首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A detailed analysis of dissolved organic carbon (DOC) distribution in the Western Arctic Ocean was performed during the spring and summer of 2002 and the summer of 2003. DOC concentrations were compared between the three cruises and with previously reported Arctic work. Concentrations of DOC were highest in the surface water where they also showed the highest degree of variability spatially, seasonally, and annually. Over the Canada Basin, DOC concentrations in the main water masses were: (1) surface layer (71±4 μM, ranging from 50 to 90 μM); (2) Bering Sea winter water (66±2 μM, ranging from 58 to 75 μM); (3) halocline layer (63±3 μM, ranging from 59 to 68 μM), (4) Atlantic layer (53±2 μM, ranging from 48 to 57 μM), and (5) deep Arctic layer (47±1 μM, ranging from 45 to 50 μM). In the upper 200 m, DOC concentrations were correlated with salinity, with higher DOC concentrations present in less-saline waters. This correlation indicates the strong influence that fluvial input from the Mackenzie and Yukon Rivers had on the DOC system in the upper layer of the Chukchi Sea and Bering Strait. Over the deep basin, there appeared to be a relationship between DOC in the upper 10 m and the degree of sea-ice melt water present. We found that sea-ice melt water dilutes the DOC signal in the surface waters, which is contrary to studies conducted in the central Arctic Ocean.  相似文献   

2.
Distribution and seasonal variability of dissolved organic carbon (DOC) and surface active substances (SAS) were studied along the depth profile (15 m) in a small eutrophicated and periodically anoxic sea lake (Rogoznica Lake, Eastern Adriatic coast) in 1996 and 1997. The range of DOC concentrations was characteristic for productive coastal marine ecosystems (60% of samples in the range of 1–2 mg l−1and 40% between 2 and 3 mg l−1). Distribution of SAS concentrations was uniform and shifted toward higher concentrations in comparison to other coastal areas in the Adriatic Sea. Eutrophication in the lake is generated by nutrient recycling under anaerobic conditions. Systematically higher concentrations of chlorophyll a, DOC and SAS were determined at the chemocline in the bottom layer (10–12 m) than in the upper water layer (0·5–2 m). Seasonal variability of organic matter was discussed regarding distributions of microphytoplankton (cells >20 μm) and photosynthetic pigments as well as oxygen and salinity changes along the depth profile. The dissolved oxygen saturation reaching up to 300% in the water layer between 8 m and 10 m depths in May and June 1996, was correlated with enhanced concentrations of phytoplankton biomass (reflected as chl a and b, fucoxanthin, peridinin, zeaxanthin) and increased concentrations of DOC and SAS.  相似文献   

3.
This study investigated the relationships between dissolved organic matter (DOM) composition and bacterial dynamics on short time scale during spring mesotrophic (March 2003) and summer oligotrophic (June 2003) regimes, in a 0–500 m depth water column with almost no advection, at the DYFAMED site, NW Mediterranean. DOM was characterized by analyzing dissolved organic carbon (DOC), colored dissolved organic matter (CDOM) and lipid class biotracers. Bacterial dynamic was assessed through the measurement of in situ bacterial lipase activity, abundance, production and bacterial community structure. We made the assumption that by coupling the ambient concentration of hydrolysable acyl-lipids with the measurement of their in situ bacterial hydrolysis rates (i.e. the free fatty acids release rate) would provide new insights about bacterial response to change in environmental conditions. The seasonal transition from spring to summer was accompanied by a significant accumulation of excess DOC (+5 μM) (ANOVA, p<0.05, n=8) in the upper layer (0–50 m). In this layer, the free fatty acids release rate to the bacterial carbon demand (BCD) ratio increased from 0.6±0.3 in March to 1.3±1.0 in June (ANOVA, p<0.05, n=8) showing that more uncoupling between the hydrolysis of the acyl-lipids and the BCD occurred during the evolution of the season, and that free fatty acids contributed to the excess DOC. The increase of lipolysis index and CDOM absorbance (from 0.24±0.17 to 0.39±0.13 and from 0.076±0.039 to 0.144±0.068; ANOVA, p<0.05, n=8, respectively), and the higher contribution of triglycerides, wax esters and phospholipids (from <5% to 12–31%) to the lipid pool reflected the change in the DOM quality. In addition to a strong increase of bacterial lipase activity per cell (51.4±29.4–418.3±290.6 Ag C cell−1 h−1), a significant percentage of ribotypes (39%) was different between spring and summer in the deep chlorophyll maximum (DCM) layer in particular, suggesting a shift in the bacterial community structure due to the different trophic conditions. At both seasons, in the chlorophyll layers, diel variations of DOM and bacterial parameters reflected a better bioavailability and/or DOM utilization by bacteria at night (the ratio of free fatty acids release rate to bacterial carbon demand decreased), most likely related to the zooplankton trophic behaviour. In mesotrophic conditions, such day/night pattern was driving changes in the bacterial community structure. In more oligotrophic period, diel variations in bacterial community structure were depth dependent in relation to the strong summer stratification.  相似文献   

4.
Vertical distribution of faecal pellets (FP), their sedimentation and the production rates of FP by mesozooplankton were studied during a cruise on and off the Iberian shelf in August 1998. The cruise was divided into two legs, each of them a short-term Lagrangian drift experiment. FP were collected with water bottles, with drifting sediment traps and during experiments carried out onboard the ship. The pellets were enumerated and their biovolumes and carbon contents (FPC) were calculated.The standing stock of FP in the upper 50 m was on average three times higher during the first on-shelf experiment than during the second off-shelf experiment. There were large diurnal variations, but no clear pattern emerged between day and night sampling. The vertical export of FPC from the upper, productive layer was on average one order of magnitude greater on the shelf (range 6–160 mg.m−2.d−1) compared to the off-shelf experiment (range 1–30 mg.m−2.d−1). FPC sedimentation explained 20% of the total POC export from the euphotic layer on the shelf, but <5% off the shelf. FP sedimentation was dominated by medium-sized cylindrical pellets (40–60 μm in diameter), but larger cylindrical pellets (60–100 μm in diameter) also played an important role. The smaller FP size fractions were never of any significance, in spite of the high abundance of smaller calanoid and cyclopoid copepods. The community production of FPs by mesozooplankton were calculated for the off shelf stations, and the average retention potential of FP in the upper 200 m was estimated to be 98%. Thus retention processes are clearly important for cross-shelf advection of FPs, their injection into the deep ocean and in the regulation of pelagic benthic coupling.  相似文献   

5.
A procedure is described for the analysis of the stable carbon isotopic composition of dissolved organic carbon (DOC) in natural waters from marine and higher-salinity environments. Rapid (less than 5 min) and complete oxidation of DOC is achieved using a modification of previous photochemical oxidation techniques. The CO2 evolved from DOC oxidation can be collected in less than 10 min for isotopic analysis. The procedure is at present suitable for oxidation and collection of 1–5 μmol of carbon and has an associated blank of 0.1–0.2 μmol of carbon.Complete photochemical oxidation of DOC standards was demonstrated by quantitative recovery of CO2 as measured manometrically. Isotopic analyses of standards by photochemical and high-temperature sealed-tube combustion methods agreed to within 0.3.. Photochemical oxidation of DOC in a representative sediment pore-water sample was also quantitative, as shown by the excellent agreement between the photochemical and sealed-tube methods. The δ13C values obtained for pore-water DOC using the two methods of oxidation were identical, suggesting that the modified photochemical method is adequate for the isotopically non-fractionated oxidation of pore-water DOC.The procedure was evaluated through an analysis of DOC in pond and pore waters from a hypersaline microbial mat environment. Concentrations of DOC in the water column over the mat displayed a diel pattern, but the isotopic composition of this DOC remained relatively constant (average δ13C = −12.4.). Pore-water DOC exhibited a distinct concentration maximum in the mat surface layer, and δ13C of pore-water DOC was nearly 8. lighter at 1.5–2.0-cm depth than in the mat surface layer (0–0.5-cm depth). These results demonstrate the effectiveness of the method in elucidating differences in DOC concentration and δ13C over biogeochemically relevant spatial and temporal scales. Carbon isotopic analysis of DOC in natural waters, especially pore waters, should be a useful probe of biogeochemical processes in recent environments.  相似文献   

6.
This paper reports estimates of trophic flows of carbon off the Galician coast from a 1D ecological model, which are compared with field data from a two week Lagrangian drift experiment. The model consists of 9 biological components: nitrate, ammonium, >5μm phytoplankton, <5μm phytoplankton, heterotrophic nanoflagellates/dinoflagellates (5–20 μm), heterotrophic dinoflagellates (>20 μm), ciliates, fast sinking detritus and slow sinking detritus. Calculations were made for the fluxes of carbon between biological components within the upper 45m of the water column. The temporal development of primary production during the simulation period of two weeks was in good agreement with field estimates, which varied between 248 and 436mgC.m−2.d−1. Heterotrophic nanoflagellates had the greatest impact on carbon flux, with a grazing rate of 168mgC.m−2.d−1. Herbivorous grazing by microzooplankton amounted to 215mgC.m−2.d−1, whereas grazing by copepods on phytoplankton was 35mgC.m−2 d−1. Copepods grazing on microzooplankton was minor (0.47mgC.m−2.d−1) and the export flux from the upper 45m was 302mgC.m−2.d−1. Sensitivity analyses, in which the grazing parameters (i.e the functional relationship between ingestion and food concentration) were changed, were carried out on the heterotrophic dinoflagellate, ciliate and heterotrophic nanoflagellates/dinoflagellate components of the model. These changes did not alter the temporal development of heterotrophic nanoflagellates/dinoflagellates biomass significantly, but ciliates and heterotrophic dinoflagellates were more sensitive to variations in the grazing parameters. The overall conclusion from this modelling study is that the coupling between small phytoplankton and heterotrophic nanoflagellates was the quantitatively most important process controlling carbon flow in this region.  相似文献   

7.
Vertical profiles of dissolved organic carbon (DOC) from eight hydrological stations in the Tyrrhenian Sea, Sardinia Channel and Algerian Sea, are reported. DOC exhibits concentrations ranging from 58 to 88 μM in surface water, 43–57 μM in the intermediate layer and 49–63 μM in deep waters. The assessment of the hydrological characteristics allows different water masses in the study area to be identified; moreover, different hydrological processes are observed in the Tyrrhenian and Algerian basins. DOC exhibits different values in the different water masses. The lowest DOC concentrations (43–46 μM) were found in the Tyrrhenian Levantine Intermediate Water (LIW). Correlations between DOC and apparent oxygen utilization (AOU), investigated within each water mass, exhibit different behaviors in the intermediate and deep waters, suggesting the occurrence of different processes of oxygen consumption in the different water masses.  相似文献   

8.
The seasonal dynamics of inorganic nutrients and phytoplankton biomass (chlorophyll a), and its relation with hydrological features, was studied in the NW Alboran Sea during four cruises conducted in February, April, July and October 2002. In the upper layers, the seasonal pattern of nutrient concentrations and their molar ratios (N:Si:P) was greatly influenced by hydrological conditions. The higher nutrient concentrations were observed during the spring cruise (2.54 μM NO3, 0.21 μM PO43− and 1.55 μM Si(OH)4, on average), coinciding with the increase of salinity due to upwelling induced by westerlies. The lowest nutrient concentrations were observed during summer (<0.54 μM NO3, 0.13 μM PO43− and 0.75 μM Si(OH)4, on average), when the lower salinities were detected. Nutrient molar ratios (N:Si:P) followed the same seasonal pattern as nutrient distribution. During all the cruises, the ratio N:P in the top 20 m was lower than 16:1, indicating a NO3 deficiency relative to PO43−. The N:P ratio increased with depth, reaching values higher than 16:1 in the deeper layers (200–300 m). The N:Si ratio in the top 20 m was lower than 1:1, excepting during spring when N:Si ratios higher than 1:1 were observed in some stations due to the upwelling event. The N:Si ratio increased with depth, showing a maximum at 50–100 m (>1.5:1), which indicates a shift towards Si-deficiency in these layers. The Si:P ratio was much lower than 16:1 throughout the water column during the four cruises. In general, the spatial and seasonal variation of phytoplankton biomass showed a strong coupling with hydrological and chemical fields. The higher chlorophyll a concentrations at the depth of the chlorophyll maximum were found in April (2.57 mg m−3 on average), while the lowest phytoplankton biomass corresponded to the winter cruise (0.74 mg m−3 on average). The low nitrate concentrations together with the low N:P ratios found in the upper layers (top 20 m) during the winter, summer and autumn cruises suggest that N-limitation could occur in these layers during great part of the year. However, N-limitation during the spring cruise was temporally overcome by nutrient enrichment caused by an intense wind-driven upwelling event.  相似文献   

9.
Lagrangian time series of dimethylsulfide (DMS) concentrations from a cyclonic and an anticyclonic eddy in the Sargasso Sea were used in conjunction with measured DMS loss rates and a model of vertical mixing to estimate gross DMS production in the upper 60 m during summer 2004. Loss terms included biological consumption, photolysis, and ventilation to the atmosphere. The time- and depth (0–60 m)-averaged gross DMS production was estimated to be 0.73±0.09 nM d−1 in the cyclonic eddy and 0.90±0.15 nM d−1 in the anticyclonic eddy, with respective DMS replacement times of 5±1 and 6±1 d. The higher estimated rate of gross production and lower measured loss rate constants in the anticyclonic eddy were equally responsible for this eddy's 50% higher DMS inventory (0–60 m). When normalized to chlorophyll and total dimethylsulfoniopropionate (DMSP), estimated gross production in the anticyclonic eddy was about twice that in the cyclonic eddy, consistent with the greater fraction of phytoplankton that were DMSP producers in the anticyclonic eddy. Higher rates of gross production were estimated below the mixed layer, contributing to the subsurface DMS maximum found in both eddies. In both eddies, gas exchange, microbial consumption, and photolysis were roughly equal DMS loss terms in the surface mixed layer (0.2–0.4 nM d−1). Vertical mixing was a substantial source of DMS to the surface mixed layer in both eddies (0.2–0.3 nM d−1) owing to the relatively high DMS concentrations below the mixed layer. Estimated net biological DMS production rates (gross production minus microbial consumption) in the mixed layer were substantially lower (by almost a factor of 3) than those estimated in a previous study of the Sargasso Sea, which may explain the relatively low mixed-layer DMS concentrations found here during July 2004 (3 nM) compared to previous summers (4–6 nM).  相似文献   

10.
To unravel the factors that regulate DOC dynamics in the freshwater tidal reaches of the Schelde estuary, DOC concentration and biodegradability were monitored in the upper Schelde estuary and its major tributaries. Although the Schelde estuary possesses a densely populated and industrialized catchment, our data suggest that the bulk of DOC in the freshwater tidal reaches is not derived from waste water. This was concluded from the low biodegradability of DOC (on average 9%), DOC concentrations that are close to the mean for European rivers (4.61 mg l−1) and the absence of an inverse relationship between DOC and discharge. Most DOC originating from waste water being discharged in tributaries of the estuary appears to be remineralised before these tributaries reach the main estuary. Although dense phytoplankton blooms were observed in the upper estuary during summer (up to 700 μg chl a l−1), these blooms did not appear to produce large quantities of DOC in the freshwater tidal reaches as DOC concentrations were low when phytoplankton biomass was high. The fact that DOC concentrations were high in winter and decreased in summer suggests a predominantly terrestrial source of DOC in the freshwater tidal reaches of the Schelde estuary.  相似文献   

11.
Aquatic surface microlayer contamination in chesapeake bay   总被引:1,自引:0,他引:1  
The aquatic surface microlayer (SMIC), 50 μm thick, serves as a concentration point for metal and organic contaminants that have low water solubility or are associated with floatable particles. Also, the eggs and larvae of many fish and shellfish species float on, or come in contact with, the water surface throughout their early development. The objectives of this study were (1) to determine the present degree of aquatic surface microlayer pollution at selected sites in Chesapeake Bay, and (2) to provide a preliminary evaluation of sources contributing to any observed contamination.Twelve stations located in urban bays, major rivers, and the north central bay were sampled three times, each at 5-day intervals during May 1986. Samples of 1.4–4.1 each were collected from the upper 30–60-μm water surface (surface microlayer, SMIC) using a Teflon-coated rotating drum microlayer sampler. One sample of subsurface water was collected in the central bay.At all stations, concentrations of metals, alkanes, and aromatic hydrocarbons in the SMIC were high compared with one bulk-water sample and with typical concentrations in water of Chesapeake Bay and elsewhere. SMIC contamination varied greatly among the three sampling times, but high mean contaminant levels (total polycyclic aromatic hydrocarbons, 1.9–6.2 μg 1−1; Pb, 4.9–24 μg 1−1; Cu, 4–16 μg 1−1; and Zn, 34–59 μg 1−1) were found at the upper Potomac and northern bay sites. Three separate areas were identified on the basis of relative concentrations of different aromatic hydrocarbons in SMIC samples - the northern bay, the Potomac River, and the cleaner southern and eastern portions of the sampling area.Suspected sources of surface contamination include gasoline and diesel fuel combustion, coal combustion, and petroleum product releases. Concentrations of metals and hydrocarbons, at approximately half the stations sampled, are sufficient to pose a threat to the reproductive stages of some fish and shellfish. Sampling and analysis of the surface microlayer provides a sensitive tool for source identification and monitoring of potentially harmful aquatic pollution.  相似文献   

12.
The influence of bioturbation on certain aspects of the biogeochemistry of sulfur and iron was examined in shallow-water sediments of Great Bay Estuary, New Hampshire. A bioturbated (JEL) and non-bioturbated (SQUAM) site were compared. Annual sulfate reduction measured with 35S, was 4·5 times more rapid at JEL. A significant portion of this difference was attributed to rapid rates which occurred throughout the upper 12 cm of sediment at JEL due to infaunal reworking activities. Sulfate reduction decreased rapidly with depth at SQUAM. FeS in the upper 2 cm at JEL increased in concentration from 3 to 45 μmol ml−1 from early May to late July while only increasing from 3 to 8 μmol ml−1 at SQUAM. Infaunal irrigation and reworking activities caused rapid and continous subsurface cycling of iron and sulfur at JEL. This maintained dissolved iron concentrations at 160–170 μM throughout the summer despite rapid sulfide production. Therefore, dissolved sulfide never accumulated in JEL pore waters. Although dissolved organic carbon (DOC) was generated during sulfate reduction, bioturbation during summer caused a net removal of DOC from JEL pore waters. Sulfate reduction rates, decomposition stoichiometry and nutrient concentrations were used to calculate turnover times of nutrients in pore waters. Nutrient turnover varied temporally and increased three-to five-fold during bioturbation. A secondary maximum in the abundance of recoverable sulfate-reducing bacteria occurred at 10 cm in JEL sediments only during periods of active bioturbation, demonstrating the influence of macrofaunal activities on bacterial distributions.  相似文献   

13.
Physical forcing plays a major role in determining biological processes in the ocean across the full spectrum of spatial and temporal scales. Variability of biological production in the Bay of Bengal (BoB) based on basin-scale and mesoscale physical processes is presented using hydrographic data collected during the peak summer monsoon in July–August, 2003. Three different and spatially varying physical processes were identified in the upper 300 m: (I) anticyclonic warm gyre offshore in the southern Bay; (II) a cyclonic eddy in the northern Bay; and (III) an upwelling region adjacent to the southern coast. In the warm gyre (>28.8 °C), the low salinity (33.5) surface waters contained low concentrations of nutrients. These warm surface waters extended below the euphotic zone, which resulted in an oligotrophic environment with low surface chlorophyll a (0.12 mg m−3), low surface primary production (2.55 mg C m−3 day−1) and low zooplankton biovolume (0.14 ml m−3). In the cyclonic eddy, the elevated isopycnals raised the nutricline upto the surface (NO3–N > 8.2 μM, PO4–P > 0.8 μM, SiO4–Si > 3.5 μM). Despite the system being highly eutrophic, response in the biological activity was low. In the upwelling zone, although the nutrient concentrations were lower compared to the cyclonic eddy, the surface phytoplankton biomass and production were high (Chl a – 0.25 mg m−3, PP – 9.23 mg C m−3 day−1), and mesozooplankton biovolume (1.12 ml m−3) was rich. Normally in oligotrophic, open ocean ecosystems, primary production is based on ‘regenerated’ nutrients, but during episodic events like eddies the ‘production’ switches over to ‘new production’. The switching over from ‘regenerated production’ to ‘new production’ in the open ocean (cyclonic eddy) and establishment of a new phytoplankton community will take longer than in the coastal system (upwelling). Despite the functioning of a cyclonic eddy and upwelling being divergent (transporting of nutrients from deeper waters to surface), the utilization of nutrients leading to enhanced biological production and its transfer to upper trophic levels in the upwelling region imply that the energy transfer from primary production to secondary production (mesozooplankton) is more efficient than in the cyclonic eddy of the open ocean. The results suggest that basin-scale and mesoscale processes influence the abundance and spatial heterogeneity of plankton populations across a wide spatial scale in the BoB. The multifaceted effects of these physical processes on primary productivity thus play a prominent role in structuring of zooplankton communities and could consecutively affect the recruitment of pelagic fisheries.  相似文献   

14.
Autotrophic and microheterotrophic plankton populations were monitored in the euphotic zone of the eastern subarctic Pacific during 6 one-month cruises in spring and summer, 1984, 1987 and 1988. Transmitted light, epifluorescence, and electron microscopy were used to identify, enumerate and estimate the biomass of size-populations of species. The 2–10μm size class dominated the biomass of both autotrophs and heterotrophs. The autotrophic flagellate, Phaeocystis pouchetii, was frequently observed in its non-colonial phase. Temporal variation in all the stocks was evident and could be explained only partially by the physical, chemical or biological factors investigated here. The general structure of the autotrophic community was similar to that in the North Atlantic, but major, unexplained variations between cruises occurred. Variation in mixed-layer depth and day length (but not variation in daily insolation) explained 25% of the variation in autotrophic doubling rate. Heterotrophic biomass comprised, in decreasing order of importance, non-pigmented flagellates, dinoflagellates, and ciliates. Ciliates rarely contributed more than 40% to the total. Microheterotrophic biomass rarely exceeded 30μg C 1−1 (avg 15μg C 1−1, 0–60m) whereas autotrophic biomass averaged 20μg C 1−1, 0–60m, and reached 74μg C 1−1 on one occasion, yet the grazing capacity of these microheterotrophs averaged 100% of primary production.  相似文献   

15.
Dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) measured in deep profiles in the N-E Atlantic and in the N-W Mediterranean in the period 1984–2002 are described. After accurate validation, they show close agreement with those previously published.Classic profiles were obtained, with concentrations decreasing in deep waters. In the Mediterranean and in the Atlantic comparable concentrations were found in the 1500–2000 m waters, 44–46 μmol l−1 DOC, 2.6–2.8 μmol l−1 DON and 0.02–0.03 μmol l−1 DOP. In the surface layers, DOC concentrations were higher, but DON and DOP concentrations lower, in the Mediterranean than in the Atlantic, leading to higher element ratios in the Mediterranean. In autumn, values were, respectively, DOC:DON 17 vs. 14, DOC:DOP 950 vs. 500 and DON:DOP 55 vs. 35. The data suggest an increase in DOC and DON in the North Atlantic Central Water over 15 years, which may be linked to the North Atlantic climatic oscillations.Refractory DOM found in the 1500–2000 m layer exhibited C:N:P ratios of 1570:100:1. The labile+semi-labile (=non-refractory) DOM (nrDOM) pool was computed as DOM in excess of the refractory pool. Its contribution to total DOM above the thermocline in the open sea amounted to 25–35% of DOC, 30–35% of DON, and 60–80% of DOP. Element ratios of the nrDOM varied among stations and were lower than those of refractory DOM, except for C:N in the Mediterranean: nrDOC:nrDON 10–19, nrDOC:nrDOP 160–530 and nrDON:nrDOP 15–38. The specific stoichiometry of DOM in the Mediterranean led us to postulate that overconsumption of carbon is probably a main process in that oligotrophic sea.By coupling non-refractory DOM stoichiometry and relationships between the main DOM elements in the water column, the relative mineralization of C, N and P from DOM was studied. Below the thermocline, the preferential removal of phosphorus with regard to carbon from the semi-labile DOM can be confirmed, but not the preferential removal of nitrogen. In the ocean surface layers, processes depend on the oceanic area and can differ from deep waters, so preferential carbon removal seems more frequent. Bacterial growth efficiency data indicate that bacteria are directly responsible for mineralization of a high proportion of DON and DOP in the deep water.  相似文献   

16.
Results of the chemical investigation on the Bannock and Tyro Basins are reported.Both basins were found to be hypersaline ( 10 times higher than salinity of normal seawater) and anoxic. In all investigated basins a region of transition, a few meters thick, was identified at depths > 3327 dbar. It is characterized by a sharp gradient of salinity, and all concentrations of analysed species increase strongly except for dissolved oxygen and nitrate, which immediately drop to zero. This region appears as a sharp boundary that prevents mixing. As a result, in the presence of organic matter, an anoxic condition developed with the complete depletion of dissolved oxygen. At the same time, hydrogen sulphide and ammonium accumulated within the brine. Between the Bannock and the Tyro brines differences occur in the measured concentrations of H2S, SO2−4, Ca2+ and NH3. There are some differences also within the Bannock area sub-basins.The Libeccio sub-basin, in the Bannock area, contains a double-layered brine: the upper layer is 140 dbar thick and the lower layer is 300 dbar thick. A second interface between upper and lower brines develops at a depth of 3500 dbar. Nearly all of the measured concentrations vs. depth show the double layer, with the exception of ammonium, the concentration of which remains nearly constant throughout the anoxic column. Profiles of the other species analyzed show remarkable differences on passing from the upper to the lower brine. Hydrogen sulphide, sulphate and fluoride concentrations appear constant and then increase at the second interface. The calcium concentration is also constant in the upper brine, but decreases at the second interface. Total alkalinity and phosphate concentrations show a maximum peak just below the first interface. However, after passing through the second interface all the chemical parameters exhibit an almost constant behaviour down to the bottom.Hypersaline conditions are attributed to the dissolution of Messinian evaporite, and anoxia is suggested to originate from the oxidation of organic matter present in sediments and from the absence of bottom water circulation in such a deep and enclosed environment.The chemical conditions can be summarized as follows: in the Libeccio Basin the values for the species analysed have the ranges: 39–321 psu for ‘salinity’, 8.2−6.5 for pH, 2.7–4.0 mM for total alkalinity, 0.2-0 mM for dissolved oxygen, 0–1669 μM for hydrogen sulphide, 0–198 μM for thiol, 31–99 mM for sulphate, 11–21 mM for calcium, 7–100 μM for fluoride, 0.2–3080 μM for ammonium, 5.8-0 μM for nitrite, 0.2–12 μM for phosphate and 8–130 μM for silicate.  相似文献   

17.
Samples were collected and preserved for onshore measurement of dissolved organic carbon (DOC) in the area extending over the Polar Frontal Zone (PFZ) (26–40°W, 48–52°S) in September-December 1988. The highest concentrations of DOC were found in the pycnocline layer, near the southern boundary of the PFZ and in dynamically active areas, such as meanders and mesoscale eddies, where the DOC concentrations amounted to 6–8 mg l−1. To the north and south of the PFZ, concentration of DOC diminished considerably, as a result of less intensive processes of organic matter production.  相似文献   

18.
To estimate the source and diagenetic state of organic matter reaching bottom sediments, fatty acids and sterols were measured in unconsolidated surface material (flocs) at 12 sites ranging from 600 to 2000 m across the mid-Atlantic continental slope off Cape Hatteras, North Carolina. Total free and esterefied fatty acids were similar in distribution and concentration to other coastal systems, with values ranging from 0.64 to 46.52 μg mg−1 organic carbon (1.10–68.85 μg g−1 dry sediment). Although shallow (600 m) stations contained significantly greater fatty acid concentrations than deep (> 1400m) stations, high variability observed at mid-depth (800 m) collections precluded a consistent relationship between total fatty acid concentration and station depth. At three sites where underlying sediments were also collected, decreases in total fatty acids, reduced amounts of polyenoic acids and significant presence of bacterial fatty acid suggest rapid reworking of labile organic material that reaches the sediment surface. The distribution of sterols was remarkably consistent among all sites even though there were large variations in concentrations (1.8–20.7 μg mg−1 organic carbon). Sterol composition indicated phytoplankton, principally diatoms and dinoflagellates, as the principal source of labile organic matter to sediments, together with a significant input of cholest-5-en-3β-ol typical of zooplankton and their feeding activity. A minor but widespread terrigenous input was also evident based upon significant concentrations of sterols dominant in vascular plants.  相似文献   

19.
The dynamics of dissolved inorganic carbon (DIC) and processes controlling net community production (NCP) were investigated within a mature cyclonic eddy, Cyclone Opal, which formed in the lee of the main Hawaiian Islands in the subtropical North Pacific Gyre. Within the eddy core, physical and biogeochemical properties suggested that nutrient- and DIC-rich deep waters were uplifted by 80 m relative to surrounding waters, enhancing biological production. A salt budget indicates that the eddy core was a mixture of deep water (68%) and surface water (32%). NCP was estimated from mass balances of DIC, nitrate+nitrite, total organic carbon, and dissolved organic nitrogen, making rational inferences about the unobserved initial conditions at the time of eddy formation. Results consistently suggest that NCP in the center of the eddy was substantially enhanced relative to the surrounding waters, ranging from 14.1±10.6 (0–110 m: within the euphotic zone) to 14.2±9.2 (0–50 m: within the mixed layer) to 18.5±10.7 (0–75 m: within the deep chlorophyll-maximum layer) mmol C m−2 d−1 depending on the depth of integration. NCP in the ambient waters outside the eddy averaged about 2.37±4.24 mmol C m−2 d−1 in the mixed layer (0–95 m). Most of the enhanced NCP inside the eddy appears to have accumulated as dissolved organic carbon (DOC) rather than exported as particulate organic carbon (POC) to the mesopelagic. Our results also suggest that the upper euphotic zone (0–75 m) above the deep chlorophyll maximum is characterized by positive NCP, while NCP in the lower layer (>75 m) is close to zero or negative.  相似文献   

20.
In March and September 1995, bacterial production was measured by the 3H-leucine method in the oligotrophic Cretan Sea (Aegean Sea, Eastern Mediterranean) in the framework of the CINCS/MTP program. Samples were obtained from four stations (a coastal, a continental shelf and 2 open-sea stations) for the construction of vertical profiles of bacterial abundance and production. Bacterial production ranged from 0.1 μg C m−3 h−1 at 1500 m depth, to 82 μg C m−3 h−1 in March at 50 m at the coastal station. Higher bacterial integrated production was observed in March at the coastal station (131 mg C m−2 d−1 for the 0–100 m layer). Bacterial production, integrated through the water-column, was similar in March and September for the open-sea stations (60–70 mg C m−2 d−1). Relative to production, bacterial concentrations varied little between stations and seasons ranging from 9×105 ml−1 to 3×105 ml−1. Relationships between bacterial biomass and bacterial production indicated seasonal differences, likely reflecting resource limitation of bacterial biomass in March (bloom situation), and predator limitation of bacterial biomass in September (post-bloom situation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号