首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three bright fireballs belonging to the August θ‐Aquillid (ATA) meteor shower were photographed by the Tajikistan fireball network in 2009. Two of them are classified as the meteorite‐dropping fireballs according to the determined parameters of the atmospheric trajectories, velocities, masses, and densities. Detection of the more dense bodies among cometary meteoroids points to a heterogeneous composition of the parent comet, and supports the suggestion that some meteorites might originate in the outer solar system, in the given case from the Jupiter‐family comet reservoir. A search for the stream's parent was undertaken among the near‐Earth asteroids (NEAs); as a result, the asteroid 2004MB6 was identified as a possible progenitor of the ATA meteoroid stream. Investigation of the orbital evolution of the 2004MB6 and the fireball‐producing meteoroid TN170809A showed that both objects have similar secular variations in the orbital elements during 7 kyr. The comet‐like orbit of the 2004MB6 and its association with the ATA shower suppose a cometary origin of the asteroid.  相似文献   

2.
The spatial structure of meteor streams, and the activity profiles of their corresponding meteor showers, depend firstly on the distribution of meteoroid orbits soon after ejection from the parent comet nucleus, and secondly on the subsequent dynamical evolution. The latter increases in importance as more time elapses. For younger structures within streams, notably the dust trails that cause sharp meteor outbursts, it is the cometary ejection model (meteoroid production rate as a function of time through the several months of the comet’s perihelion return, and velocity distribution of the meteoroids released) that primarily determines the shape and width of the trail structure. This paper describes how a trail cross section can be calculated once an ejection model has been assumed. Such calculations, if made for a range of ejection model parameters and compared with observed parameters of storms and outbursts, can be used to constrain quantitatively the process of meteoroid ejection from the nucleus, including the mass distribution of ejected meteoroids.  相似文献   

3.
We calculate the position of dust trails from comet 8P/Tuttle, in an effort to explain unusual Ursid meteor shower outbursts that were seen when the comet was near aphelion. Comet 8P/Tuttle is a Halley-type comet in a 13.6-year orbit, passing just outside of Earth's orbit. We find that the meteoroids tend to be trapped in the 12:14 mean motion resonance with Jupiter, while the comet librates in a slightly shorter period orbit around the 13:15 resonance. It takes 6 centuries to decrease the perihelion of the meteoroid orbits enough to intersect Earth's orbit, during which time the meteoroids and comet separate in mean anomaly by 6 years, thus explaining the 6-year lag between the comet's return and Ursid outbursts. The resonances also prevent dispersion along the comet orbit and limit viewing to only one year in each return. We identified past dust trail encounters with dust trails from 1392 (Dec. 1945) and 1378 (Dec. 1986) and predicted another outburst on 2000 December 22 at around 7:29 and 8:35 UT, respectively, from dust trails dating to the 1405 and 1392 returns. This event was observed from California using video and photographic techniques. At the same time, five Global-MS-Net stations in Finland, Japan, and Belgium counted meteors using forward meteor scatter. The outburst peaked at 8:06±07 UT, December 22, at zenith hourly rate ∼90 per hour, and the Ursid rates were above half peak intensity during 4.2 h. We find that most Ursid orbits do scatter around the anticipated positions, confirming the link with comet 8P/Tuttle and the epoch of ejection. The 1405 and 1392 dust trails appear to have contributed similar amounts to the activity profile. Some orbits provide a hint of much older debris being present as well. This work is the strongest evidence yet for the relevance of mean motion resonances in Halley-type comet dust trail evolution.  相似文献   

4.
The orbital evolution of model meteoroids ejected from the comet Encke has been investigated. The particles abandon the mother body with velocities 20 and 40 ms-1 perihelion within the interval of the past 10,000 years. Their 10,000 years old osculating orbits were numerically integrated forward, using a dynamical model of the solar system consisting of all planets. Forces from solar electromagnetic and corpuscular radiation effecting the particles are considered, too. Orbital dispersions of the model meteoroids are presented. The importance of nongravitational forces for a long-term orbital evolution of meteoroid streams is shown.  相似文献   

5.
Comet 15P/Finlay is unusual in that, contrary to ab initio expectations, it demonstrates no apparent linkage to any known meteor shower. Using data contained within the Electronic Atlas of Dynamical Evolutions of Short-Period Comets, we evaluate theoretical shower radiants for Comet 15P/Finlay, but find no evidence to link it to any meteoric anomalies in recorded antiquity. This result, however, must be tempered by the fact that any Comet 15P/Finlay-derived meteoroids will have a low, 16 km s−1, encounter velocity with Earth's atmosphere. Typically, therefore, one would expect mostly faint meteors to be produced during an encounter with a Comet 15P/Finlay-derived meteoroid stream. We have conducted a D -criterion survey of meteoroid orbits derived from three southern hemisphere meteor radar surveys conducted during the 1960s, and again we find no evidence for any Comet 15P/Finlay-related activity. Numerical calculations following the orbital evolution of hypothetical meteoroids ejected from the comet, at each perihelion epoch since 1886, indicate that Jovian perturbations effectively 'drive' the meteoroids to orbits with nodal points beyond the Earth's orbit. The numerical calculations indicate that, even if Comet 15P/Finlay had been a copious emitter of meteoroids during the past 100 years, virtually none of them would have evolved into orbits capable of being sampled by the Earth. There are good observational data, however, to suggest that Comet 15P/Finlay is becoming a transitional comet–asteroid object, and that it has probably not been an efficient producer of meteoroids during the past several hundreds of years.  相似文献   

6.
Earlier analyses of the Pioneer 8 and 9 experimental meteoroid data have shown that the detectors on these two spacecraft are intercepting meteoroids with hyperbolic orbital parameters. It is shown in this paper that these results are entirely consistent with and, indeed, to be expected from other observations of the interplanetary meteoroid complex. Collisional breakup of meteoroids and post-collision radiation pressure modification of their orbits is found to be a sufficient cause for the observed results. Details of the calculations as well as of the results are presented.  相似文献   

7.
We present a survey of 97 spectra of mainly sporadic meteors in the magnitude range +3 to −1, corresponding to meteoroid sizes 1-10 mm. For the majority of the meteors, heliocentric orbits are known as well. We classified the spectra according to relative intensities of the lines of Mg, Na, and Fe. Theoretical intensities of these lines for a chondritic composition of the meteoroid and a wide range of excitation and ionization conditions were computed. We found that only a minority of the meteoroids show chondritic composition. Three distinct populations of Na-free meteoroids, each comprising ∼10% of sporadic meteoroids in the studied size range, were identified. The first population are meteoroids on asteroidal orbits containing only Fe lines in their spectra and possibly related to iron-nickel meteorites. The second population are meteoroids on orbits with small perihelia (q?0.2 AU), where Na was lost by thermal desorption. The third population of Na-free meteoroids resides on Halley type cometary orbits. This material was possibly formed by irradiation of cometary surfaces by cosmic rays in the Oort cloud. The composition of meteoroids on Halley type orbits is diverse, probably reflecting internal inhomogeneity of comets. On average, cometary dust has lower than chondritic Fe/Mg ratio. Surprisingly, iron meteoroids prevail among millimeter-sized meteoroids on typical Apollo-asteroid orbits. We have also found varying content of Na in the members of the Geminid meteoroid stream, suggesting that Geminid meteoroids were not released from their parent body at the same time.  相似文献   

8.
Numerical integrations are used to show that the main contribution to the outburst observed in the June Bootid meteor shower in 1998 was a subset of meteoroids released from the parent comet, 7P/Pons–Winnecke, at its 1825 return. A substantial part of the June Bootid stream is in 2:1 resonance with Jupiter. This inhibits chaotic motion, allowing structures in the stream to remain compact enough over centuries that meteor outbursts can still be produced. Circumstances of ejection in 1825 are calculated that exactly result in orbits capable of producing meteors at the observed time in 1998. Required ejection velocities are  10–20 m s-1  .  相似文献   

9.
We analyse several mechanisms capable of creating orphan meteoroid streams (OMSs) for which a parent has not been identified. OMSs have been observed as meteor showers since the XIXth century and by the IRAS satellite in the 1980s. We find that the process of close encounters with giant planets (particularly Jupiter) is the most efficient mechanism to create them: only a limited section of the stream is perturbed and follows the parent body on its new orbit, while the majority of the meteoroids remain in their pre-encounter orbit or in an intermediate state, breaking the link with their parent body. Cometary non-gravitational forces can also contribute to the process since they cause the comet to drift away from its stream. However, they are not sufficient by themselves to produce an OMS. Resonances can either split or confine a stream over a long time (>1000 yr). Some meteoroid streams may look like OMSs since their parent comet is dormant or not observable (e.g. long period). Even if new techniques succeed in linking minor objects to meteoroid streams, OMSs will still exist simply because cometary nuclei are subject to complete disruption leading to their disappearance.  相似文献   

10.
P. Brown  R.J. Weryk  D.K. Wong  J. Jones 《Icarus》2008,195(1):317-339
Using a meteor orbit radar, a total of more than 2.5 million meteoroids with masses ∼10−7 kg have had orbits measured in the interval 2002-2006. From these data, a total of 45 meteoroid streams have been identified using a wavelet transform approach to isolate enhancements in radiant density in geocentric coordinates. Of the recorded streams, 12 are previously unreported or unrecognized. The survey finds >90% of all meteoroids at this size range are part of the sporadic meteoroid background. A large fraction of the radar detected streams have q<0.15 AU suggestive of a strong contribution from sungrazing comets to the meteoroid stream population currently intersecting the Earth. We find a remarkably long period of activity for the Taurid shower (almost half the year as a clearly definable radiant) and several streams notable for a high proportion of small meteoroids only, among these a strong new shower in January at the time of the Quadrantids (January Leonids). A new shower (Epsilon Perseids) has also been identified with orbital elements almost identical to Comet 96P/Machholz.  相似文献   

11.
In our work, the method that can help to predict the existence of distant objects in the Solar system is demonstrated. This method is connected with statistical properties of a heliocentric orbital complex of meteoroids with high eccentricities. Heliocentric meteoroid orbits with high eccentricities are escape routes for dust material from distant parental objects with near-circular orbits to Earth-crossing orbits. Ground-based meteor observations yield trajectory information from which we can derive their place of possible origin: comets, asteroids, and other objects (e.g. Kuiper Objects) in the Solar system or even interstellar space. Statistical distributions of radius vectors of nodes, and other parameters of orbits of meteoroids contain key information about position of greater bodies. We analyze meteor orbits with high eccentricities that were registered in 1975–1976 in Kharkiv (Ukraine). The orbital data of the Kharkiv electronic catalogue are received from observations of radiometeors with masses 10−6−10−3 g.  相似文献   

12.
Meteor showers have been observed for a considerable time, and the cause, meteoroids from a meteoroid stream ablating in the Earth's atmosphere, has also been understood for centuries. The connection between meteoroid streams and comets was also established 150 years ago. Since that time our ability both to understand the physics and to numerically model the situation has steadily increased. We will review the current state of knowledge. However, just as there are differences between the behaviour of long period comets, Halley family comets and Jupiter family comets, so also differences exist between the associated meteoroid streams. Streams associated with Jupiter family comets show much more variety in their behaviour, driven by the gravitational perturbations from Jupiter. The more interesting showers associated with Jupiter family comets will be discussed individually.  相似文献   

13.
M.D. Campbell-Brown 《Icarus》2008,196(1):144-163
Five years of meteor orbit data from CMOR (the Canadian Meteor Orbit Radar) are used to study the high-resolution orbital structure of the sporadic meteoroid complex. The large number of high quality orbits (2.35 million) allows the orbital characteristics of meteoroids to be studied not only in the five sporadic sources accessible from the latitude of London, Ontario, Canada, but at a resolution of 2 degrees. The radiant distribution of sporadic meteors is investigated, applying corrections for observing biases, and weighting to a constant limiting mass, and to a constant limiting energy. The orbital distribution of the sporadic sources is compared to other studies. The variation of average geocentric speed, semimajor axis, eccentricity, inclination and perihelion distance with meteoroid radiant is investigated. The source of a ring depleted in meteor radiants at 55 degrees from the apex is attributed to shorter collisional lifetimes inside the ring, due to a higher probability of catastrophic collisions with particles in the zodiacal cloud for the predominantly retrograde meteoroids inside the ring.  相似文献   

14.
The existence of asteroidal meteoroid streams capable of producing meteorite-dropping bolides has long being invoked, but evidence is scarce. Recent modelling of previously reported associations suggests that the time-scales to keep the orbital coherence of these streams producing meteorites are too short. We present an unequivocal association between near earth object (NEO) 2002NY40 and at least one bright fireball detected over Finland in 2006 August. Another two additional fireballs recorded from Spain and Finland seem to be related, together producing a fireball-producing stream (β Aquarids). On the basis of historical data, the 2006 finding suggests the existence of a meteoroid complex capable of producing meteorites. Taking into account present time-scales for orbital decoherence, if 2002NY40 has large meteoroids associated with it, such behaviour would be the consequence of a relatively recent asteroidal fragmentation. Supporting our claim, the heliocentric orbits of two recently discovered NEOs, 2004NL8 and 2002NY40, were found to exhibit a good similarity to each other and also to the orbits of the three bolides. The fireball spectra of the two Finish bolides showed that the chemical abundances of these objects are consistent with the main elements found in chondrites. This result is consistent with the probable Low iron, Low metal (LL) chondritic mineralogy of asteroid 2002NY40. Consequently, this asteroid may be delivering LL chondrites to the Earth. Additional fireball reports found in the literature suggest that the associated β Aquarid complex may have been delivering meteorites to the Earth during, at least, the last millennium.  相似文献   

15.
Using high-resolution, low-scan-rate, all-sky CCD cameras and high-level CCD video cameras, the SPanish Meteor and fireball Network (SPMN) recorded the 2007 κ Cygnid fireball outburst from several observing stations. Here, accurate trajectory, radiant and orbital data obtained for the κ Cygnid meteor are presented. The typical astrometric uncertainty is 1–2 arcmin, while velocity determination errors are of the order of 0.3–0.6 km s−1, though this depends on the distance of each event to the station and its particular viewing geometry. The observed orbital differences among 1993 and 2007 outbursts support the hypothesis that the formation of this meteoroid stream is a consequence of the fragmentation of a comet nucleus. Such disruptive process proceed as a cascade, where the break up of the progenitor body leads to produce small remnants, some fully disintegrate into different clumps of particles and other remaining as dormant objects such as 2008ED69, 2001MG1 and 2004LA12 which are now observed as near-Earth asteroids. In addition to the orbital data, we present a unique spectrum of a bright  κ  Cygnid fireball revealing that the main rocky components have chondritic abundances, and estimations of the tensile strength of those fireballs that exhibited a catastrophic disruption behaviour. All this evidence of the structure and composition of the κ Cygnid meteoroids is consistent with being composed by fine-grained materials typically released from comets.  相似文献   

16.
The parent bodies of a number of major meteoroid streams are not in doubt and the orbits of these parents are also well determined. For these major streams individual orbits for a significant number of member meteoroids have also been determined. There is a significant spread in the determined values of the semi-major axis of individual meteoroids in a particular stream and this paper assumes that this spread is caused primarily by a variation in the ejection process and draws conclusions regarding the value of the ejection velocities from this.  相似文献   

17.
The parent bodies of a number of major meteoroid streams are not in doubt and the orbits of these parents are also well determined. For these major streams individual orbits for a significant number of member meteoroids have also been determined. There is a significant spread in the determined values of the semi-major axis of individual meteoroids in a particular stream and this paper assumes that this spread is caused primarily by a variation in the ejection process and draws conclusions regarding the value of the ejection velocities from this.  相似文献   

18.
The Quadrantid meteor shower is one of the major showers that produces reliable displays every January. However, it is unique amongst the major showers in still not having its parent uniquely identified. One of the reasons for this may be because the stream, and presumably the parent, lies in a region of the Solar system where near-resonant motion with Jupiter, coupled with potential close encounters, is possible. Such a combination can lead to a rapid dynamical evolution of an orbit. In particular, it may be possible that the orbit of the parent both satisfies the condition for a close encounter and is in resonant motion, while most of the meteoroids cannot satisfy both conditions. This results in the parent evolving away from the bulk of the stream.
To date, two suggestions have been made regarding possible parents for the Quadrantid stream, these being Comet 1491 I and Comet 96P/Machholz. The argument in favour of the first named being the parent is because of the general similarity between the orbits around 1491. The argument for comet 96P/Machholz being the parent is based on the similarity in orbital evolution coupled with a similarity in orbits phase-shifted by 2000 yr. In this paper we suggest that on both counts asteroid 5496 (1973 NA) is more similar to the Quadrantids, and that even if 5496 is not the actual parent in the strict sense that meteoroids are currently being ejected, it is either likely to be a fragment of the parent or the dormant remains of the parent.  相似文献   

19.
We compare various objects as the possible parent comet of the1998 June Boötid, by using the Tisserand invariant and the D-discriminant. Furthermore,in order to investigate the behaviour of the meteoric stream orbit, wesimulate the orbital evolution of test particles that are released from7P/Pons–Winnecke. We show firstly that the parent comet of the 1998 June Boötids, is 7P/Pons–Winnecke, and secondly that the meteoroids which constitute 1998 June Boötids were released in 1819 and 1869 from the parent comet. In themid-1900s the meteoroids started to transfer to Earth-colliding orbitsby Jovian perturbations.  相似文献   

20.
In the paper the potential sources of energy of cometary outbursts have been reviewed. Considerations focus on four probable sources of the outbursts' energy. These are the polymerization of hydrogen cyanide HCN, impacts with the meteoroids, destruction of cometary grains in the field of strong solar wind and the transformation of amorphous water Ice into the crystalline one. The values of released energy and jumps of cometary brightness caused by these mechanisms have been discussed. A modern approach to the problem of the thermodynamical evolution of the comet nucleus which includes amorphous water ice is considered as the starting point in the discussion presented in the paper. The main characteristics of an outburst of a hypothetical comet belonging to the Jupiter family comet are calculated. The obtained results are in a good agreement with the characteristics observed during the real outbursts of comets. The main conclusion of this paper confirms a general presumption that the cometary outbursts can have different causes. However, the hypothesis concerning the amorphous water ice transformation appears to be the most probable one. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号