability applies to every 3-body subsystem, whosez ‘integral’ will of course vary in time because of the perturbations from the other bodies. In theN=4 case we decompose the system into two 3-body subsystems whosec 2 h ‘integrals’,z 23 andz 34, att=0 are assumed to be smaller than the corresponding critical values \(\tilde z_{23} \) and \(\tilde z_{34} \) , so that both the subsystems are initially hierarchically stable. Then the hierarchical arrangement of the 4 bodies cannot be broken until eitherz 23 orz 34 is changed by an amount \(\tilde z_{ij} - z_{ij} \left( 0 \right)\) ; that is the whole system is hierarchically stable for a time spain not shorter than the minimum between \(\Delta t_{23} = {{\left( {\tilde z_{23} - z_{23} \left( 0 \right)} \right)} \mathord{\left/ {\vphantom {{\left( {\tilde z_{23} - z_{23} \left( 0 \right)} \right)} {\dot z_{23} }}} \right. \kern-0em} {\dot z_{23} }}\) and \(\Delta t_{34} = {{\left( {\tilde z_{34} - z_{34} \left( 0 \right)} \right)} \mathord{\left/ {\vphantom {{\left( {\tilde z_{34} - z_{34} \left( 0 \right)} \right)} {\dot z_{34} }}} \right. \kern-0em} {\dot z_{34} }}\) . To estimate how long is this stability time, two main steps are required. First the perturbing potentials have to be developed in series; the relevant small parameters are some combinations of mass ratios and length ratios, the? ij of Roy and Walker. When an appropriate perturbation theory is based on the? ij , the asymptotic expansions are much more rapidly decreasing than the usual expansions in powers of the mass ratios (as in the classical Lagrange perturbation theory) and can be extended also to cases such as lunar theory or double binaries. The second step is the computation of the time derivatives \(\dot z_{ij} \) (we limit ourselves to the planar case). To assess the long term behaviour of the system, we can neglect the short-periodic perturbations and discuss only the long-periodic and the secular perturbations. By using a Poisson bracket formalism, a generalization of Lagrange theorem for semimajor axes and a generalization of the classical first order theories for eccentricities and pericenters, we prove that thez ij do not undergo any secular perturbation, because of the interaction with the other subsystem, at the first order in the? ik . After the long-periodic perturbations have been accounted for, and apart from the small divisors problems that could arise both from ordinary and secular resonances, only the second order terms have to be considered in the computation of Δt 23, Δt 34. A full second order perturbative theory is beyond the scope of this paper; however an order-of-magnitude lower estimate of the Δt ij can be obtained with the very pessimistic assumption that essentially all the second order terms affect in a secular way thez ij . The same method could be applied also toN≥5 body systems. Since almost everyN-body system existing in nature is strongly hierarchical, the product of two? ij is very small for almost all the real astronomical problems. As an example, the hierarchical stability of the 4-body system Sun, Mercury, Venus, and Jupiter is investigated; this system turns out to be stable for at least 110 million years. Although this hierarchical stability time is ~10 times less than the real age of the Solar System, taking into account that many pessimistic assumptions have been done we can conclude that the stability of the Solar System is no more a forbidden problem for Celestial Mechanics.  相似文献   

17.
A spherically-symmetric static scalar field in general relativity is considered. The field equations are defined by $$\begin{gathered} R_{ik} = - \mu \varphi _i \varphi _k ,\varphi _i = \frac{{\partial \varphi }}{{\partial x^i }}, \varphi ^i = g^{ik} \varphi _k , \hfill \\ \hfill \\ \end{gathered} $$ where ?=?(r,t) is a scalar field. In the past, the same problem was considered by Bergmann and Leipnik (1957) and Buchdahl (1959) with the assumption that ?=?(r) be independent oft and recently by Wyman (1981) with the assumption ?=?(r, t). The object of this paper is to give explicit results with a different approach and under a more general condition $$\phi _{;i}^i = ( - g)^{ - 1/2} \frac{\partial }{{\partial x^i }}\left[ {( - g)^{1/2} g^{ik} \frac{\partial }{{\partial x^k }}} \right] = - 4\pi ( -g )^{ - 1/2} \rho $$ where ?=?(r, t) is the mass or the charge density of the sources of the field.  相似文献   

18.
The non-linear stability of L 4 in the restricted three-body problem has been studied when the bigger primary is a triaxial rigid body with its equatorial plane coincident with the plane of motion. It is found that L 4 is stable in the range of linear stability except for three mass ratios:
where A1, A2 depend upon the lengths of the semi axes of the triaxial rigid body. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The ratio between the Earth's perihelion advance (Δθ) E and the solar gravitational red shift (GRS) (Δø s e)a 0/c 2 has been rewritten using the assumption that the Newtonian constant of gravitationG varies seasonally and is given by the relationship, first found by Gasanalizade (1992b) for an aphelion-perihelion difference of (ΔG)a?p . It is concluded that $$\begin{gathered} (\Delta \theta )_E = \frac{{3\pi }}{e}\frac{{(\Delta \phi _{sE} )_{A_0 } }}{{c^2 }}\frac{{(\Delta G)_{a - p} }}{{G_0 }} = 0.038388 \sec {\text{onds}} {\text{of}} {\text{arc}} {\text{per}} {\text{revolution,}} \hfill \\ \frac{{(\Delta G)_{a - p} }}{{G_0 }} = \frac{e}{{3\pi }}\frac{{(\Delta \theta )_E }}{{(\Delta \phi _{sE} )_{A_0 } /c^2 }} = 1.56116 \times 10^{ - 4} . \hfill \\ \end{gathered} $$ The results obtained here can be readily understood by using the Parametrized Post-Newtonian (PPN) formalism, which predicts an anisotropy in the “locally measured” value ofG, and without conflicting with the general relativity.  相似文献   

20.
From new observational material we made a curve of growth analysis of the penumbra of a large, stable sunspot. The analysis was done relative to the undisturbed photosphere and gave the following results (⊙ denotes photosphere, * denotes penumbra): $$\begin{gathered} (\theta ^ * - \theta ^ \odot )_{exe} = 0.051 \pm 0.007 \hfill \\ {{\xi _t ^ * } \mathord{\left/ {\vphantom {{\xi _t ^ * } {\xi _t }}} \right. \kern-\nulldelimiterspace} {\xi _t }}^ \odot = 1.3 \pm 0.1 \hfill \\ {{P_e ^ * } \mathord{\left/ {\vphantom {{P_e ^ * } {P_e ^ \odot = 0.6 \pm 0.1}}} \right. \kern-\nulldelimiterspace} {P_e ^ \odot = 0.6 \pm 0.1}} \hfill \\ {{P_g ^ * } \mathord{\left/ {\vphantom {{P_g ^ * } {P_g }}} \right. \kern-\nulldelimiterspace} {P_g }}^ \odot = 1.0 \pm 0.2 \hfill \\ \end{gathered} $$ The results of the analysis are in satisfactory agreement with the penumbral model as published by Kjeldseth Moe and Maltby (1969). Additionally we tested this model by computing the equivalent widths of 28 well selected lines and comparing them with our observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号