首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development and validation of an estuarine biotic integrity index   总被引:1,自引:0,他引:1  
We tested hypotheses about how estuarine fish assemblages respond to habitat degradation and then integrated these responses into an overall index, the Estuarine Biotic Integrity Index (EBI), which summarized observed changes. Fish assemblages (based on trawl catches) and habitat quality were measured monthly or biweekly at nine sites in two estuaries from March 1988 to June 1990. Submerged aquatic vegetation habitats were classified as low or medium quality based on year-round measurements of chemical and physical characteristics (phytoplankton blooms; macroalgae; dissolved oxygen; nutrients; dredged channels). We tested 15 metrics and selected 8 for inclusion in the EBI: total number of species, dominance, fish abundance (number or biomass), number of nursery species, number of estuarine spawning species, number of resident species, proportion of benthic-associated fishes, and proportion abnormal or diseased. Fish assemblages in low-quality sites had lower number of species, density, biomass, and dominance compared with medium-quality sites. Fish abundance peaked in July and August, and was lowest in January to March. The seasonal cycle in low-quality sites was damped compared with medium-quality sites. Abundances of fishes using estuaries as a spawning and nursery area and of benthic species were lower in low-quality sites compared to medium-quality sites. The individual metrics and the overall index correlated with habitat degradation. The EBI based on biomass did not do better than the EBI based on number, indicating that the extra effort to obtain biomass may not be warranted. We suggest the EBI is a useful indicator of estuarine ecosystem status because it reflects the relationship between anthropogenic alterations in estuarine ecosystems and the status of higher trophic levels.  相似文献   

2.
To use bioassessments to help diagnose or identify the specific environmental stressors affecting estuaries, we need a better understanding of the relationships among sediment chemistry guidelines, ambient toxicity tests, and community metrics. However, this relationship is not simple because metrics generally assess the responses at the community level of biological organization whereas sediment guidelines and ambient toxicity tests generally assess or are based on the responses at the organism level. The relationship may be further complicated by the influence of other chemical and physical variables that affect the bioavailability and toxicity of chemical contaminants in the environment. Between 1990 and 1993, the U.S. Environmental Protection Agency (USEPA) conducted an Environmental Monitoring and Assessment Program (EMAP) survey of estuarine sites in the Virginian Province of the eastern United States. The surveys collected data on benthic assemblages, physical and chemical habitat characteristics, and sediment chemistry and toxicity. We characterized these estuarine sites as affected by sediment contamination based on the exceedence of sediment guidelines or on ambient sediment toxicity tests (i.e., 10-day Ampelisca abdita survival). Then, benthic invertebrate metrics were compared among affected and unaffected sites to identify metrics sensitive to the contamination. A number of benthic invertebrate metrics differed between groups of sites segregated using the organism-level measures whereas other metrics did not. The difference among metrics appears to depend on the sensitivity of the individual metrics to the stressor gradient represented by metals or persistent organic toxics in sediments because the insensitive metrics do not effectively quantify the changes in the benthic invertebrate assemblage associated with these stressors. The significant relationships suggest that a relationship exists between the organism-level effects assessed by chemistry or ambient toxicity tests and the community-level effects assessed by community metrics and that the organism-level effects are predictive, to some extent, of community-level effects.  相似文献   

3.
Human alteration of land cover (e.g., urban and agricultural land use) and shoreline hardening (e.g., bulkheading and rip rap revetment) are intensifying due to increasing human populations and sea level rise. Fishes and crustaceans that are ecologically and economically valuable to coastal systems may be affected by these changes, but direct links between these stressors and faunal populations have been elusive at large spatial scales. We examined nearshore abundance patterns of 15 common taxa across gradients of urban and agricultural land cover as well as wetland and hardened shoreline in tributary subestuaries of the Chesapeake Bay and Delaware Coastal Bays. We used a comprehensive landscape-scale study design that included 587 sites in 39 subestuaries. Our analyses indicate shoreline hardening has predominantly negative effects on estuarine fauna in water directly adjacent to the hardened shoreline and at the larger system-scale as cumulative hardened shoreline increased in the subestuary. In contrast, abundances of 12 of 15 species increased with the proportion of shoreline comprised of wetlands. Abundances of several species were also significantly related to watershed cropland cover, submerged aquatic vegetation, and total nitrogen, suggesting land-use-mediated effects on prey and refuge habitat. Specifically, abundances of four bottom-oriented species were negatively related to cropland cover, which is correlated with elevated nitrogen and reduced submerged and wetland vegetation in the receiving subestuary. These empirical relationships raise important considerations for conservation and management strategies in coastal environments.  相似文献   

4.
Tools for assessing and communicating salt marsh condition are essential to guide decisions aimed at maintaining or restoring ecosystem integrity and services. Multimetric indices (MMIs) are increasingly used to provide integrated assessments of ecosystem condition. We employed a theory-based approach that considers the multivariate relationship of metrics with human disturbance to construct a salt marsh MMI for five National Parks in the northeastern USA. We quantified the degree of human disturbance for each marsh using the first principal component score from a principal components analysis of physical, chemical, and land use stressors. We then applied a metric selection algorithm to different combinations of about 45 vegetation and nekton metrics (e.g., species abundance, species richness, and ecological and functional classifications) derived from multi-year monitoring data. While MMIs derived from nekton or vegetation metrics alone were strongly correlated with human disturbance (r values from ?0.80 to ?0.93), an MMI derived from both vegetation and nekton metrics yielded an exceptionally strong correlation with disturbance (r = ?0.96). Individual MMIs included from one to five metrics. The metric-assembly algorithm yielded parsimonious MMIs that exhibit the greatest possible correlations with disturbance in a way that is objective, efficient, and reproducible.  相似文献   

5.
Estuaries are highly variable environments where fish are subjected to a diverse suite of habitat features (e.g., water quality gradients, physical structure) that filter local assemblages from a broader, regional species pool. Tidal, climatological, and oceanographic phenomena drive water quality gradients and, ultimately, expose individuals to other habitat features (e.g., stationary physical or biological elements, such as bathymetry or vegetation). Relationships between fish abundances, water quality gradients, and other habitat features in the Sacramento-San Joaquin Delta were examined as a case example to learn how habitat features serve as filters to structure local assemblages in large river-dominated estuaries. Fish communities were sampled in four tidal lakes along the estuarine gradient during summer-fall 2010 and 2011 and relationships with habitat features explored using ordination and generalized linear mixed models (GLMMs). Based on ordination results, landscape-level gradients in salinity, turbidity, and elevation were associated with distinct fish assemblages among tidal lakes. Native fishes were associated with increased salinity and turbidity, and decreased elevation. Within tidal lakes, GLMM results demonstrated that submersed aquatic vegetation density was the dominant driver of individual fish species densities. Both native and non-native species were associated with submersed aquatic vegetation, although native and non-native fish populations only minimally overlapped. These results help to provide a framework for predicting fish species assemblages in novel or changing habitats as they indicate that species assemblages are driven by a combination of location within the estuarine gradient and site-specific habitat features.  相似文献   

6.
Anthropogenic activities are a disturbance factor of coastal systems and can be widely recognized as a major threat to the health of coastal systems. However, natural events cannot be disregarded from management issues because of their significant influence on the communities living in these areas. Based on long-term subtidal data from the Mondego Estuary (Portugal), the effects of natural events (e.g., floods and droughts) on macrobenthic communities were compared with the anthropogenic events. Sampling stations were grouped into characteristic zones (mouth, north arm, south arm) so the community dynamics of each of these estuarine areas could be followed over time. Environmental assessment was performed for stations using the Benthic Assessment Tool (BAT), and compared with the existing pressures. Human impacts persist over a number of years and gradually reduce ecosystem health, as discussed in the European Water Framework Directive. Paradoxically, natural events cause stronger impacts but are of a shorter duration, which allows for a faster recovery of macrobenthic communities. The study showed that caution should be taken when developing and implementing water policies so as not to disregard the importance of the different events (natural and human-caused) on the ecosystem health (e.g., community degradation and water quality and ecological quality status assessment).  相似文献   

7.
We analyzed trends in a 23-year period of water quality and biotic data for Chesapeake Bay. Indicators were used to detect trends of improving and worsening environmental health in 15 regions and 70 segments of the bay and to assess the estuarine ecosystem’s responses to reduced nutrient loading from point (i.e., sewage treatment facilities) and non-point (e.g., agricultural and urban land use) sources. Despite extensive restoration efforts, ecological health-related water quality (chlorophyll-a, dissolved oxygen, Secchi depth) and biotic (phytoplankton and benthic indices) metrics evaluated herein have generally shown little improvement (submerged aquatic vegetation was an exception), and water clarity and chlorophyll-a have considerably worsened since 1986. Nutrient and sediment inputs from higher-than-average annual flows after 1992 combined with those from highly developed Coastal Plain areas and compromised ecosystem resiliency are important factors responsible for worsening chlorophyll-a and Secchi depth trends in mesohaline and polyhaline zones from 1986 to 2008.  相似文献   

8.
贾立  M. Menenti 《地球科学进展》2006,21(12):1254-1259
气候变化对植被动力学有非常大的影响。为了定量描述气候变化对植被的影响,文章利用MODIS fAPAR 数据和NCEP 的净辐射和降雨再分析数据对青藏高原地区气候变化对植被的影响进行了时间序列分析。研究所用的数据时间跨度为2000年至2005年。首先利用NCEP 再分析数据建立了干旱度因子的时间序列,为了与MODIS fAPAR 具有相同的时间采样间隔,由NCEP的日净辐射和日降雨量得到每8天的平均净辐射和8日降雨的和。根据一定时间间隔的净辐射与降雨量的比可以用来衡量相对于可利用水分的剩余能量,因此该比值也是干旱灾害的度量。其次,对MODIS fAPAR 的傅立叶时间序列分析提供了两个植被光合作用对干旱相应的因子,即fAPAR的年平均值及其年振幅值。在时间和空间尺度上对植被光合作用活动与干旱指数之间的关系进行了定量分析。对湿年和干年之间的响应差异进行了比较。研究表明较干地区对气候变化的响应最为显著。分析应该扩展到更长的时间跨度以便更加有效地在时间和空间尺度上评估气候变化对植被动力学的影响。  相似文献   

9.
《Applied Geochemistry》2002,17(4):475-492
Trace metal concentrations in soils and in stream and estuarine sediments from a subtropical urban watershed in Hawaii are presented. The results are placed in the context of historical studies of environmental quality (water, soils, and sediment) in Hawaii to elucidate sources of trace elements and the processes responsible for their distribution. This work builds on earlier studies on sediments of Ala Wai Canal of urban Honolulu by examining spatial and temporal variations in the trace elements throughout the watershed. Natural processes and anthropogenic activity in urban Honolulu contribute to spatial and temporal variations of trace element concentrations throughout the watershed. Enrichment of trace elements in watershed soils result, in some cases, from contributions attributed to the weathering of volcanic rocks, as well as to a more variable anthropogenic input that reflects changes in land use in Honolulu. Varying concentrations of As, Cd, Cu, Pb and Zn in sediments reflect about 60 a of anthropogenic activity in Honolulu. Land use has a strong impact on the spatial distribution and abundance of selected trace elements in soils and stream sediments. As noted in continental US settings, the phasing out of Pb-alkyl fuel additives has decreased Pb inputs to recently deposited estuarine sediments. Yet, a substantial historical anthropogenic Pb inventory remains in soils of the watershed and erosion of surface soils continues to contribute to its enrichment in estuarine sediments. Concentrations of other elements (e.g., Cu, Zn, Cd), however, have not decreased with time, suggesting continued active inputs. Concentrations of Ba, Co, Cr, Ni, V and U, although elevated in some cases, typically reflect greater proportions attributed to natural sources rather than anthropogenic input.  相似文献   

10.
Coastal ecosystems are characterized by relatively deep, plankton-based estuaries and much shallower systems where light reaches the bottom. These latter systems, including lagoons, bar-built estuaries, the fringing regions of deeper systems, and other systems of only a few meters deep, are characterized by a variety of benthic primary producers that augment and, in many cases, dominate the production supplied by phytoplankton. These “shallow coastal photic systems” are subject to a wide variety of both natural and anthropogenic drivers and possess numerous natural “filters” that modulate their response to these drivers; in many cases, the responses are much different from those in deeper estuaries. Natural drivers include meteorological forcing, freshwater inflow, episodic events such as storms, wet/dry periods, and background loading of optically active constituents. Anthropogenic drivers include accelerated inputs of nutrients and sediments, chemical contaminants, physical alteration and hydrodynamic manipulation, climate change, the presence of intensive aquaculture, fishery harvests, and introduction of exotic species. The response of these systems is modulated by a number of factors, notably bathymetry, physical flushing, fetch, sediment type, background light attenuation, and the presence of benthic autotrophs, suspension feeding bivalves, and fringing tidal wetlands. Finally, responses to stressors in these systems, particularly anthropogenic nutrient enrichment, consist of blooms of phytoplankton, macroalgae, and epiphytic algae, including harmful algal blooms, subsequent declines in submerged aquatic vegetation and loss of critical habitat, development of hypoxia/anoxia particularly on short time scales (i.e., “diel-cycling”), fish kills, and loss of secondary production. This special issue of Estuaries and Coasts serves to integrate current understanding of the structure and function of shallow coastal photic systems, illustrate the many drivers that cause change in these systems, and synthesize their varied responses.  相似文献   

11.
We examined the vascular plant species richness and the extent, density, and height ofSpartina species of ten Narragansett Bay, Rhode Island (United States) fringe salt marshes which had a wide range of residential land development and N-loadings associated with their watersheds. Significant inverse relationships of tallS. alterniflora with species richness and with the extent and density ofS. patens and shortS. alterniflora were observed. Extent and density ofS. patens and extent of shortS. alterniflora were positively and significantly related with plant species richness. Marsh elevation and area did not significantly correlate with plant structure. Flood tide height significantly and inversely correlated withS. patens, but did not significantly relate toS. alterniflora or plant species richness. Marsh width significantly and positively correlated with plant species richness andS. patens and inversely correlated with tallS. alterniflora. Significant inverse relationships were observed for N-load, % residential development, and slope withS. patens, shortS. alterniflora, and species richness, and significant positive relationships with tallS. alterniflora. The marsh slope and width were significantly correlated with N-load and residential development that made it difficult to determine to what extent anthropogenic stressors were contributing to the variation in the plant structure among the marshes. At five marhes with similar slopes, there were significant inverse relationships of N-load withS. patens (density and extent) and a positive relationship with tallS. alterniflora (extent). Although there were no significant relationships of slope with the plant metrics among the five sites, other physical factors, such as the flood tide height and marsh width, significantly correlated with the extent and density ofSpartina species. Significant relationships of N-load with plant structure (albeit confounded by the effect of the physical characteristics) support the hypothesis of competitive displacement of dominant marsh plants under elevated nitrogen. It is likely that the varying plant structure in New England marshes is a response to a combination of natural factors and multiple anthropogenic stressors (e.g., eutrophication and sea level rise).  相似文献   

12.
Important parameters of estuarine variability include morphology, flushing times, nutrient loading rates, and wetland: water ratios. This variability both reflects and disguises underlying relationships between the physics and biology of estuaries, which this comparative analysis seeks to reveal, using the Gulf of Mexico (GOM) estuaries as a starting point. A question used to focus this analysis is: are the GOM estuaries unique? The GOM receives the Mississippi River, a uniquely large, world-class river, which dominates the freshwater and nutrient inflows to the GOM continental shelf, whose margins include 35 major estuarine systems. These GOM estuaries have 28% and 41% of the U.S. estuarine wetlands and open water, respectively. Within the GOM, estuarine nitrogen, phosphorus, and suspended matter loading varies over 2 orders of magnitude. Anoxic estuarine events tend to occur in estuaries with relatively slow freshwater turnover and high nitrogen loading. Compared to estuaries from other regions in the U.S., the average GOM estuary is distinguished by shallower depths, faster freshwater flushing time, a higher wetland area:open water area ratio, greater fisheries yield per area wetland, lower tidal range, and higher sediment accumulation rates. The average GOM estuary often, but not always, has a flora and fauna not usually found in most other U.S. estuaries (e.g., manatees and mangroves). Coastal wetland loss in the GOM is extraordinarily high compared to other regions and is causally linked to cultural influences. Variations in nutrient loading and population density are very large among and within estuarine regions. This variation is large enough to demonstrate that there are insufficient systematic differences among these estuarine regions that precludes cross-system analyses. There are no abrupt discontinuities among regions in the fisheries yields per wetland area, tidal amplitude and vegetation range, salt marsh vertical accretion rates and organic accumulations, nitrogen retention, or wetland restoration rates. These results suggest that a comparative analysis emphasizing forcing functions, rather than geographic uniqueness, will lead to significant progress in understanding how all estuaries function, are perturbed, and even how they can be restored.  相似文献   

13.
Shallow estuarine habitats often support large populations of small nekton (fishes and decapod crustaceans), but unique characteristics of these habitats make sampling these nekton populations difficult. We discuss development of sampling designs and evaluate some commonly used devices for quantitatively sampling nekton populations. Important considerations of the sampling design include the size and number of samples, their distribution in time and space, and control of tide level. High, stable catch efficiency should be the most important grear characteristic considered when selecting a sampling device to quantify nekton densities. However, the most commonly used gears in studies of estuarine habitats (trawls and seines) have low, variable catch efficiency. Problems with consistently low catch efficiency can be corrected, but large unpredictable variations in this gear characteristic pose a much more difficult challenge. Study results may be bised if the varibility in catch efficiency is related to the treatments or habitat characteristics being measured in the sampling design. Enclosure devices, such as throw traps and drop samplers, have fewer variables influencing catch efficiency than do towed nets (i.e., trawls and seines); and the catch efficiency of these enclosure samplers does not appear to vary substantially with habitat characteristics typical of shallow estuarine areas (e.g., presence of vegetation). The area enclosed by these samplers is often small, but increasing the sample number can generally compensate for this limitation. We recommend using enclosure samplers for estimating densities of small nekton in shallow estuarine habitats because these samplers provide the most reliable quantitative data, and the results of studies using these samplers should be comparable. Many kinds of enclosure samplers are now available, and specific requirements of a project will distate which gear should be selected.  相似文献   

14.
Eutrophication in marine ecosystems is an important problem that requires an accurate assessment. Although Basque estuaries (northern Spain) have historically been under high anthropogenic pressure, no specific eutrophication assessment method had been applied in these waters. In this study, a method employed in the Basque Country (BC) to assess the ??risk of failing to achieve good ecological status?? under the requirements of the Water Framework Directive (WFD) was adapted to exclusively assess the risk of eutrophication. This method is based on the driver?Cpressure?Cstate?Cimpact?Cresponse approach. The results from this method (called WFD-BC method) were compared to the results from Assessment of Estuarine Trophic Status (ASSETS; a specific method developed in the US to assess estuarine trophic status in a pressure?Cstate?Cresponse approach). The nutrient pressure was better characterized with the WFD-BC method due to the local hydrographic conditions (i.e., small and river-influenced estuaries) that were not well accommodated by the ASSETS method. In contrast, the WFD-BC results for assessment of state generally reflected worse conditions than the results from the ASSETS method due to the different indicators employed and the way these are integrated in the WFD-BC method. Overall, the WFD-BC method showed a good potential to assess eutrophication. However, to improve it, a lower weight for the benthos and macroalgae is recommended for evaluating state.  相似文献   

15.
This study identified drivers of change in Barnegat Bay–Little Egg Harbor Estuary, NJ, USA over multiple long-term time periods by developing an assessment tool (an “Eutrophication Index”) capable of handling data gaps and identifying the condition of and relationships between ecosystem pressures, ecosystem state, and biotic responses. The Eutrophication Index integrates 15 indicators in 3 components: (1) water quality, (2) light availability, and (3) seagrass response. Annual quantitative assessments of condition and its consistency for three geographic segments range from 0 (highly degraded) to 100 (excellent condition). Eutrophication Index values significantly declined (p?<?0.05) by 34 and 36 % in central and south segments from 73 and 71 in the early 1990s to 48 and 45 in 2010, respectively. Ongoing declines despite periods of improvement (e.g., 1989–1992, 1996–2002, and 2006–2008) suggest these estuarine segments are currently undergoing eutrophication. The north segment had highest nutrient loading and lowest Eutrophication Index values (2010 Eutrophication Index value?=?37) but increased over time (from 14 in 1991 to 50 in 2009) in contrast to trends in central and south segments. Rapid initial declines of Eutrophication Index values with increasing loading highlight that the estuary is sensitive to loading. Ecosystem response to total nutrient loading, as described by the Index of Eutrophication, exhibited nonlinearity at loading rates of >1,200 and <5,000 kg TN km?2 year?1 and >100 and <250 kg TP km?2 year?1, values similar to responses of seagrass to nutrient loading in many ecosystems. While nutrient loading is initially a critical driver of ecosystem change, other factors, e.g., light availability and drive ecosystem condition, yield nonlinearity. Empirical evidence for switches in the driving factors of ecosystem stress adds complexity to the conceptualization of ecosystem resiliency due to feedback from multiple dynamic, nonlinear stressors.  相似文献   

16.
To elucidate relationships between land cover and water quality along the central California coast, we collected monthly samples from 14 coastal waterway outlets representing various degrees of human development. Sites were distributed between three salinity categories, freshwater, estuarine, and marine, to better understand land cover-water quality relationships across a range of coastal aquatic ecosystems. Samples were analyzed for fecal indicator bacteria (FIB), dissolved nutrients, stable nitrogen isotopes in particulate organic matter, and chlorophylla (chla). Sediment samples from 11 sites were analyzed for the concentration of the anthropogenic organic contaminant perfluorooctane sulfonate and its precursors (ΣPFOS). While the data indicated impairment by nutrient, microbial, and organic contaminants at both agricultural and urban sites, the percentage of agricultural land cover was the most robust indicator of impairment, showing significant correlations (p<0.05) to FIB, nutrient, chla, and ΣPFOS levels. FIB densities were strongly influenced by salinity and were highest at sites dominated by agriculture and urbanization. Nutrient levels and chla correlated to both agricultural and urban land use metrics as well. Positive correlations among FIB, nutrients, chla, and ΣPFOS suggest a synergy between microbial, nutrient, and organic pollution. The results emphasize the importance of land management in protecting coastal water bodies and human health, and identify nutrient, microbial, and organic pollution as prevalent problems in coastal California water bodies.  相似文献   

17.
A case study is presented to assess the use of sedimentary chemical indicators for estuarine health. Reliable and efficient estuarine indicators are essential for management and monitoring purposes. Estuarine and fluvial sediments from Brisbane Water estuary were analysed for heavy metals to assess the quality of sediments and to determine the source and dispersion of contaminants in the estuary. Brisbane Water, 50 km north of Sydney, is a shallow (~5 m in main water body), wave-dominated barrier estuary with a generally sparsely developed catchment, except in the north where it is urbanised and industrialised. Heavy-metal loadings calculated for sub-catchments and the distribution of metals in surficial sediment identified Narara Creek, which drains the urbanised northern part of the catchment, as the main source of contaminants. Vertical profiles of sedimentary contaminants show that contamination continues to increase rapidly in all parts of the waterway to the present day. Concentrations of Cu, Pb and Zn in sediment adjacent to Narara Creek exceeded lower guideline levels, although moderate bioavailability (~40% for Cu, Pb and Zn) suggests the risk posed by sediments to benthic populations is low. Sediments in all parts of Brisbane Water show evidence of minor anthropogenic influence with maximum human-induced change (up to 5× enrichment) in the north of the estuary. Results demonstrate the use of sediment-bound heavy metal as an appropriate indicator of estuarine health.  相似文献   

18.
傅寒晶  简星  梁杭海 《古地理学报》2021,23(6):1192-1209
风化作用是源-汇沉积体系中的重要环节,气候、构造、地形、植被和岩性在不同程度上控制着地表硅酸盐化学风化,量化硅酸盐化学风化强度有助于开展全球性的实例研究对比。本研究归纳总结了基于碎屑沉积物的化学风化强度指标,包括岩石学和矿物学指标、元素地球化学指标和非传统稳定同位素指标,并指出了指标在应用中存在的问题。这些指标中:砂质沉积物骨架颗粒组成、粉砂级碎屑的矿物组成和矿物表面结构特征从矿物组成和结构上直观地反映了化学风化强度,运用不多但值得关注;黏土矿物组合和主微量元素指标如CIA、Rb/Sr、αAlE等在实例研究中运用广泛,同时也显现出易受物源和水动力分选影响等弊端;新近开发的利用锂、硼、钾、镁、硅等同位素示踪化学风化强度的方法具有广阔的应用前景,同位素的分馏机理有待完善。源-汇体系中的其他过程如物源供给、水动力分选、成岩作用、再旋回作用、成土作用、物理淋滤和生物利用等会影响化学风化指标的使用效果,通过多指标的综合运用和相互验证,可以有效提升化学风化强度评估的准确性。  相似文献   

19.
Pollen ratios have been commonly used to indicate landscape change and climate variation. However, the reliability of these indicators needs to be verified by studies on modern pollen process. Here, we synthesized the major pollen ratios used in previous studies and found that pollen ratios are valuable indicators for the change of vegetation types and climate, e.g., precipitation and moisture. Artemisia/Chenopodiaceae (A/C) ratio could increase from desert to steppe and positively correlate with mean annual precipitation (MAP). Artemisia/Cyperaceae (A/Cy) ratio could be used to identify cool meadow and warm steppe, and it is positively correlated with temperature of July (TJuly) and negatively correlated with MAP. Arboreal pollen/nonarboreal pollen (AP/NAP) ratio can be used as a semi-quantitative indicator for landscape and regional precipitation changes. In spite of the significant climatic and environmental implications of the pollen ratios, they were also questioned in some studies under various circumstances and thus caution is needed when using them to indicate climate in different vegetation zones.  相似文献   

20.
作为河、湖以及滨海湿地生态系统中必不可少的组成部分,水生植被具有重要的生态服务价值,且许多生态服务价值是通过改变水体动力条件实现的。含植被水流研究不仅可用于科学阐明水生植被的生态环境效应,还能指导河湖生态系统修复及污染治理的工程实践。本文考虑单向明渠流与波浪2种水动力环境,对国内外有关水生植被对水流结构以及泥沙运动影响研究的主要成果进行梳理。单向明渠流条件下,植被对水动力的影响研究主要集中于植被对水流阻力的影响以及冠层内水体的紊动结构与紊动尺度特征;波浪条件下,植被对波高与波浪流速的减弱作用以及冠层内水体的时均与紊动结构特征是研究重点。受水动力条件控制,植被影响下的泥沙运动特征也受到广泛关注,且研究焦点为单向明渠流条件下水生植被对泥沙起动与输移的影响以及波浪条件下植被对床底泥沙再悬浮的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号