首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Evolution of hydrothermal system from initial porphyry Cu mineralization to overlapping epithermal system at the Dizon porphyry Cu‐Au deposit in western central Luzon, Zambales, Philippines, is documented in terms of mineral paragen‐esis, fluid inclusion petrography and microthermometry, and sulfur isotope systematics. The paragenetic stages throughout the deposit are summarized as follows; 1) stockwork amethystic quartz veinlets associated with chalcopyrite, bornite, magnetite and Au enveloped by chlorite alteration overprinting biotite alteration, 2) stockwork quartz veinlets with chalcopyrite and pyrite associated with Au and chalcopyrite and pyrite stringers in sericite alteration, 3) stringer quartz veinlets associated with molybdenite in sericite alteration, and 4) WNW‐trending quartz veins associated with sphalerite and galena at deeper part, while enargite and stibnite at shallower levels associated with advanced argillic alteration. Chalcopyrite and bornite associated with magnetite in quartz veinlet stockwork (stage 1) have precipitated initially as intermediate solid solution (iss) and bornite solid solution (bnss), respectively. Fluid inclusions in the stockwork veinlet quartz consist of gas‐rich inclusions and polyphase inclusions. Halite in polyphase inclusions dissolves at temperatures ranging from 360d?C to >500d?C but liquid (brine) and gas (vapor) do not homogenize at <500d?C. The maximum pressure and minimum temperature during the deposition of iss and bnss with stockwork quartz veinlets are estimated to be 460 bars and 500d?C. Fluid inclusions in veinlet stockwork quartz enveloped in sericite alteration (stage 2) consist mainly of gas‐rich inclusions and polyphase inclusions. In addition to the possible presence of saturated NaCl crystals at the time of entrapment of fluid inclusions that exhibit the liquid‐vapor homogenization temperatures lower than the halite dissolution temperatures in some samples, wide range of temperatures of halite dissolution and liquid‐vapor homogenization of polyphase inclusions from 230d?C to >500d?C and from 270d?C to >500d?C, respectively, suggests heterogeneous entrapment of gaseous vapor and hypersaline brine. The minimum pressure and temperature are estimated to be about 25 bars and 245d?C. Fluid inclusions in veinlet quartz associated with molybdenite (stage 3) are dominated by gas‐rich inclusions accompanied with minor liquid‐rich inclusions that homogenize at temperatures between 350d?C and 490d?C. Fluid inclusions in vuggy veinlet quartz associated with stibnite (stage 4) consist mainly of gas‐rich inclusions with subordinate polyphase inclusions that do not homogenize below 500d?C. Fluid inclusions in veinlet quartz associated with galena and sphalerite (stage 4) are composed of liquid‐rich two‐phase inclusions, and they homogenize into liquid phase at temperatures ranging widely from 190d?C to 300d?C (suggesting boiling) and the salinity ranges from 1.0 wt% to 3.4 wt% NaCl equivalent. A pressure of about 15 bars is estimated for the dilute aqueous solution of 190d?C from which veinlet quartz associated with galena and sphalerite precipitated. In addition to a change in temperature‐pressure regime from lithostatic pressure during the deposition of iss and bnss with stockwork quartz veinlets to hydrostatic pressure during fracture‐controlled quartz veinlet associated with galena and sphalerite, a decrease in pressure is supposed to have occurred due to unroofing or removal of the overlying piles during the temperature decrease in the evolution of hydrothermal system. The majority of the sulfur isotopic composition of sulfides ranges from ±0 % to +5 %. Sulfur originated from an iso‐topically uniform and homogeneous source, and the mineralization occurred in a single hydrothermal system.  相似文献   

2.
Abstract: The Mamut deposit of Sabah, East Malaysia, is a porphyry type Cu‐Au deposit genetically related to a quartz monzonite (“adamellite”) porphyry stock associated with upper Miocene Mount Kinabalu plutonism. The genesis of the Mamut deposit is discussed based on petrology of the intrusives in the Mount Kinabalu area combined with ore– and alteration–petrography, fluid inclusion and sulfur isotope studies. Groundmass of the adamellite porphyry at Mamut is rich in K which suggests vapor transport of alkaline elements during the mineralizing magmatic process, while the groundmass of the post‐ore “granodiorite” porphyry at Mamut contains small amounts of normative corundum suggesting depletion in alkaline elements at the root zone of the magma column. Sub‐dendritic tremolitic amphibole rims on hornblende phenocrysts in the Mamut adamellite porphyry suggest interaction between the mineralizing magma and the exsolved fluids. Occurrences of clinopyroxene microphenocrysts and pseudomor‐phic aggregates of shredded biotite and clinopyroxene after hornblende phenocrysts in the barren intrusives imply lower water fugacity and decreasing in water fugacity, respectively. Compositional gap between the core of hornblende phenocrysts and the tremolitic amphibole rims and those in the groundmass of the Mamut adamellite porphyry suggests a decrease in pressure. Higher XMg (=Mg/(Mg+Fe) atomic ratio) in the tremolitic amphibole rims in the Mamut adamellite porphyry compared to those of the barren intrusions suggests high oxygen fugacity. High halogen contents of igneous hydrous minerals such as amphiboles, biotite and apatite in the Mamut adamellite porphyry suggest the existence of highly saline fluids during the intrusion and solidification of the mineralizing magma. Fluid inclusions found in quartz veinlet stockworks are characterized by abundant hypersaline polyphase inclusions associated with subordinate amounts of immiscible gaseous vapor. Both Cu and Au are dispersed in disseminated and quartz stockwork ores. Chalcopyrite and pyrrhotite as well as magnetite are the principal ore minerals in the biotitized disseminated ores. Primary assemblage of intermediate solid solution (iss) and pyrrhotite converted to the present assemblage of chalcopyrite and pyrrhotite during cooling. Subsequent to biotitization, quartz veinlet stockworks formed associated with retrograde chlorite alteration. The Cu‐Fe sul–fides associated with stockwork quartz veinlet are chalcopyrite and pyrite. Overlapping Pb and Zn and subsequent Sb mineralizations were spatially controlled by NNE‐trending fractures accompanying the phyllic and advanced argillic alteration envelope. Sulfur isotopic composition of ore sulfides are homogeneous (about +2%) throughout the mineralization stages. These are identical to those of the magmatic sulfides of Mount Kinabalu adamellitic rocks.  相似文献   

3.
The Sawuershan region, one of the important gold metallogenic belts of Xinjiang, is located in the western part of the Kalatongke island arc zone of north Xinjiang, NW China. There are two gold deposits in mining, namely the Kuoerzhenkuola and the Buerkesidai deposits. Gold ores at the Kuoerzhenkuola deposit occur within Carboniferous andesite and volcanic breccias in the form of gold‐bearing quartz–pyrite veins and veinlet groups containing native gold, electrum, pyrite, pyrrhotite and chalcopyrite. Gold ores at the Buerkesidai deposit occur within Carboniferous tuffaceous siltstones in the form of gold‐bearing quartz veinlet groups and altered rocks, with electrum, pyrite and arsenopyrite as major metallic minerals. Both gold deposits are hosted by structurally controlled faults associated with intense hydrothermal alteration. The typical alteration assemblage is sericite + chlorite + calcite + quartz, with an inner pyrite–sericite zone and an outer chlorite–calcite–epidote zone between orebodies and wall rocks. δ34S values (0.3–1.3‰) of pyrite of ores from Kuoerzhenkuola deposit are similar to those (0.4–2.9‰) of pyrite of ores from Buerkesidai deposit. δ34S values (1.1–2.8‰) of pyrite from altered rocks are similar to δ34S values of magmatic or igneous sulfide sulfur, but higher than those from ores. 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb data of sulfide from ores range within 17.72–18.56, 15.34–15.61, and 37.21–38.28, respectively. These sulfur and lead isotope compositions imply that ore‐forming materials might originate from multiple, mainly deep sources. He and Ar isotope study on fluid inclusions of pyrites from ores of Kuoerzhenkuola and Buerkesidai gold deposits produces 40Ar/36Ar and 3He/4He ratios in the range of 282–525 and 0.6–9.4 R/Ra, respectively, indicating a mixed source of deep‐seated magmatic water (mantle fluid) and shallower meteoric water. In terms of tectonic setting, the gold deposits in the Sawuershan region can be interpreted as epithermal. These formations resulted from a combination of protracted volcanic activity, hydrothermal fluid mixing, and a structural setting favoring gold deposition. Fluid mixing was possibly the key factor resulting in Au deposition in the gold deposits in Sawuershan region.  相似文献   

4.
The Chehugou Mo–Cu deposit, located 56 km west of Chifeng, NE China, is hosted by Triassic granite porphyry. Molybdenite–chalcopyrite mineralization of the deposit mainly occurs as veinlets in stockwork ore and dissemination in breccia ore, and two ore‐bearing quartz veins crop out to the south of the granite porphyry stock. Based on crosscutting relationships and mineral paragenesis, three hydrothermal stages are identified: (i) quartz–pyrite–molybdenite ± chalcopyrite stage; (ii) pyrite–quartz ± sphalerite stage; and (iii) quartz–calcite ± pyrite ± fluorite stage. Three types of fluid inclusions in the stockwork and breccia ore are recognized: LV, two‐phase aqueous inclusions (liquid‐rich); LVS, three‐phase liquid, vapor, and salt daughter crystal inclusions; and VL, two‐phase aqueous inclusions (gas‐rich). LV and LVS fluid inclusions are recognized in vein ore. Microthermometric investigation of the three types of fluid inclusions in hydrothermal quartz from the stockwork, breccia, and vein ores shows salinities from 1.57 to 66.75 wt% NaCl equivalents, with homogenization temperatures varying from 114°C to 550°C. The temperature changed from 282–550°C, 220–318°C to 114–243°C from the first stage to the third stage. The homogenization temperatures and salinity of the LV, LVS and VL inclusions are 114–442°C and 1.57–14.25 wt% NaCl equivalent, 301–550°C and 31.01–66.75 wt% NaCl equivalent, 286–420°C and 4.65–11.1 wt% NaCl equivalent, respectively. The VL inclusions coexist with the LV and LVS, which homogenize at the similar temperature. The above evidence shows that fluid‐boiling occurred in the ore‐forming stage. δ34S values of sulfide from three type ores change from ?0.61‰ to 0.86‰. These δ34S values of sulfide are similar to δ34S values of typical magmatic sulfide sulfur (c. 0‰), suggesting that ore‐forming materials are magmatic in origin.  相似文献   

5.
The Bianbianshan deposit, the unique gold-polymetal (Au-Ag-Cu-Pb-Zn) veined deposit of the polymetal metallogenic belt of the southern segment of Da Hinggan Mountains mineral province, is located at the southern part of the Hercynian fold belt of the south segment of Da Hinggan Mountains mineral province, NE China. Ores at the Bianbianshan deposit occur within Cretaceous andesite and rhyolite in the form of gold-bearing quartz veins and veinlet groups containing native gold, electrum, pyrite, chalcopyrite, galena and sphalerite. The deposit is hosted by structurally controlled faults associated with intense hydrothermal alteration. The typical alteration assemblage is sericite + chlorite + calcite + quartz, with an inner pyrite - sericite - quartz zone and an outer seicite - chlorite - calcite - epidote zone between orebodies and wall rocks. δ34 S values of 17 sulfides from ores changing from –1.67 to +0.49‰ with average of –0.49‰, are similar to δ34 S values of magmatic or igneous sulfide sulfur. 206Pb/204Pb, 207Pb/204Pb and 208Pb/ 204Pb data of sulfide from ores range within 17.66–17.75, 15.50–15.60, and 37.64–38.00, respectively. These sulfur and lead isotope compositions imply that ore-forming materials might mainly originate from deep sources. H and O isotope study of quartz from ore-bearing veins indicate a mixed source of deep-seated magmatic water and shallower meteoric water. The ore formations resulted from a combination of hydrothermal fluid mixing and a structural setting favoring gold-polymetal deposition. Fluid mixing was possibly the key factor resulting in Au-Ag-Cu-Pb-Zn deposition in the deposit. The metallogenesis of the Bianbianshan deposit may have a relationship with the Cretaceous volcanic-subvolcanic magmatic activity, and formed during the late stage of the crust thinning of North China.  相似文献   

6.
Abstract: Mineral paragenesis of the alteration, ore and gangue minerals of the Lepanto epithermal copper‐gold deposit and the Victoria gold deposit, Mankayan Mineral District, Northern Luzon, Philippines, is discussed. The principal ore minerals of the Lepanto copper‐gold deposit are enargite and luzonite, with significant presence of tennantite‐tetrahedrite, chalcopyrite, sphalerite, galena, native gold/electrum and gold‐silver tellurides. Pervasive alteration zonations are commonly observed from silicification outward to advanced argillic then to propylitic zone. The ore mineralogy of the Lepanto copper‐gold deposit suggests high fS2 in the early stages of mineralization corresponding to the deposition of the enargite‐luzonite‐pyrite assemblage. Subsequent decrease in the fS2 formed the chalcopyrite‐tennantite‐pyrite assemblage. An increase in the fS2 of the fluids with the formation of the covellite‐digenite‐telluride assemblage caused the deposition of native gold/electrum and gold‐silver tellurides. The principal ore minerals of the Victoria gold deposit are sphalerite, galena, chalcopyrite, tetrahedrite and native gold/electrum. The alteration halos are relatively narrow and in an outward sequence from the ore, silica alteration grades to illitic‐argillic alteration, which in turn grades to propylitic alteration. The Victoria gold mineralization has undergone early stages of silica supersaturation leading to quartz deposition. Vigorous boiling increased the pH of the fluids that led to the deposition of sulfides and carbonates. The consequent decrease in H2S precipitated the gold. Gypsum and anhydrite mainly occur as overprints that cut the carbonate‐silica stages. The crosscutting and overprinting relationships of the Victoria quartz‐gold‐base metal veins on the Lepanto copper‐gold veins manifest the late introduction of near neutral pH hydrothermal fluids.  相似文献   

7.
Several high‐sulfidation epithermal gold orebodies in the Mankayan Mineral District were formed in an environment that has been already affected by earlier porphyry‐type mineralization. This study reports the geologic and geochemical characteristics of the Carmen and Florence epithermal orebodies, which are located in the south of the Lepanto main enargite–gold orebody. The gold‐bearing epithermal quartz veins in the Carmen and Florence areas are of two types: (i) the enargite‐rich veins and (ii) the quartz–pyrite–gold (QPG) veins. The two types of veins are mainly hosted by the Cretaceous Lepanto Metavolcanics basement rocks, with minor veins cutting the Pleistocene Imbanguila Dacite Pyroclastics. The mineral assemblages and homogenization temperatures of fluid inclusions indicate that the Carmen and Florence orebodies were deposited by fluids varying from high to very high sulfidation state. The enargite and QPG epithermal veins of Carmen and Florence cut porphyry‐type quartz veinlet stockworks and veins that host polyphase hypersaline fluid inclusions that did not homogenize at or below 400°C. These high‐temperature quartz exhibits distinctly different mineral chemistry from the quartz of the QPG and enargite‐rich epithermal veins. In particular, the Ti content of quartz of the porphyry‐type veinlet stockwork is elevated (>100 ppm), whereas the Ti concentration of the epithermal vein quartz crystals are below detection limits. The Fe concentration of quartz is high in epithermal vein quartz (>300 ppm), whereas nearly undetected in the porphyry‐type stockwork veinlet quartz. Multiple generations of quartz with different mineral chemistry, fluid inclusions morphology, temperature, salinity and bulk gas compositions, and stable isotopic ratios indicate the variable hydrothermal conditions throughout the mineralization history of the Mankayan District. The temperature, pH, sulfidation state, oxidation state, and fluid composition vary among the orebodies in Carmen and Florence areas. Furthermore, the characteristics of earlier alteration affected the apparent characteristics of subsequent mineralization.  相似文献   

8.
The world‐class Far Southeast (FSE) porphyry system, Philippines, includes the FSE Cu–Au porphyry deposit, the Lepanto Cu–Au high‐sulfidation deposit and the Victoria–Teresa Au–Ag intermediate‐sulfidation veins, centered on the intrusive complex of dioritic composition. The Lepanto and FSE deposits are genetically related and both share an evolution characterized by early stage 1 alteration (deep FSE potassic, shallow Lepanto advanced argillic‐silicic, both at ~1.4 Ma), followed by stage 2 phyllic alteration (at ~1.3 Ma); the dominant ore mineral deposition within the FSE porphyry and the Lepanto epithermal deposits occurred during stage 2. We determined the chemical and S isotopic composition of sulfate and sulfide minerals from Lepanto, including stage 1 alunite (12 to 28 permil), aluminum–phosphate–sulfate (APS) minerals (14 to 21 permil) and pyrite (?4 to 2 permil), stage 2 sulfides (mainly enargite–luzonite and some pyrite, ?10 to ?1 permil), and late stage 2 sulfates (barite and anhydrite, 21 to 27 permil). The minerals from FSE include stage 2 chalcopyrite (1.6 to 2.6 permil), pyrite (1.1 to 3.4 permil) and anhydrite (13 to 25 permil). The whole‐rock S isotopic composition of weakly altered syn‐mineral intrusions is 2.0 permil. Stage 1 quartz–alunite–pyrite of the Lepanto lithocap, above about 650 m elevation, formed from acidic condensates of magmatic vapor at the same time as hypersaline liquid formed potassic alteration (biotite) near sea level. The S isotopic composition of stage 1 alunite–pyrite record temperatures of approximately 300–400°C for the vapor condensate directly over the porphyry deposit; this cooled to <250°C as the acidic condensate flowed to the NW along the Lepanto fault where it cut the unconformity at the top of the basement. Stage 1 alunite at the base of the advanced argillic lithocap over FSE contains cores of APS minerals with Sr, Ba and Ca; based on back‐scattered electron images and ion microprobe data, these APS minerals show a large degree of chemical and S‐isotopic heterogeneity within and between samples. The variation in S isotopic values in these finely banded stage 1 alunite and APS minerals (16 permil range), as well as that of pyrite (6 permil range) was due largely to changes in temperature, and perhaps variation in redox conditions (average ~ 2:1 H2S:SO4). Such fluctuations could have been related to fluid pulses caused by injection of mafic melt into the diorite magma chamber, supported by mafic xenoliths hosted in diorite of an earlier intrusion. The S isotopic values of stage 2 minerals indicate temperatures as high as 400°C near sea level in the porphyry deposit, associated with a relatively reduced fluid (~10:1 H2S:SO4) responsible for deposition of chalcopyrite. Stage 2 fluids were relatively oxidized in the Lepanto lithocap, with an H2S:SO4 ratio of about 4. The oxidation resulted from cooling, which was caused by boiling during ascent and then dilution with steam‐heated meteoric water in the lithocap. This cooling also resulted in the sulfidation state of minerals increasing from chalcopyrite stability in the porphyry deposit to that of enargite in the lithocap‐hosted high‐sulfidation deposit. The temperature at the base of the lithocap during stage 2 was ≥300°C, cooling to <250°C within the main lithocap, and about 200°C towards the limit of the Lepanto orebody, approximately 2 km NW of the porphyry deposit. Approximate 300°C and 200°C isotherms, estimated from S isotopic and fluid inclusion temperatures during stage 1 and stage 2, shifted towards the core of the FSE porphyry deposit with time. This general retreat in isotherms was more than 500 m laterally within Lepanto and 500 m vertically within FSE as the magmatic–hydrothermal system evolved and collapsed over the magmatic center. During this evolution, there is also evidence recorded by large S isotopic variations in individual crystals for sharp pulses of higher temperature, relatively reduced fluid injected into the porphyry deposit.  相似文献   

9.
The Bangbu gold deposit is a large orogenic gold deposit in Tibet formed during the AlpineHimalayan collision. Ore bodies(auriferous quartz veins) are controlled by the E-W-trending Qusong-Cuogu-Zhemulang brittle-ductile shear zone. Quartz veins at the deposit can be divided into three types: pre-metallogenic hook-like quartz veins, metallogenic auriferous quartz veins, and postmetallogenic N-S quartz veins. Four stages of mineralization in the auriferous quartz veins have been identified:(1) Stage S1 quartz+coarse-grained sulfides,(2) Stage S2 gold+fine-grained sulfides,(3) Stage S3 quartz+carbonates, and(4) Stage S4 quartz+ greigite. Fluid inclusions indicate the oreforming fluid was CO_2-N_2-CH_4 rich with homogenization temperatures of 170–261°C, salinities 4.34–7.45 wt% Na Cl equivalent. δ~(18)Ofluid(3.98‰–7.18‰) and low δDV-SMOW(-90‰ to-44‰) for auriferous quartz veins suggest ore-forming fluids were mainly metamorphic in origin, with some addition of organic matter. Quartz vein pyrite has δ~(34)SV-CDT values of 1.2‰–3.6‰(an average of 2.2‰), whereas pyrite from phyllite has δ~(34)SV-CDT 5.7‰–9.9‰(an average of 7.4‰). Quartz vein pyrites yield 206Pb/204 Pb ratios of 18.662–18.764, 207Pb/204 Pb 15.650–15.683, and ~(208)Pb/204 Pb 38.901–39.079. These isotopic data indicate Bangbu ore-forming materials were probably derived from the Langjiexue accretionary wedge. 40Ar/39 Ar ages for sericite from auriferous sulfide-quartz veins yield a plateau age of 49.52 ± 0.52 Ma, an isochron age of 50.3 ± 0.31 Ma, suggesting that auriferous veins were formed during the main collisional period of the Tibet-Himalayan orogen(~65–41 Ma).  相似文献   

10.
The Yaoling tungsten deposit is a typical wolframite quartz vein‐type tungsten deposit in the South China metallogenic province. The wolframite‐bearing quartz veins mainly occur in Cambrian to Ordovician host rocks or in Mesozoic granitic rocks and are controlled by the west‐north‐west trending extensional faults. The ore mineralization mainly comprises wolframite and variable amounts of molybdenite, chalcopyrite, pyrite, fluorite, and tourmaline. Hydrothermal alteration is well developed at the Yaoling tungsten deposit, including greisenization, silicification, fluoritization, and tourmalinization. Three types of primary/pseudosecondary fluid inclusions have been identified in vein quartz, which is intimately intergrown with wolframite. These include two‐phase liquid‐rich aqueous inclusions (type I), two‐ or three‐phase CO2‐rich inclusions (type II), and type III daughter mineral‐bearing multiphase high‐salinity aqueous inclusions. Microthermometric measurements reveal consistent moderate homogenization temperatures (peak values from 200 to 280°C), and low to high salinities (1.3–39 wt % NaCl equiv.) for the type I, type II, and type III inclusions, where the CO2‐rich type II inclusions display trace amounts of CH4 and N2. The ore‐forming fluids are far more saline than those of other tungsten deposits reported in South China. The estimated maximum trapping pressure of the ore‐forming fluids is about 1230–1760 bar, corresponding to a lithostatic depth of 4.0–5.8 km. The δDH2O isotopic compositions of the inclusion fluid ranges from ?66.7 to ?47.8‰, with δ18OH2O values between 1.63 and 4.17‰, δ13C values of ?6.5–0.8‰, and δ34S values between ?1.98 and 1.92‰, with an average of ?0.07‰. The stable isotope data imply that the ore‐forming fluids of the Yaoling tungsten deposit were mainly derived from crustal magmatic fluids with some involvement of meteoric water. Fluid immiscibility and fluid–rock interaction are thought to have been the main mechanisms for tungsten precipitation at Yaoling.  相似文献   

11.
The Jinwozi lode gold deposit in the eastern Tianshan Mountains of China includes auriferous quartz veins and network quartz veins that are exemplified by the Veins 3 and 210, respectively. This paper presents H‐, O‐isotope compositions and gas compositions of fluid inclusions hosted in sulfides and quartz, and S‐, Pb‐isotope compositions of sulfide separates collected from the principal Stage 2 ores in Veins 3 and 210. Fluid inclusions trapped in quartz and sphalerite are pseudo‐secondary and primary. They were trapped from the fluids during the successive or alternate precipitation of quartz with sulfides. H‐ and O‐isotope compositions of fluid inclusion of three pyrite and one quartz separates from Vein 210 plot within the field of degassed melt, which is evidence for the incorporation of magmatic fluid as well with some possibility of contribution of metamorphic water to the hydrothermal system since the two datasets show a higher oxygen isotopic ratio than those of degassed melt. However, δD and δ18O values of fluid inclusions hosted in sulfides and quartz from Vein 3 are distinctly lower than those from Vein 210. In addition, salinities of fluid inclusion from Vein 3, approximately 3 to 6 wt% NaCl equivalent, are considerably lower than those from Vein 210, which are approximately 8 to 14 wt% NaCl equivalent. Ore‐forming fluids of Veins 3 and 210 have migrated through the relatively high and low levels in the imbricate‐thrust column where rock deformation is characterized by dilatancy or ductile–brittle transition, respectively. Therefore, the ore‐forming fluid of Vein 3 is interpreted to have mixed with greater amounts of meteoric‐derived groundwater than that of Vein 210. Fluid inclusions hosted in sulfides contain considerably higher abundances of gaseous species of CO2, N2, H2S, and so on, than those hosted in quartz. Many of these gaseous species exhibit linear correlations with H2O. These linear trends are interpreted in terms of mixing between magmatic fluid and groundwater. The relative enrichment of gaseous species in fluid inclusions hosted in sulfides, coupled with the banded ore structure, suggests that the magmatic fluid was involved with the ore‐forming fluid in pulsation. Lead isotope compositions of 21 pyrite and galena separates form a linear trend, suggesting mixing of metallic materials from diverse reservoirs. The δ34S values of pyrite and galena range from +5.6‰ to +7.9‰ and from +3.1‰ to +6.3‰, respectively, indicating sulfur of the Jinwozi deposit has been leached mainly from the granodiorite and partly from the Jinwozi Formation by the circulating ore‐forming fluid.  相似文献   

12.
The Miocene Qulong porphyry Cu‐Mo deposit, which is located at the Gangdese orogenic belt of Southern Tibet, is the largest porphyry‐type deposit in China, with confirmed Cu ~10 Mt and Mo ~0.5 Mt. It is spatially and temporally associated with multiphase granitic intrusions, which is accompanied by large‐scale hydrothermal alteration and mineralization zones, including abundant hydrothermal anhydrite. In addition to hydrothermal anhydrite, magmatic anhydrite is present as inclusions in plagioclase, interstitial minerals between plagioclase and quartz, and phenocrysts in unaltered granodiorite porphyry, usually in association with clusters of sulfur‐rich apatite in the Qulong deposit. These observations indicate that the Qulong magma‐hydrothermal system was highly oxidized and sulfur‐rich. Three main types of fluid inclusions are observed in the quartz phenocrysts and veins in the porphyry: (i) liquid‐rich; (ii) polyphase high‐salinity; and (iii) vapor‐rich inclusions. Homogenization temperatures and salinities of all type inclusions decrease from the quartz phenocrysts in the porphyry to hydrothermal veins (A, B, D veins). Microthermometric study suggests copper‐bearing sulfides precipitated at about 320–400°C in A and B veins. Fluid boiling is assumed for the early stage of mineralization, and these fluids may have been trapped at about 35–60 Mpa at 460–510°C and 28–42 Mpa at 400–450°C, corresponding to trapping depths of 1.4–2.4 km and 1.1–1.7 km, respectively.  相似文献   

13.
The El Cobre deposit is located in eastern Cuba within the volcanosedimentary sequence of the Sierra Maestra Paleogene arc. The deposit is hosted by tholeiitic basalts, andesites and tuffs and comprises thick stratiform barite and anhydrite bodies, three stratabound disseminated up to massive sulphide bodies produced by silicification and sulphidation of limestones or sulphates, an anhydrite stockwork and a siliceous stockwork, grading downwards to quartz veins. Sulphides are mainly pyrite, chalcopyrite and sphalerite; gold occurs in the stratabound ores. Fluid inclusions measured in sphalerite, quartz, anhydrite and calcite show salinities between 2.3 and 5.7 wt% NaCl eq. and homogenisation temperatures between 177 and 300°C. Sulphides from the stratabound mineralisation display δ 34S values of 0‰ to +6.0‰, whilst those from the feeder zone lie between −1.4‰ and +7.3‰. Sulphides show an intra-grain sulphur isotope zonation of about 2‰; usually, δ 34S values increase towards the rims. Sulphate sulphur has δ 34S in the range of +17‰ to +21‰, except two samples with values of +5.9‰ and +7.7‰. Sulphur isotope data indicate that the thermochemical reduction of sulphate from a hydrothermal fluid of seawater origin was the main source of sulphide sulphur and that most of the sulphates precipitated by heating of seawater. The structure of the deposit, mineralogy, fluid inclusion and isotope data suggest that the deposit formed from seawater-derived fluids with probably minor supply of magmatic fluids.  相似文献   

14.
The Sin Quyen-Lung Po district is an important Cu metallogenic province in Vietnam, but there are few temporal and genetic constraints on deposits from this belt. Suoi Thau is one of the representative Cu deposits associated with granitic intrusion. The deposit consists of ore bodies in altered granite or along the contact zone between granite and Proterozoic meta-sedimentary rocks. The Cu-bearing intrusion is sub-alkaline I-type granite. It has a zircon U-Pb age of ~776 Ma, and has subduction-related geochemical signatures. Geochemical analysis reveals that the intrusion may be formed by melting of mafic lower crust in a subduction regime. Three stages of alteration and mineralization are identified in the Suoi Thau deposit, i.e., potassic alteration; silicification and Cu mineralization; and phyllic alteration. Two-phase aqueous fluid inclusions in quartz from silicification stage show wide ranges of homogenization temperatures(140–383℃) and salinities(4.18wt%–19.13wt%). The high temperature and high salinity natures of some inclusions are consistent with a magmatic derivation of the fluids, which is also supported by the H-O-S isotopes. Fluids in quartz have δD values of –41.9‰ to –68.8‰. The fluids in isotopic equilibrium with quartz have δ~(18)O values ranging from 7.9‰ to 9.2‰. These values are just plotted in the compositional field of magmatichydrothermal fluids in the δD_(water) versus δ~(18)O_(water) diagram. Sulfide minerals have relatively uniform δ~(34)S values from 1.84‰ to 3.57‰, which is supportive of a magmatic derivation of sulfur. The fluid inclusions with relatively low temperatures and salinities most probably represent variably cooled magmatic-hydrothermal fluids. The magmatic derivation of fluids and the close spatial relationship between Cu ore bodies and intrusion suggest that the Cu mineralization most likely had a genetic association with granite. The Suoi Thau deposit, together with other deposits in the region, may define a Neoproterozoic subduction-related ore-forming belt.  相似文献   

15.
Abstract. The Batu Hijau porphyry Cu‐Au deposit, Sumbawa Island, Indonesia, is associated with a tonalitic intrusive complex. The temperature‐pressure condition of mineralization at the Batu Hijau deposit is discussed on the basis of fluid inclusion microthermometry. Then, the initial Cu‐Fe sulfide mineral assemblage is discussed. Bornite and chalcopyrite are major copper ore minerals associated with quartz veinlets. The quartz veinlets have been classified into ‘A’ veinlets associated with bornite, digenite, chalcocite and chalcopyrite, ‘B’ veinlets having chalcopyrite bornite along vuggy center‐line, rare ‘C’ chalcopyrite‐quartz veinlets, and late ‘D’ veinlets consisting of massive pyrite and quartz (Clode et al., 1999). Copper and gold mineralization is associated with abundant ‘A’ quartz veinlets. Abundant fluid inclusions are found in veinlet quartz consisting mainly of gas‐rich inclusions and polyphase inclusions throughout the veinlet types. The hydrothermal activity occurred in temperature‐pressure conditions of aqueous fluid immiscibility into hypersaline brine and dilute vapor. The halite dissolution (Tm[halite]) and liquid‐vapor homogenization (Th) temperatures of the polyphase inclusions in veinlet quartz range from 270 to 472d?C and from 280 to 454d?C, respectively. The estimated salinity ranges from 36 to 47 wt% (NaCl equiv.). The apparent pressures lower than 300 bars are estimated to have been along the liquid‐vapor‐halite curve for the fluid inclusions having the Th lower than the Tm that trapped the brine saturated with halite, or at slightly higher pressure relative to liquid‐vapor‐halite curve for the fluid inclusions having the Th higher than the Tm that trapped the brine unsaturated with halite. The actual temperature and pressure during the hydrothermal activity at the Batu Hijau deposit are estimated to have been around 300d?C and 50 bars. At such temperature‐pressure conditions, the principal and initial Cu‐Fe sulfide mineral assemblages are thought to be chalcopyrite + bornite solid solution (bnss) for the chalcopyrite‐bearing assemblage, and chalcocite‐digenite solid solution and bnss for the chalcopyrite‐free assemblage.  相似文献   

16.
The Martabe Au–Ag deposit, North Sumatra Province, Indonesia, is a high sulfidation epithermal deposit, which is hosted by Neogene sandstone, siltstone, volcanic breccia, and andesite to basaltic andesite of Angkola Formation. The deposit consists of six ore bodies that occurred as silicified massive ore (enargite–luzonite–pyrite–tetrahedrite–tellurides), quartz veins (tetrahedrite–galena–sphalerite–chalcopyrite), banded sulfide veins (pyrite–tetrahedrite–sphalerite–galena) and cavity filling. All ore bodies are controlled by N–S and NW–SE trending faults. The Barani and Horas ore bodies are located in the southeast of the Purnama ore body. Fluid inclusion microthermometry, and alunite‐pyrite and barite‐pyrite pairs sulfur isotopic geothermometry show slightly different formation temperatures among the ore bodies. Formation temperature and salinity of fluid inclusions of the Purnama ore body range from 200 to 260 C and from 6 to 8 wt.% NaCl equivalent, respectively. Formation temperature and salinity of fluid inclusions of the Barani ore body range from 200 to 220 °C and from 0 to 2.5 wt.% NaCl equivalent and those of the Horas ore body range from 240 to 275 °C and from 2 to 3 wt.% NaCl equivalent, respectively. The Barani and Horas ore bodies are less silicified and sulfides are less abundant than the Purnama ore body. A relationship between enthalpy and chloride content indicates mixing of hot saline fluids with cooler dilute fluids during the mineralization of each of the ore bodies. The δ18O values of quartz samples from the southeast ore bodies exhibit a wide range from +4.2 to +12.9‰ with an average value of +7.0‰. The δ18O values of H2O estimated from δ18O values of quartz, barite and calcite confirm the oxygen isotopic shift to near meteoric water trend, which support the incorporation of meteoric water. Salinity of the fluid inclusions decrease from >5 wt.% NaCl equivalent in the Purnama ore body to <3 wt.% NaCl equivalent in the Barani ore body, indicating different fluid systems during mineralization. The δ34S values of sulfide and sulfate in Purnama range from ? 4.2 to +5.5‰ and from +1.2 to +26.7‰, those in the Barani range from ? 4.3 to +26.4‰ and from +3.9 to +18.5‰ and those in the Horas ore body range from ? 11.8 to +3.5‰ and from +1.4 to +25.7‰, respectively. The δ34S of total bulk sulfur in southeastern ore bodies (Σδ34S) was estimated to be approximately +6‰. The estimated sulfur fugacity during formation of the Purnama and Horas ore bodies is relatively high. It was between 10?4.8 and 10?10.8 atm at 220 to 260 °C. Tellurium fugacity was between 10?7.8 and 10?9.5 atm at 260 °C and between 10?9 and 10?10.6 atm at 220 °C in the Purnama ore body. The Barani ore body was formed at lower fS2, lower than about 10?14 atm at 200 to 220 °C based on the presence of arsenopyrite and pyrrhotite in the early stage, and between 10?14 and 10?12 atm based on the existence of enargite and tennantite in the last stage. © 2016 The Society of Resource Geology  相似文献   

17.
The Dexing deposit is located in a NE‐trending magmatic belt along the southeastern margin of the Yangtze Craton. It is the largest porphyry copper deposit in China, consisting of three porphyry copper orebodies of Zhushahong, Tongchang and Fujiawu from northwest to southeast. It contains 1168 Mt of ores with 0.5% Cu and 0.01% Mo. The Dexing deposit is hosted by Middle Jurassic granodiorite porphyries and pelitic schist of Proterozoic age. The Tongchang granodiorite porphyry has a medium K cal‐alkaline series, with medium K2O content (1.94–2.07 wt%), and low K2O/(Na2O + K2O) (0.33–0.84) ratios. They have high large‐ion lithophile elements, high light rare‐earth elements, and low high‐field‐strength elements. The hydrothermal alteration at Tongchang is divided into four alteration mineral assemblages and related vein systems. They are early K‐feldspar alteration and A vein; transitional (chlorite + illite) alteration and B vein; late phyllic (quartz + muscovite) alteration and D vein; and latest carbonate, sulfate and oxide alteration and hematite veins. Primary fluid inclusions in quartz from phyllic alteration assemblage include liquid‐rich (type 1), vapor‐rich (type 2) and halite‐bearing ones (type 3). These provide trapping pressures of 20–400 ´ 105 Pa of fluids responsible for the formation of D veins. Igneous biotite from least altered granochiorite porphyry and hydrothermal muscovite in mineralized granodiorite porphyry possess δ18O and δD values of 4.6‰ and ?87‰ for biotite and 7.1–8.9‰, ?71 to ?73‰ for muscovite. Stable isotopic composition of the hydrothermal water suggests a magmatic origin. The carbon and oxygen isotope for hydrothermal calcite are ?4.8 to ?6.2‰ and 6.8–18.8‰, respectively. The δ34S of pyrite in quartz vein ranges from ?0.1 to 3‰, whereas δ34S for chalcopyrite in calcite veins ranges from 4 to 5‰. These are similar to the results of previous studies, and suggest a magmatic origin for sulfur. Results from alteration assemblages and vein system observation, as well as geochemical, fluid inclusion, stable isotope studies indicate that the involvement of hydrothermal fluids exsolved from a crystallizing melt are responsible for the formation of Tongchang porphyry Cu‐Mo orebodies in Dexing porphyry deposit.  相似文献   

18.
胶东三甲金矿床流体包裹体特征   总被引:14,自引:6,他引:8  
三甲金矿是胶东牟平-乳山金成矿带内重要的石英脉型金矿,金主要产于黄铁矿和多金属硫化物石英脉中。流体包裹体研究表明,三甲金矿蚀变岩石和各成矿阶段金矿石中的流体包裹体主要有三种类型:H2O-CO2包裹体、富CO2包裹体和H2O溶液包裹体。早期乳白色石英中主要赋存原生的H2O-CO2包裹体;成矿期黄铁矿石英脉和多金属硫化物石英脉中的富CO2包裹体主要为原生,随机分布,气液比变化较大,常与早期H2O溶液包裹体共生且均一温度接近,显示不混溶流体包裹体组合特征;在成矿晚期的石英和方解石中主要发育原生H2O溶液包裹体。显微测温结果显示,成矿前(第1阶段)H2O-CO2包裹体的完全均一温度(Tb.TOT,至液相)为280℃至416℃,成矿期(第Ⅱ和Ⅲ阶段)富CO2包裹体的完全均一温度为210—330℃,同期的H2O溶液包裹体均一温度为253~377℃,成矿后(第Ⅳ阶段)H2O溶液包裹体的均一温度为176—207℃。成矿流体为低盐度的CO2-H2O-NaCl型热液,成矿应力场转变导致的流体减压沸腾作用可能是三甲金矿金沉淀成矿的主要原因。  相似文献   

19.
The Kingking deposit is a gold‐rich porphyry copper deposit and the southernmost deposit at the eastern Mindanao mineralized belt, Philippines. It is underlain by Cretaceous–Paleogene sedimentary and volcanic rocks that are intruded by mineralized Miocene diorite porphyries and by barren Miocene–Pliocene dacite and diorite porphyries. The main alteration zones in the deposit are the inner potassic zone and the outer propylitic zone. The biotite‐bearing diorite and hornblende diorite porphyries are the primary host rocks of mineralization. Two dominant copper minerals, bornite and chalcopyrite, which usually occur as fracture fillings, are associated with fine crystalline quartz veinlet stockworks in the mineralized diorites. Minor secondary covellite, chalcocite and digenite are also observed. The primary Cu‐Fe sulfide phases initially deposited from ore fluids consisted of bornite solid solution (bnss) and intermediate solid solution (iss), which decomposed to form the bornite and chalcopyrite. Peculiar bornite pods that are different from dissemination and are associated with volcanic rock xenoliths in biotite‐bearing diorite porphyry are noted in a drill hole. These pods of bornite are not associated with quartz veinlet stockworks. Fluid inclusion analyses show three types of inclusions contained in Kingking samples: two‐phase fluid‐rich and vapor‐rich inclusions and polyphase hypersaline inclusions from porphyry‐type quartz veinlet stockworks. The liquid–vapor homogenization temperatures (TH) and the dissolution temperature of halite daughter crystals (TM) from the polyphase hypersaline inclusions predominantly range from 400°C up to >500°C. The wide range of TH and TM may be due to heterogeneous trapping of variable ratios of vapor and brine. For some inclusions, TH > TM and in some cases, TH < TM, indicating that some of the brine was supersaturated or saturated with NaCl at the time of entrapment. Calculated salinity of the polyphase hypersaline inclusions ranges from 40 to 60% NaCl equivalent. Temperature and vapor pressure of mineralized fluid were estimated to be 400°C and 16 MPa.  相似文献   

20.
The Salu Bulo prospect is one of the gold prospects in the Awak Mas project in the central part of the western province, Sulawesi, Indonesia. The gold mineralization is hosted by the meta‐sedimentary rocks intercalated with the meta‐volcanic and volcaniclastic rocks of the Latimojong Metamorphic Complex. The ores are approximately three meters thick, consisting of veins, stockwork, and breccias. The veins can be classified into three stages, namely, early, main, and late stages, and gold mineralization is related to the main stage. The mineral assemblage of the matrix of breccia and the veins are both composed of quartz, carbonate (mainly ankerite), and albite. High‐grade gold ores in the Salu Bulo prospect are accompanied by intense alteration, such as carbonatization, albitization, silicification, and sulfidation along the main stage veins and breccia. Alteration mineral assemblage includes ankerite ± calcite, quartz, albite, and pyrite along with minor sericite. Pyrite is the most abundant sulfide mineral that is spatially related to native gold and electrum (<2–42 μm in size). It is more abundant as dissemination in the altered host rocks than those in veins. This suggests that water–rock interaction played a role to precipitate pyrite and Au in the Salu Bulo prospect. The Au contents of intensely altered host rocks and ores have positive correlations with Ag, Ni, Mo, and Na. Fluid inclusions in the veins of the main stage and the matrix of breccia are mainly two‐phase liquid‐rich inclusions with minor two‐phase, vapor‐rich, and single‐phase liquid or vapor inclusions. CO2 and N2 gases are detected in the fluid inclusions by Laser Raman microspectrometry. Fluid boiling probably occurred when the fluid was trapped at approximately 120–190 m below the paleo water table. δ18OSMOW values of fluid, +5.8 and +7.6‰, calculated from δ18OSMOW of quartz from the main stage vein indicate oxygen isotopic exchange with wall rocks during deep circulation. δ34SCDT of pyrite narrowly ranges from ?2.0 to +3.4‰, suggesting a single source of sulfur. Gold mineralization in the Salu Bulo prospect occurred in an epithermal condition, after the metamorphism of the host rocks. It formed at a relatively shallow depth from fluids with low to moderate salinity (3.0–8.5 wt% NaCl equiv.). The temperature and pressure of ore formation range from 190 to 210°C and 1.2 to 1.9 MPa, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号