首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
铜绿山Fe-Cu(Au)矿床是长江中下游铁铜成矿带最重要的矽卡岩型矿床之一,矿床的形成与铜绿山石英闪长岩岩株有关.矿区东南部发育有花岗伟晶岩,其形成时间介于石英闪长岩和矽卡岩之间.花岗伟晶岩主要由钾长石、斜长石和石英组成;由石英和钾长石组成的文象结构非常发育.激光阶段加热40Ar/39Ar定年表明,花岗伟晶岩的侵位时间为136.5±0.7 Ma(2σ),与石英闪长岩的侵位时代和铜绿山矿床的成矿时代完全一致. 铜绿山石英闪长岩与花岗伟晶岩的钾长石具有非常相似的主量元素,平均组成分别为Or81Ab18和Or78Ab21.根据岩相学观察和地球化学分析认为,花岗伟晶岩中的文象结构是在快速冷却体系条件下、钾长石晶体生长边界层的SiO2和Al2O3浓度因生长不平衡发生周期性变化而导致石英和钾长石交替生长形成的.铜绿山石英闪长岩和花岗伟晶岩中钾长石的大离子亲石元素(LILE)含量均较高,但与前者相比,花岗伟晶岩中钾长石的Rb、Pb含量明显增加,Ba、Sr含量显著降低,Li、Cs含量略微降低.大离子亲石元素图解(Rb-Ba、La-Ba、K/Ba-Ba、Rb/Sr-Ba)指示花岗伟晶岩是铜绿山石英闪长岩岩浆晚期高度结晶分异演化的结果.但花岗伟晶岩钾长石中Pb、Li、Ga等元素的变化却与岩浆结晶分异演化趋势相悖,表明流体作用在花岗伟晶岩的形成过程中扮演了重要角色.花岗伟晶岩中的石英发育大量熔融包裹体和高盐度流体包裹体,后者的均一温度为260~435 ℃,进一步证实花岗伟晶岩是从流体-熔体共存体系中结晶的.   相似文献   

2.
The bulk compositions of the groundmass alkali feldspar from the Hell Canyon Pluton is 0.146mole% albite. The composition of the outermost zone of the oscillatory zoned plagioclase is 0.686 mole% albite, whereas the most calcic cores have a composition of 0.43 mole% albite. The structural state of the alkali feldspar is near orthoclase. Both composition of coexisting feldspars and structural state of the alkali feldspar are nearly constant throughout the pluton.Exsolved albite in the alkali feldspar have a composition of 0.965 mole% albite and the orthoclase host has a composition of 0.032 mole%. Singe crystal X-ray studies indicate that the albite intergrowths are coherent with the host.Equilibrium temperatures derived from the coexisting feldspar average 554 ° C; about 150 ° C, too low for the minimum solidus temperatures for reasonable emplacement pressures (2 kb). If this minimum solidus temperature is assumed, then the alkali feldspar has lost about 0.15 mole% albite. This loss was most likely caused by hydrothermal solutions associated with the crystallizing magma and equilibrated at about 550 ° C. However, based on the coherent albite intergrowths and the orthoclase structure state it can be inferred that the system was relatively free of volatiles below 500 ° C. Final equilibirium between orthoclase host and albite intergrowths occurred at about 311 ° C.  相似文献   

3.
徐海军  张超  武云  陶明 《地球科学》2016,41(9):1511-1525
文象花岗岩具有特殊文象结构,研究其三维拓扑结构和形成过程有助于了解花岗质岩石的结晶作用.以北京周口店房山岩体和湖北罗田蕙兰山的文象花岗岩为研究对象,综合利用光学显微镜、扫描电镜、电子探针和电子背散射衍射等技术方法,对岩石矿物组成、结晶学取向和拓扑结构进行了系统研究.结果表明:(1) 文象花岗岩的矿物组成与其形成地质环境有关,石英和长石的含量变化范围很大,其中石英含量通常在20%~45%,但是相同地区同期形成的文象花岗岩具有相对稳定的矿物组成;(2) 长石作为寄主矿物通常呈半自形-自形粗大晶体,可以是碱性长石或斜长石,其端元组分以钾长石和钠长石为主,低温下常分解为条纹长石;(3) 石英在长石寄主矿物中规则穿插生长,在三维空间通常呈近似平行板状、长条状/柱状或非连通枝杈状,并只在特定岩石断面形似象形文字;(4) 正交偏光显微镜下,石英可以具有多种消光位,但是通常在一定范围内同时消光;(5) 石英普遍发育道芬双晶,偶见日本双晶;(6) 条纹长石中钾长石与钠长石对应(100)、(010)、(001) 面和[001]轴近似平行;(7) 多数石英颗粒与寄主长石之间具有密切结晶学取向关系,即石英[1123]轴近似平行长石c[001]轴.该研究证实文象花岗岩是石英和长石同时生长的结果,而长石作为寄主矿物影响并控制着石英的成核与生长方向.   相似文献   

4.
塔里木巴楚小海子正长岩杂岩体的岩石成因探讨   总被引:6,自引:4,他引:2  
位荀  徐义刚 《岩石学报》2011,27(10):2984-3004
巴楚小海子正长岩杂岩体是二叠纪塔里木大火成岩省的重要组成部分.SIMS锆石U-Pb定年显示其形成于279.7±2.0Ma,与本区辉绿岩脉和石英正长斑岩岩脉近于同时侵位.根据矿物学特征,小海子正长岩体可分为铁橄榄石正长岩和角闪正长岩两类.前者主要由碱性长石、铁橄榄石、单斜辉石、角闪石和少量石英、斜长石组成,后者主要由碱性长石、角闪石、黑云母和少量的石英、斜长石组成.小海子正长岩体为铁质、碱性系列,轻稀土相对富集,重稀土亏损,具有明显的Eu正异常,无Nb、Ta负异常,相对低的(87Sr/86Sr);(0.7033 ~0.7038)和正的εNd(t)值(+3.1~+3.8),暗示它们来自亏损的地幔源区,没有地壳物质的加入.主微量和同位素地球化学分析,暗示巴楚小海子正长岩的母岩浆为碱性的幔源玄武质岩浆经橄榄石、单斜辉石分离结晶后的残余熔体,并且含有堆晶的碱性长石.这种含有碱性长石堆晶的熔体,在相对还原的条件下结晶,形成铁橄榄石正长岩;在相对氧化的条件下结晶,并经过不同程度斜长石的分离结晶形成角闪正长岩.  相似文献   

5.
Vapor-undersaturated fractional crystallization experiments with Macusani glass (macusanite), a peraluminous rhyolite obsidian, at 200 MPa yield mineralogical fabrics and zonation, and melt fractionation trends that closely resemble those found in zoned granitic pegmatites and other granitoids of comparable composition (typically peraluminous, Li-Be-Ta-rich deposits). The zonation from the edge of charges inward is characterized by: (1) fine-grained sodic feldspar-quartz border zones; (2) a fringe of very coarse-grained graphic quartz-feldspar intergrowths that flair radially toward melt and terminate with nearly monophase K-feldspar; (3) cores of very coarse-grained, nearly monominerallic quartz or virgilite (LiAlSi5O12)±mica; and (4) late-stage, fine-grained albite+mica intergrowths that are deposited from alkaline, Na-rich interstitial melt at vapor saturation. Similar experimental products have been observed in compositionally simpler, less evolved systems. Liquid lines of descent from initially H2O-undersaturated runs are marked by a decrease in SiO2, and increases in Na/K, B, P, F, H2O, and a variety of trace lithophile cations. These trends are believed to be governed by three factors: (1) disequilibrium growth of feldspars (±quartz) via metastable supersaturation; (2) fractionation of melt toward SiO2-depleted, Na-rich compositions due to increases in B, P, and F; and (3) changes in nucleation and growth rates, mostly as a function of the H2O content of melt (X w m ). In contrast, experiments that are cooled below the liquidus from the field of melt+aqueous vapor (London et al. 1988) fail to replicate pegmatitic characteristics in most respects. On the basis of these and other experiments, we suggest that the formation of pegmatite fabrics stems primarily from fractional crystallization in volatile-rich melts, and that enrichments in normally trace lithophile elements result from melt differentiation trends toward increasingly alkaline, silica-depleted compositions. Although vapor saturation at near-solidus and subsolidus conditions may promote extensive recrystallization, an aqueous vapor phase does not appear to be necessary for the generation of most of the salient characteristics of pegmatites.  相似文献   

6.
The equilibrium temperatures for coexisting plagioclase and potassium feldspar pairs have been calculated for various textural varieties of feldspar from 3 post-metamorphic granites from the Georgia Piedmont; the Danburg, Siloam, and Stone Mountain plutons. Assuming an intermediate structural state for the feldspars at time of equilibration, crystallization temperatures match those expected from experimental data for quartz monzonite magmas (650 to 780° C). The variations in solidus temperature, recorded in the feldspars, may be used to estimate relative differences in depth of intrusion. Sharp reversals in plagioclase compositional trends may be caused by isothermal decreases in confining pressure associated with upward migration through the crust. In fine grained and slowly cooled intrusions, albite tends to be lost from the alkali feldspar grains, and recrystallizes as separate unzoned grains of oligoclase, thus erasing the previous thermal history. Perthite exsolution and re-equilibration within the alkali feldspar grains appears to continue down to temperatures of 400° C or so, although the zoned plagioclase does not homogenize. The recrystallization associated with changes in structural state may facilitate exsolution within alkali feldspar grains.  相似文献   

7.
内蒙古乌拉山金矿田内主要出露晚太古代乌拉山群区域变质岩和规模不一的花岗岩体以及不同时代、不同种类的脉状地质体。含金矿脉中主要矿物共生组合为碱性长石、石英、斜长石、碳酸盐矿物(方解石、白云石)和少量金属硫化物。矿床的显著特征为碱性长石交代作用强烈,碱性长石也广泛产于该地区其他各种类型的岩石中。本文采用电子显微探针分析了共生碱性长石和斜长石的化学成分,并采用三元二长石温度模型估计了碱性长石的平衡温度。结果表明,第一成矿阶段的碱性长石一石英含金矿脉中碱性长石的形成温度为353℃,第二成矿阶段石英含金矿脉中碱性长石的形成温度为281℃,矿脉碱性长石形成压力约为5kbar。这些结果与同类矿石中平衡共生的碳酸盐矿物和云母类矿物的地质温度计估计的形成温度以及共生石英中流体包裹体的均一温度非常一致。因此,乌拉山金矿床形成和富集的温度可估测为260~380℃,压力约为5kbar。此外,应用二长石温度计计算了本地区区域变质片麻岩和花岗岩中碱性长石的平衡温度,所得温度比采用共生铁铝榴石和黑云母温度计估计的温度要低约250℃。这表明共生的铁铝榴石和黑云母的平衡温度可能代表其寄主变质岩变质期温度及寄主花岗岩原生温度,而区域变质岩和花岗岩中的碱性长石在经历了随后多次热液作用后,可能重新平衡再生,这也与前人对乌拉山金矿的矿床地质和同位素研究的结果一致。  相似文献   

8.
The Lower Permian complex from Bocca di Tenda (Corsica island, France) consists of a gabbroic sequence crosscut by chilled dykes ranging in composition from basalt to trachyandesite and peralkaline rhyolite. The gabbroic sequence is mostly composed of olivine gabbronorites, quartz gabbronorites/diorites locally displaying high ilmenite amounts, and hornblende-rich tonalites. The quartz gabbronorites/diorites and the hornblende-rich tonalites have similar initial εNd values (+0.9 to ?1.1) and record a fractional crystallization process driven by separation of plagioclase, pyroxene, and ilmenite. The olivine gabbronorites have slightly higher initial εNd than the quartz gabbronorites/diorites and the hornblende-rich tonalites, thereby documenting that the early evolution of the melts that gave rise to the gabbroic sequence was controlled by concomitant fractional crystallization and crustal assimilation. The trachyandesite dykes are rare and rich in dark mica. The selected trachyandesite has initial εNd of +0.4, which is slightly lower than the εNd of the basalt dykes. The basalt and the trachyandesite dykes are most likely genetically related through a process of fractional crystallization controlled by segregation of plagioclase, clinopyroxene and minor ilmenite, and assimilation of crustal material. The peralkaline rhyolites have initial εNd values ranging from +0.3 to ?0.3. Whole-rock chemical variations and trace element compositions of Na-amphibole (arfvedsonite) indicate that the peralkaline rhyolite dykes record a process of fractional crystallization mainly controlled by separation of alkali feldspar and minor ilmenite and arfvedsonite. A plausible petrogenetic hypothesis for the genesis of the peralkaline rhyolite melts implies a protracted process of fractional crystallization from the trachyandesitic melts. This fractionation process would be initially ruled by separation of plagioclase, dark mica, and minor ilmenite. An alternative hypothesis for the origin of the peralkaline rhyolite melts implies partial melting of nearly coeval amphibole-rich mafic intrusives, which formed by crustally contaminated mantle-derived melts. The genesis of the peralkaline rhyolites is in any case correlated with mantle-derived melts that experienced extensive crustal contamination.  相似文献   

9.
Cordierite–quartz and plagioclase–quartz intergrowths in a paragneiss from northern Labrador (the Tasiuyak Gneiss) were studied using SEM, STEM and TEM. The gneiss experienced granulite facies conditions and partial melting during both regional and, subsequently, during contact metamorphism. The microstructures examined all results from the contact metamorphism. Cordierite–quartz intergrowths occur on coarse and fine scales. The former sometimes exist as a ‘geometric’ intergrowth in which the interface between cordierite and quartz appears planar at the resolution of the optical microscope and SEM. The latter exists in several microstructural variants. Plagioclase is present as a minor component of the intergrowth in some examples of both the coarse and fine intergrowth. Grain boundaries in cordierite–quartz intergrowths are occupied by amorphous material or a mixture of amorphous material and chlorite. Cordierite and quartz are terminated by crystal faces in contact with amorphous material. Chlorite is sometimes found on cordierite surfaces and penetrating into cordierite grains along defects. Quartz contains (former) fluid inclusions 10–20 nm in maximum dimension. The presence of planar interfaces between cordierite and the amorphous phase is reminiscent of those between crystals and glass in volcanic rocks, but in the absence of compelling evidence that the amorphous material represents former melt, it is interpreted as a reaction product of cordierite. Plagioclase–quartz intergrowths occur in a number of microstructural variants and are commonly associated with cordierite–quartz intergrowths. The plagioclase–quartz intergrowths display simple, non‐planar interfaces between plagioclase and quartz. Quartz contains (former) fluid inclusions of dimensions similar to those observed in cordierite–quartz intergrowths. The boundary between quartz and enclosing K‐feldspar is cuspate, with quartz cusps penetrating a few tens of nanometres into K‐feldspar, commonly along defects in K‐feldspar and sometimes with very low dihedral angles at their tips. This cuspate microstructure is interpreted as melt pseudomorphs. The plagioclase–quartz intergrowths share some features with myrmekite, but differ in some respects: the composition of the plagioclase (An37Ab62Or1–An38Ab61Or1); the association with cordierite–quartz intergrowths; and microstructures that are atypical of myrmekite (e.g. quartz vermicules shared with cordierite–quartz intergrowths). It is inferred that the plagioclase–quartz intergrowths may have formed from, or in the presence of, melt. Inferred melt‐related microstructures preserved on the nanometre scale suggest that melt on grain boundaries was more pervasive than is evident from light optical and SEM observations.  相似文献   

10.
Mineral chemistry and geochemical characteristics of beryl-bearing granitoids in Eastern Desert of Egypt, were examined in order to identify the metallogenetic processes of the host granitoids. The investigated Be-bearing granitoids and type occurrences are classified into two groups: (i) peraluminous, Ta ≥ Nb + Sn + Be ± W-enriched, Li-albite granite (e.g. Nuweibi and Abu Dabbab); and (ii) metasomatized, Nb >> Ta + Sn + Be ± W ± Mo-enriched alkali feldspar granite (i.e. apogranite; e.g. Homr Akarem, Homr Mikpid and Qash Amir). In these two groups, beryl occurs as stockwork greisen veins, greisen bodies, beryl-bearing cassiterite ± wolframite quartz veins, dissemination, and miarolitic pegmatites. Beryl of the Be-granitoids, particularly those of miarolitic pegmatites, contains appreciable contents of Fe, Na, and H2O. An important feature of the Be-apogranites is the occurrence of white mica as the sole mafic mineral in the unaltered alkali feldspar granite in lower zones. Presence of white mica as volatile-rich pockets suggests that the melt underwent disequilibrium crystallization, rapid nucleation rates, and exsolving and expulsion of volatiles.  相似文献   

11.
The pegmatite province of the Southeastern Desert (SED) is part of a pegmatite district that extends from Egypt (extends to 1200 km2). Rare metal pegmatites are divided into (1) unzoned, Sn-mineralized; (2) zoned Li, Nb, Ta and Be-bearing; and (3) pegmatites and pegmatites containing colored, gem-quality tourmaline. The Rb/Sr data reflect a crustal origin for the rare metal pegmatites and indicate that the original SED magma was generated during the peak of regional metamorphism and predates the intrusion of post-tectonic leucogranites. These bodies developed an early border zone consisting of coarse to very coarse muscovite quartz alkali feldspar, followed by an intermediate zone of dominant quartz feldspar muscovite rock. Garnet, tourmaline, beryl, galena, pyrite, amblygonite, apatite and monazite are rare accessories in both zones. Cassiterite tends to concentrate in replacement zones and along fractures in albite quartz muscovite-rich portions. The highest concentrations of cassiterite occur in irregular greisenized zones which consist dominantly of micaceous aggregates of green Li-rich muscovite, quartz, albite and coarse-grained cassiterite. The different metasomatic post-solidification alterations include sodic and potassic metasomatism, greisenization and tourmalinization. Geochemically, the pegmatite-generating granites have a metaluminous composition, showing a differentiation trend from coarse-grained, unfractionated plagioclase-rich granite towards highly fractionated fine- to medium-grained, local albite-rich rock. Economically important ore minerals introduced by volatile-rich, rare metal-bearing fluids, either primarily or during the breakdown of the primary mineral assemblages, are niobium-tantalum oxides, Sn-oxides (cassiterite), Li-silicates (petalite, spodumene, euctyptite, and pollucite), Li-phosphates (amblygonite, montebrasite and lithopilite) and minor REE-minerals (Hf-zircon, monazite, xenotime, thorian, loparite and yttrio-fluorite). The pollucite is typically associated with spodumene, petalite, amblygonite, quartz and feldspar. The primary pollucite has Si/Al (at) ratios of 2.53-2.65 and CRK of 79.5- 82.2. Thorian loparite is essentially a member of the loparite (NaLREETi2O6)-lueshite (NaNbO3)-ThTi2O6-ThNb4O12 quaternary system with low or negligible contents of other end-member compositions. The mineral compositionally evolved from niobian loparite to niobian thorian and thorian loparite gave rise to ceriobetafite and belyankinite with high ThO2 contents. Thorian loparite is metamict or partly metamict and upon heating regains a structure close to that of synthetic loparite NaLaTi2O6.  相似文献   

12.
The Main Hill Arkasani Granophyre Pluton (MAG), a product of Proterozoic intraplate acid magmatic activity, represents an anatectic melt of the enveloping rocks of dominantly pelitic composition with subordinate trondhjemitic gneiss and basic rocks. Petrography, chemistry, correlation between compositional attributes, areal variation of volume percent granophyric intergrowth, and varimax rotated factor analysis of compositional attributes of these rocks suggest that in the MAG pluton, plagioclase phenocrysts and biotite crystallized first, followed by change of level of emplacement of the magma when the groundmass started crystallizing at a rapid rate. The rapid growth of quartz and alkali feldspar crystallizing from the residual melt gave rise to the ubiquitous granophyric intergrowth in the late stage of crystallization. The alkali-rich residual liquid tended to concentrate toward the margin of the pluton where there is a profusion of granophyric intergrowths.  相似文献   

13.
Melting of basic to intermediate composition effusives enclosed in granitic magma forms a hybrid magma which subsequently can crystallize into granodiorite, quartz-diorite, and diorite. Crystallization of this hybrid magmatic melt proceeds along lines different from a normal differentiation of granitic magmas. Plagioclase in hybrid rocks is strongly zoned and dominantly andesine approaching, in places, the composition of labradorite. Outer zones of these crystals are andesine and oligoclase. In granitic rocks plagioclase is acid andesine to oligoclase. Outer zones get up to albite in composition. Pyriboles and biotite also show diagnostic optical features for crystallization of hybrid vs primary granitic magmas. Plagioclase composition that is coprecipitating with the crystallization of ferromagnesians, potassic feldspar, and quartz is of critical importance. Granitic and alaskitic magmas, in contrast to hybrid magmas, undergo anchieutectic crystallization. Changes in the alkali regimen of each of the two magma types affects the composition and crystallization order of the rock-forming minerals. Assimilation phenomena associated with the formation of hybrid rocks is aided by diffusion flow and infiltration flow of particles. --R. M. Hutchinson.  相似文献   

14.
This paper summarizes the data on oriented intergrowths of minerals in pegmatites of the Il’meny Mountains. Two-feldspar, two-mica, biotite-amphibole, biotite-pyroxene, and pyroxene-amphibole intergrowths have been revealed in syenitic and miaskitic pegmatites. The orientation of exsolution products has been studied in sunstone (aventurine) and moonstone feldspars, nepheline, and cancrinite. Corundum-biotite-feldspar and two-mica intergrowths and exsolution lamellae occur in stellate corundum from corundum-feldspar veins. Syntactic intergrowths of various amphiboles and chlorites have been detected in pegmatoid ultramafic rocks. Regular quartz-feldspar (graphic) and two-feldspar intergrowths are typical of granitic pegmatites. Two-mica, columbite-samarskite, columbite-ilmenorutile, zircon-xenotime, cassiterite-ilmenorutile, cassiterite-ixiolite, cassiterite-tantalite, tantalite-stibiotantalite, fergusonite-columbite, pyrochlore-fergusonite, and beryl-cordierite intergrowths have been found in granitic pegmatites as well. New intergrowth laws have been established for many pairs of minerals.  相似文献   

15.
The proposed model for the genesis of complex zoned pegmatites depends on two basis conditions: (1) an alkali chloride intergranular fluid phase (of either magmatic or metamorphic origin) is in equilibrium with the solid phases in the host rock, and (2) deformation produces low pressure zones in the host rock. The phase relations of quartz-mica-feldspar in alkali chloride solutions predict that feldspar will form from quartz, muscovite and dissolved alkalies in low pressure zones in quartz-muscovite schist. The reaction is fed by diffusion of hydrothermal alkali chloride solutions into the low pressure zone. Low pH fluids produced during the reaction are out of equilibrium when lithostatic pressure is re-established so that muscovite forms as a late replacement.A critical lowering of pressure is necessary to force the reaction. If the rate of dilation is relatively slow, only quartz will migrate into the low pressure zone, and the critical low pressure will not be attained. A relatively higher rate of dilation will cause the reaction to proceed. This control can explain the quartz core and the occurrence of quartz veins that grade laterally into pegmatite cores. By this model, the quartz core is the first part of the pegmatite to crystallize.The rare elements concentrated in pegmatites are considered to come from four possible sources: (1) hydrothermally introduced solutions, (2) impurity elements adsorbed to mineral grains in the country rock, (3) elements released by recrystallization of the country rock, and (4) elements released by reactions.Other features of pegmatites are shown to be compatible with the proposed model.  相似文献   

16.
Crystallization experiments on three comendites provide evidencefor the genetic relationships between peralkaline rhyolitesin the central Kenya rift valley. The crystallization of calcicclinopyroxene in slightly peralkaline rhyolites inhibits increasein peralkalinity by counteracting the effects of feldspar. Fractionationunder high fO2 conditions produces residual liquids that areless, or only slightly more, peralkaline than the bulk composition.In contrast, crystallization under reduced conditions (<FMQ,where FMQ is the fayalite–magnetite–quartz buffer)and at high fF2 inhibits calcic clinopyroxene and yields residualliquids that are more peralkaline than coexisting alkali feldspar,whose subsequent crystallization increases the peralkalinityof the liquid. A marginally peralkaline rhyolite [molar (Na2O+ K2O)/Al2O3 (NK/A) = 1·05] can yield a more typicallycomenditic rhyolite (NK/A = 1·28) after 95 wt % of crystallization.This comendite yields pantelleritic derivatives (NK/A >1·4)after 25 wt % crystallization. Upon further crystallization,extreme peralkaline compositions (NK/A  相似文献   

17.
颜丽丽  贺振宇  刘磊  赵志丹 《地质通报》2015,34(203):466-473
浙江雁荡山是中国东南部燕山晚期巨型火山-侵入杂岩带的重要组成部分。对其中央侵入相石英正长斑岩的暗色微粒包体中的斑晶和基质斜长石进行了详细的内部结构和成分分析,揭示了斜长石复杂环带的成因和相关的岩浆作用过程。斑晶斜长石由熔蚀的核部和表面干净的幔部组成,边部包裹有钾长石膜。核部斜长石呈浑圆状或港湾状,内部发育筛状结构,An成分显著低于幔部斜长石,代表来自酸性岩浆房中早期结晶的斜长石捕掳晶。同时,幔部斜长石与自形、表面干净的基质斜长石具有类似的An含量,且两者均含有针状磷灰石的包裹体,应结晶自与暗色微粒包体相应的基性岩浆。长石的复杂结构记录了雁荡山火山-侵入杂岩形成过程中的岩浆混合作用和岩浆演化过程。岩浆混合之后的火山喷发活动,造成岩浆房的压力突然减小,温压条件达到钾长石结晶的区域,在石英正长斑岩的斑晶斜长石和暗色包体中的斑晶与基质斜长石外均形成钾长石膜,构成反环斑结构。  相似文献   

18.
High‐pressure granulites are an important record of geodynamic processes in overthickened or subducted continental crust. Orthopyroxene‐free assemblages in granitic (ternary feldspar(s) + quartz + garnet + kyanite + rutile), intermediate (ternary feldspar(s) + quartz + garnet + clinopyroxene ± kyanite ±rutile ± titanite) and basic (garnet + clinopyroxene + plagioclase ± quartz + rutile) compositions indicate formation conditions at mantle depths. Clinopyroxene compositions in Variscan high‐pressure granulites are unusual in that they include omphacite (in plagioclase‐bearing rocks thus not eclogite) and Al‐rich diopside (i.e. indicating high Ca‐Tschermak content), with both yielding temperatures above 900 °C. Problems such as compositional zoning, multiple generations of key phases in reaction domains and unmixing of high‐temperature solid‐solution phases during cooling (ternary feldspars, omphacite) clearly indicate disequilibrium and require very careful interpretation as to which phases and compositions possibly represent a former equilibrium association. Pressure–temperature (P–T) determination by the pseudosection method, although allowing prediction of mineral assemblages, compositions and molar proportions for a fixed bulk composition for modelled P–T conditions, still requires reliable activity–composition information for the key phases feldspar and clinopyroxene as well as an interpretation of former equilibrium compositions in the investigated samples, i.e. the same restrictions applying to conventional thermobarometry. The interpretations of some recently determined pseudosections for the composition of Variscan clinopyroxene‐bearing high‐pressure granulites contradict numerous published P–T paths. However, quantitative information from thermobarometry or pseudosections must be integrated with key petrographic observations. In the case of the Variscan example, it is argued that petrographic observations and published P–T paths are consistent with mineral assemblages predicted in pseudosections and support existing tectonometamorphic models.  相似文献   

19.
Evan R. Phillips 《Lithos》1974,7(3):181-194
Myrmekite, first detected by Michel-Lévy in 1875 and named by Sederholm in 1899, is an intergrowth between vermicular quartz and (sodic) plagioclase situated next to potash feldspar. In felsic plutonic rocks it occurs as: rims bordering granular plagioclase, intergranular blebs set between adjacent microperthite crystals, lobes associated with muscovite in deformed alkali feldspar megacrysts or as bulbous growths at their margins, and rims on plagioclase inclusions held within orthocalse megacrysts. A literature review based largely on papers published in the past quarter century shows that hypotheses for myrmekite genesis fall mainly into five categories: simultaneous or direct crystallization, replacement of potash feldspar by plagioclase, replacement of plagioclase by potash feldspar, solid-state exsolution, and recrystallizing quartz involved with blastic plagioclase.  相似文献   

20.
The ternary feldspar system KAlSi3O8 - NaAlSi3O8 - CaAl2Si2O8 was reinvestigated at 650 ° C and 800 ° C (P H2O = 1 kb) using mixtures of crystalline plagioclases and alkali feldspars as starting materials. The compositions of plagioclases and alkali feldspars of the run products were determined by X-ray means. The Or-content of the feldspar phases was determined by measuring the position of the (201) X-ray peak of the unexchanged feldspars, whereas the An-content was determined by measuring the same X-ray peak of the K-exchanged feldspars. The reaction rate of a reaction leading to a more An-rich plagioclase (type II reaction) is much faster than a reaction producing a more Ab-rich plagioclase (type I). In a type II reaction run times of approximately 20 days are needed to reach new constant plagioclase and alkali feldspar compositions at 650 ° C, and 10 days are needed to reach constant compositions at 800 ° C. In a reaction of type I only the outer zone of the plagioclases reacts to more Abrich compositions. A diffuse zone with a wide range of compositions was observed in 650 ° C runs. Equilibrium could not be reached in these experiments within 45 days. At 800 ° C a new zone having a specific composition develops in 42 days. This new zone is believed to be in equilibrium with the coexisting alkali feldspar. The depth of reaction is calculated as 0.03 μm after 42 days (800 ° C, P f= 1 kb). The reaction between the two feldspar phases could be reversed at 800 ° C. The following compositions are considered to represent equilibrium data at 800 ° C and P t = 1 kb:
  • An 43 Ab 51 Or 6 coexisting with Or 79 Ab 20 An 1, and
  • An 40 Ab 54 Or 6 coexisting with Or 75 Ab 24 An 1.
  • Recent data obtained with gels of ternary feldspar composition as starting materials do not agree with the results presented in this paper. Gels obviously crystallize spontaneously forming coexisting feldspars of non - equilibrium composition - alkali feldspars too rich in Ab and plagioclases too rich in An.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号