首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
自生泥晶,也称作原地微晶碳酸钙或原地灰泥以区分他生泥晶或异地泥晶,指的是通过无机和/或有机媒介过程作用在原地形成的泥晶碳酸钙。在前人的基础上,对自生泥晶概念的提出和发展进行了概括;对自生泥晶的矿物组成、显微结构、荧光和阴极发光特征进行了总结;对自生泥晶的形成过程和来源(包括生物矿化作用、有机矿化作用和无机沉淀三种方式)进行了探讨;对自生泥晶在不同沉积环境碳酸盐岩中的贡献及其地球化学指示进行了论述;对自生泥晶在地质历史时期的分布做了归纳;最后对自生泥晶的后续研究提出了一些展望。认为正确认识自生泥晶的性质,其形成过程和来源对碳酸盐岩的结构成因分类、地质历史时期生物礁丘的演化和地球化学指示、建筑工程和环境修复、探寻地外生命和油气地质等方面都将产生深远的影响。  相似文献   

2.
《Sedimentology》2018,65(1):303-333
Calathid–demosponge carbonate mounds are a feature of Early to Middle Ordovician shallow‐marine carbonate depositional environments of tropical to subtropical palaeolatitudes. These mounds contain an important amount of autochthonous non‐skeletal microcrystalline calcium‐carbonate (automicrite) conventionally considered microbial in origin. Here, the automicrite of calathid–demosponge carbonate mounds (Tarim Basin, north‐west China) is broken down into five distinct fabrics: an in situ peloidal–spiculiferous fabric (AM‐1), an in situ peloidal fabric (AM‐2), an aphanitic–microtubular fabric (AM‐3), a minipeloidal fabric (AM‐4) and a laminoid–cerebroid fabric (AM‐5). Type AM‐1 occurs with AM‐2 being succeeded by an assemblage of AM‐3 and AM‐4. Types AM‐4 and AM‐5 are separated by an erosional disconformity. A good correlation of fluorescence and cathodoluminescence of automicrites indicates that induced and supported organomineralization produced automicrite, probably via the permineralization of non‐living organic substrates adsorbing dissolved metal–humate complexes. Using a spreadsheet with six parameters and 17 characters, AM‐1 to AM‐4 turn out to be non‐microbial in origin. Instead, these automicrites represent relics of calcified metazoan tissues, such as siliceous sponges, non‐spiculate sponges or the basal attachment structures of stalked invertebrates. Fabric AM‐5 is a microbial carbonate but is post‐mound in origin forming a drape within a reefal framework established by AM‐4. The five automicritic fabrics, individually or as an assemblage, are a common element of Ordovician calathid–demosponge carbonate mounds in general. The reassessment of the origins of these automicritic fabrics holds consequences for understanding of the Great Ordovician Biodiversification Event in terms of community structure, reef ecology and reef evolution. Episodically, these fabrics are also present in other carbonate build‐ups stretching from the Neoproterozoic over the entire Phanerozoic Eon. The massive calcification of metazoan soft tissue (AM‐1 to AM‐4) characterizes episodes and conditions of enhanced marine calcification and might be of value to refine secular trends of p CO2, Ca concentration and Mg/Ca ratio at the scale of individual sedimentary basins.  相似文献   

3.
The complex pattern of biological accretion, internal sedimentation, early lithification, and biological destruction, that characterizes modern reefs and many fossil reefs has been recognized in archaeocyathid-rich patch reefs of Lower Cambrian age in the Forteau Formation, southern Labrador. Patch reefs occur as isolated masses or complex associations of many discrete masses of archaeocyathid-rich limestone and skeletal lime sands, surrounded by well-bedded skeletal limestones and shales. Each reef is composed of many loafshaped mounds stacked on top of one another. The limestone of each mound comprises archaeocyathids and Renalcis or Renalcis-like structures in a matrix of argillaceous lime mud rich in sponge spicules, trilobite and salterellid skeletons. Numerous growth cavities roofed by pendant Renalcis-like organisms and Renalcis are partially to completely filled with geopetal sediment indicating that much of the matrix was deposited as internal sediment. Two stages of diagenetic alteration are recognized: (1) syn-depositional, which affected only the reefs, and (2) post-depositional, which affected both reefs and inter-reef sediments. On the sea floor reef sediments were pervasively cemented and fibrous carbonate was precipitated in intraskeletal and growth cavities. These limestones and cements as well as archaeocyathid skeletons, were subsequently bored by endolithic organisms. Later post-depositional subaerial diagenesis resulted first in dissolution of certain skeletons and precipitation of calcite cement above the water table, followed by extensive precipitation of pore-filling calcite below the water table. These carbonate reefs are similar in structure to the basal pioneer accumulations of much younger lower and middle Palaeozoic reefs. They did not develop into massive ‘ecologic’ reefs because archaeocyathids never developed the necessary large, massive, hemispherical skeletons. This occurrence indicates that reefs developed more or less coincident with, and not long after, the appearance of skeletal metazoans in the Lower Cambrian.  相似文献   

4.
Sedimentology and budget of a Recent carbonate mound, Florida Keys   总被引:2,自引:0,他引:2  
The sedimentology of a Recent carbonate mound is investigated to further our understanding of mound building communities, surface and subsurface mound sediments, and the overall sediment budget of mounds. Nine sedimentary facies of the surface of Tavernier mound, Florida Keys are described. These sediments are composed of Neogoniolithon, Halimeda, Porites, mollusc and foraminiferal grains, and lime mud. Muds rich in aragonite and high magnesian calcite show little mineralogical variation over the mound surface. Geochemical evidence suggests that the mud is mainly formed from breakdown of codiacean algae and Thalassia blade epibionts. Production rates of the facies are established from in situ growth rate experiments and standing-crop surveys. Annual calcium carbonate production is c. 500gm-2, intermediate between reef and other bay and lagoonal environment production rates in the Caribbean. The internal structure of the mound, studied from piston cores and sediment probes, indicates that seven facies can be identified. Five of these can be related to the present-day facies, and occur in the upper part of the mound (gravel-mound stage). The remaining two facies, characterized by molluscs and aragonite-rich muds, occur in the lower part of the mound (mud-mound stage), and are most similar to facies from typical Florida Bay mud mounds. Mangrove peats within the mound indicate former intertidal areas and C14 dates from these peats provide a time framework for mound sedimentation. The mound appears to have formed because of an initial valley in the Pleistocene surface which accumulated mud in a shallow embayment during the Holocene transgression. A sediment budget for the mound is presented which compares production rates from present-day facies with subsurface sediment masses. During the mud mound stage production rates were similar to accumulation rates and the mound was similar to the present-day mounds of Florida Bay. During the gravel mound stage (3400 yr BP-present day), conditions were more normal marine and the establishment of Porites and Neogoniolithon on the mound increased production rates 10% over accumulation rates. This excess sediment is thought to be transported off the mound to the surrounding seabed. Models are proposed which divide carbonate mounds on the basis of internal versus external sediment supply. Comparisons are made with other Recent and ancient mounds. Similarities exist between the roles of the biotic components of late Palaeozoic mounds but major differences are found when structures and early diagenesis are compared.  相似文献   

5.
Faunally restricted argillaceous wackestones from the Middle Jurassic of eastern England contain evidence of early diagenetic skeletal aragonite dissolution and stabilization of the carbonate matrix, closely followed by precipitation of zoned calcite cements, and precipitation of pyrite. Distinctive cathodoluminescence and trace element trends through the authigenic calcites, their negative δ13C compositions and the location of pyrite in the paragenetic sequence indicate that calcite precipitation took place during sequential bacterial Mn, Fe and sulphate reduction. Calcite δ18O values are compatible with cementation from essentially marine pore fluids, although compositions vary owing to minor contamination with 18O-depleted ‘late’cements. Mg and Sr concentrations in the calcites are lower than those in recent marine calcite cements. This may be a result of kinetic factors associated with the shallow burial cementation microenvironments. Bicarbonate for sustained precipitation of the authigenic calcites was derived largely from aragonite remobilization, augmented by that produced through anaerobic organic matter oxidation in the metal and sulphate reduction environments. Aragonite dissolution is thought to have been induced by acidity generated during aerobic bacterial oxidation of organic matter. Distinction of post-oxic metal reduction and anoxic sulphate reduction diagenetic environments in modern carbonate sediments is uncommon outside pelagic settings, and early bacterially mediated diagenesis in modern platform carbonates is associated with extensive carbonate dissolution. High detrital Fe contents of the Jurassic sediments, and their restricted depositional environment, were probably the critical factors promoting early cementation. These precipitates constitute a unique example of calcite authigenesis in shallow water limestones during bacterial Mn and Fe reduction.  相似文献   

6.
Throughout most of the Phanerozoic, reef rigidity resulted as much, or more, from early lithification by microbial carbonates and biologically induced cements (non-enzymatic carbonates) than from biological encrustation of, or by, large, enzymatically secreted metazoan skeletons. Reef framework is divided into four categories: (1) skeletal metazoan; (2) non-skeletal microbialite (stromatolite and thrombolite); (3) calcimicrobe; and (4) biocementstone, in which small or delicate organisms serve as scaffolds for rigid cement crusts. The last three categories are dominated by non-enzymatic carbonates. Skeletal framework and non-skeletal microbialite framework were the most abundant framework types through the Phanerozoic. The composition and abundance of skeletal framework was controlled largely by mass extinction events, but most reefs consisted of both microbialite and skeletal organisms in a mutually beneficial relationship. Microbialite framework was abundant throughout the Palaeozoic and early Mesozoic, but declined after the Jurassic. Calcimicrobe framework was important during the Cambrian-Early Ordovician and Devonian and biocementstone framework was important from the late Mississippian to the Late Triassic. The Phanerozoic history of reefs does not correlate well with the stratigraphic distribution of large, skeletal ‘reef builders’, or with a variety of physicochemical parameters, including sea-level history, Wilson Cycle or global climate cycles. Because non-enzymatic carbonates result from induction by non-obligate calcifiers, and not enzymatic precipitation by obligate calcifiers, the distribution of these carbonates was controlled to a larger extent by temporal changes in physicochemical parameters affecting the saturation state of sea water with respect to carbonate minerals. Changes in pCO2, Ca/Mg ratios, cation concentrations and temperature may have affected the abundance of non-enzymatic carbonates and, hence, reefs, independently from the effects of these same parameters and mass extinction events on skeletal reef biota. The decline in abundance of reefal microbialite and absence of calcimicrobe and biocementstone reef framework after the Jurassic may be a result of relatively low saturation states of sea water owing to increased removal and sequestration of finite marine carbonate resources by calcareous plankton since the Jurassic. Reef history is difficult to correlate with temporal changes in specific global parameters because these parameters affect skeletal biota and biologically induced carbonate precipitation independently. Hence, reef history was regulated not just by skeletal reef biota, but by parameters governing non-enzymatic carbonates.  相似文献   

7.
Stromatactis‐bearing mud‐mounds remain an enigmatic reef type despite being common in Palaeozoic ramp settings. Two well preserved Upper Devonian (Frasnian) mud‐mounds in the Mount Hawk Formation crop out side by side in the southern Rocky Mountains of west‐central Alberta and provide an opportunity to develop a new case study that can be compared with the other coeval examples, such as those well‐known ones in southern Belgium, as well as evaluate competing hypotheses for mud‐mound formation. The southern mud‐mound is 46·2 m thick and 38·6 m wide at the base, whilst the northern one is 53·3 m thick and 72·2 m wide at the base, and they exhibit three or four growth stages indicated by interfingering and onlapping geometries with flanking strata. The biota is diverse, but fossils only occupy 10·7% by volume, among which sponge spicules, echinoderms, ostracods, brachiopods and calcimicrobes belonging to Girvanella and Rothpletzella are the most common. Five microfacies are discriminated in the mud‐mounds: biomicrite, clotted micrite, spiculite, stromatolite and laminite, with clotted micrite comprising the largest proportion. There is no internal vertical or lateral palaeoecological zonation, and the presence of calcimicrobes and calcareous algae throughout indicates accretion entirely within the photic zone, in a deeper ramp setting seaward of a large carbonate platform to the east. Stromatactis is abundant and the cavities were mostly due to excavation by currents rather than physical collapse of spiculate siliceous sponges. Formation of lime mud involved a combination of multiple organisms, mechanisms and processes. Cyanobacteria were integral to mud‐mound frame‐building and accretion because they stabilized the surface, often permineralized to form Girvanella and provided organic matter that was decomposed by bacteria. This induced precipitation of micrite, forming early indurated rigid masses, evidenced by the presence of intraclasts, stromatactis cavities, isopachous marine cements, absence of bioturbation and rare synsedimentary brittle deformation. The same microbial components, invertebrate biota and clotted micrite occur in underlying strata, suggesting that there was a protracted period of potential mud‐mound initiation before the exact conditions arose to trigger it. The ramp setting, antecedent sea floor topography and relative sea‐level likely contributed together to control this. This study indicates that mud‐mound formation was controlled by a combination of processes, but they are essentially a microbial buildup.  相似文献   

8.
Late Frasnian mounds of the Yunghsien Formation, Guilin, South China, developed as part of the Guilin platform, mostly in reef‐flat and platform margin settings. Microbial mounds in platform margin settings at Hantang, about 10 km west of Guilin, contain Frasnian biota, such as Stachyodes and Kuangxiastraea and, thus, occur below the Frasnian‐Famennian mass extinction boundary. Platform margin facies were dominated by microbes, algae and receptaculitids. Massive corals and stromatoporoids are not common and rarely show reef‐building functions as they did in Givetian time. The margin mounds are composed of brachiopod‐receptaculitid cementstone, and a variety of boundstones that contain Rothpletzella, Renalcis, thrombolite and stromatolite. Other microbial communities include Girvanella, Izhella, Ortonella and Wetheredella. Solenoporoid algae are abundant locally. Zebra structures and neptunian dykes are well‐developed at some intervals. Pervasive early cementation played an important role in lithification of the microbial boundstones and rudstones. Frasnian reefs of many regions of the world were constructed by stromatoporoids and corals, although a shift to calcimicrobe‐dominated frameworks occurred before the Famennian. However, the exact ages of many Frasnian margin outcrops are poorly constrained owing to difficulties dating shallow carbonate facies. The Hantang mounds represent a microbe‐dominated reef‐building community with rare skeletal reef builders, consistent with major Late Devonian changes in reef composition, diversity and guild structure occurring before the end of the Frasnian. A similar transition occurred in the Canning Basin of Western Australia, but coeval successions in North America, Western Europe and the northern Urals are either less well‐known or represent different bathymetric settings. The transition in reef‐building style below the Frasnian‐Famennian boundary is documented here in the two best exposed successions on two continents, which may have been global. Set in the larger context of Late Devonian and Mississippian microbial reef‐building, the Hantang mounds help to demonstrate that controls on microbial reef communities differed from those on larger skeletal reef biota. Calcimicrobes replaced stromatoporoids as major reef builders before the Frasnian‐Famennian extinction event, and increasing stromatoporoid diversity towards the end of the Famennian did not result in a resurgence of skeletal reef frameworks. Calcimicrobes dominated margin facies through the Famennian, but declined near the Devonian‐Carboniferous boundary. Stromatolite and thrombolite facies, which occurred behind the mound margin at Hantang, rose to dominate Mississippian shallow‐water reef frameworks with only a minor resurgence of the important Frasnian calcimicrobe Renalcis in the Visean when well‐skeletonized organisms (corals) also became volumetrically significant frame builders again.  相似文献   

9.
This study formulates a comprehensive depositional model for hydromagnesite–magnesite playas. Mineralogical, isotopic and hydrogeochemical data are coupled with electron microscopy and field observations of the hydromagnesite–magnesite playas near Atlin, British Columbia, Canada. Four surface environments are recognized: wetlands, grasslands, localized mounds (metre‐scale) and amalgamated mounds composed primarily of hydromagnesite [Mg5(CO3)4(OH)2·4H2O], which are interpreted to represent stages in playa genesis. Water chemistry, precipitation kinetics and depositional environment are primary controls on sediment mineralogy. At depth (average ≈ 2 m), Ca–Mg‐carbonate sediments overlay early Holocene glaciolacustrine sediments indicating deposition within a lake post‐deglaciation. This mineralogical change corresponds to a shift from siliciclastic to chemical carbonate deposition as the supply of fresh surface water (for example, glacier meltwater) ceased and was replaced by alkaline groundwater. Weathering of ultramafic bedrock in the region produces Mg–HCO3 groundwater that concentrates by evaporation upon discharging into closed basins, occupied by the playas. An uppermost unit of Mg‐carbonate sediments (hydromagnesite mounds) overlies the Ca–Mg‐carbonate sediments. This second mineralogical shift corresponds to a change in the depositional environment from subaqueous to subaerial, occurring once sediments ‘emerged’ from the water surface. Capillary action and evaporation draw Mg–HCO3 water up towards the ground surface, precipitating Mg‐carbonate minerals. Evaporation at the water table causes precipitation of lansfordite [MgCO3·5H2O] which partially cements pre‐existing sediments forming a hardpan. As carbonate deposition continues, the weight of the overlying sediments causes compaction and minor lateral movement of the mounds leading to amalgamation of localized mounds. Radiocarbon dating of buried vegetation at the Ca–Mg‐carbonate boundary indicates that there has been ca 8000 years of continuous Mg‐carbonate deposition at a rate of 0·4 mm yr?1. The depositional model accounts for the many sedimentological, mineralogical and geochemical processes that occur in the four surface environments; elucidating past and present carbonate deposition.  相似文献   

10.
引言肾形藻(Renalcis)是A.G.Vologdin发现并命名的一种钙质微体化石,在广义上归属于蓝绿藻(Pratt,1984)。肾形藻通常发育在寒武纪、早奥陶世、泥盆纪和早石炭世的碳酸盐岩地层中。就其形态来说,在漫长的地质年代中没有什么变化,不同形态的肾形藻可出现在不同时代的地层中,各种类型的肾形藻又可共生一处,因此常被认为没有什么时代意义。尽管如此,肾形藻的生长常局限于比较窄的生态和环境范围,又在某些建隆,特别在泥丘中是主要的骨架构筑成分,因而对于沉积微相的研究和细分具有重要的意义。  相似文献   

11.
Abstract In mid‐Middle Cambrian time, shallow‐water sedimentation along the Cordilleran passive margin was abruptly interrupted by the development of the deep‐water House Range embayment across Nevada and Utah. The Marjum Formation (330 m) in the central House Range represents deposition in the deepest part of the embayment and is composed of five deep‐water facies: limestone–argillaceous limestone rhythmites; shale; thin carbonate mud mounds; bioturbated limestone; and cross‐bedded limestone. These facies are cyclically arranged into 1·5 to 30 m thick parasequences that include rhythmite–mound, rhythmite–shale, rhythmite–bioturbated limestone and rhythmite–cross‐bedded limestone parasequences. Using biostratigraphically constrained sediment accumulation rates, the parasequences range in duration from ≈14 to 270 kyr. The mud mounds are thin (<2 m), closely spaced, laterally linked, symmetrical domes composed of massive, fenestral, peloidal to clotted microspar with sparse unoriented, poorly sorted skeletal material, calcitized bacterial(?) filaments/tubes and abundant fenestrae and stroma‐ tactoid structures. These petrographic and sedimentological features suggest that the microspar, peloids/clots and syndepositional micritic cement were precipitated in situ from the activity of benthic microbial communities. Concentrated growth of the microbial communities occurred during periods of decreased input of fine detrital carbonate transported offshore from the adjacent shallow‐water carbonate platform. In the neighbouring Wah Wah Range and throughout the southern Great Basin, coeval mid‐Middle Cambrian shallow‐water carbonates are composed of abundant metre‐scale, upward‐shallowing parasequences that record high‐frequency (104?105 years) eustatic sea‐level changes. Given this regional stratigraphic relationship, the Marjum Formation parasequences probably formed in response to high‐frequency sea‐level fluctuations that controlled the amount of detrital carbonate input into the deeper water embayment. During high‐frequency sea‐level rise and early highstand, detrital carbonate input into the embayment decreased as a result of carbonate factory retrogradation, resulting in the deposition of shale (base of rhythmite–shale parasequences) or thin nodular rhythmites, followed by in situ precipitated mud mounds (lower portion of rhythmite–mound parasequences). During the ensuing high‐frequency sea‐level fall/lowstand, detrital carbonate influx into the embayment increased on account of carbonate factory pro‐ gradation towards the embayment, resulting in deposition of rhythmites (upper part of rhythmite–mound parasequences), reworking of rhythmites by a lowered storm wave base (cross‐bedded limestone deposition) or bioturbation of rhythmites by a weakened/lowered O2‐minimum zone (bioturbated lime‐ stone deposition). This interpreted sea‐level control on offshore carbonate sedimentation patterns is unique to Palaeozoic and earliest Mesozoic deep‐water sediments. After the evolution of calcareous plankton in the Jurassic, the presence or absence of deeper water carbonates was influenced by a variety of chemical and physical oceanographic factors, rather than just physical transport of carbonate muds.  相似文献   

12.
The contact zone at the base of the Waulsortian (Upper Tournaisian) carbonate mud‐bank complex in western Ireland has been investigated at four localities spaced over a distance of 120 km. At all localities, a transition facies up to 3 m thick, characterized by several types of grumous (clotted and/or peloidal) carbonate muds, immediately underlies the Waulsortian facies. These muds show a developmental sequence provisionally interpreted as a necessary precursor to the formation of Waulsortian polymuds. Such pre‐bank precursors produced thin (a few decimetres) units of transition facies. The same mud types also persisted as an aureole around growing banks (mud‐mounds). Migration of the aureole during bank progradation produced thicker units of transition facies. The distribution of skeletal grain types in the Waulsortian banks, the transition facies and the ‘background’ argillaceous bioclastic limestones show two trends: one regional and one local. The regional trend is expressed by progressive north–south attenuation and, in some cases (for example, plurilocular foraminifera), the disappearance of organism groups. It parallels changes in Waulsortian Phases (defined by skeletal grain‐type assemblages) and is thought to indicate a southerly increase in water depth. The local trend, which occurs only in the two southern localities (deeper water), expresses differences between the skeletal grain content of the various lithofacies. These differences result partly from increased sensitivity to substrate texture by organism groups suffering southward attenuation (notably gastropods, hyalosteliid sponges, aoujgaliids, Earlandia and kirkbyacean ostracods) and partly from selective colonization, particularly of the transition facies, by tabulate corals and stick/ramose bryozoans. However, the developmental sequence of precursor carbonate muds is the same at all localities, indicating that the mud‐making process (probably microbial) was independent of water depth.  相似文献   

13.
Distinctive, metre‐scale antiformal structures are well developed in a Famennian carbonate platform in the Chedda Cliffs area of the Lennard Shelf reef complexes. The structures are distinguished by chevron‐shaped crests and thickened cores and contain abundant non‐skeletal allochems (ooids/pisoids, peloids and intraclasts) of silt to pebble size and variably developed laminations and fenestrae. The internal morphology and pervasive occurrence of fenestral clotted and wavy laminated fabrics suggest that these structures are microbial mounds composed of agglutinated stromatolites and thrombolites. Microbial fabrics most probably originated through sediment trapping and binding by microbial mats with early lithification involving microbial calcification and cementation of trapped sediment. The facies and stratigraphic context of the mounds support a shallow subtidal, transitional backreef to reef‐flat setting; however, alone these mounds do not provide unequivocal environmental information. Other large antiformal structures in Famennian platforms on the Lennard Shelf, previously described as tepee structures, show morphological similarities to the Chedda Cliffs mounds, which suggests that these other structures may also be microbial mounds. The presence of microbial mounds in platform successions further highlights the importance of microbial communities in the Lennard Shelf reef complexes.  相似文献   

14.
Late Devonian (Famennian) marine successions globally are typified by organic-rich black shales deposited in anoxic and euxinic waters and the cessation of shelf carbonate sedimentation. This global ‘carbonate crisis’, known as the Hangenberg Event, coincides with a major extinction of reef-building metazoans and perturbations to the global carbon cycle, evidenced by positive carbon-isotope excursions of up to 4‰. It has been suggested that authigenic carbonate, formed as cements in sedimentary pore spaces during early burial diagenesis, is a significant mass fraction of the total global carbon burial flux, particularly during periods of low oxygen concentration. Because some authigenic carbonate could have originated from remineralization of organic carbon in sediments, it is possible for this reservoir to be isotopically depleted and thereby drive changes in the carbon isotopic composition of seawater. This study presents bulk isotopic and elemental analyses from fine-grained siliciclastics of the Late Devonian–Early Mississippian Bakken Formation (Williston Basin, USA) to assess the volume and isotopic composition of carbonates in these sediments. Carbonate in the Bakken black shales occurs primarily as microscopic disseminated dolomite rhombs and calcite cements that, together, comprise a significant mass-fraction (ca 9%). The elemental composition of the shales is indicative of a dynamic anoxic to sulphidic palaeoenvironment, likely supported by a fluctuating chemocline. Despite forming in an environment favourable to remineralization of organic matter and the precipitation of isotopically depleted authigenic carbonates, the majority of carbon isotope measurements of disseminated carbonate fall between −3‰ and +3‰, with systematically more depleted carbonates in the deeper-water portions of the basin. Thus, although there is evidence for a significant total mass-fraction of carbonate with contribution from remineralized organic matter, Bakken authigenic carbonates suggest that Famennian black shales are unlikely to be sufficiently 13C-depleted relative to water column dissolved inorganic carbon to serve as a major lever on seawater isotopic composition.  相似文献   

15.
S.J. MAZZULLO 《Sedimentology》2006,53(5):1015-1047
Lithostratigraphy, depositional facies architecture, and diagenesis of upper Pliocene to Holocene carbonates in northern Belize are evaluated based on a ca 290 m, continuous section of samples from a well drilled on Ambergris Caye that can be linked directly to outcrops of Pleistocene limestone, and of overlying Holocene sediments. Upper Pliocene outer‐ramp deposits are overlain unconformably by Pleistocene and Holocene reef‐rimmed platforms devoid of lowstand siliciclastics. Tectonism controlled the location of the oldest Pleistocene platform margin and coralgal barrier reef, and periodically affected deposition in the Holocene. A shallow, flat‐topped, mostly aggradational platform was maintained in the Holocene by alternating periods of highstand barrier‐reef growth and lowstand karstification, differential subsidence, and the low magnitude of accommodation space increases during highstands. Facies in Pleistocene rocks to the lee of the barrier reef include: (i) outer‐shelf coralgal sands with scattered coral patch reefs; (ii) a shoal–water transition zone comprising nearshore skeletal and oolitic sands amidst scattered islands and tidal flats; and (iii) micritic inner‐shelf deposits. Four glacio‐eustatically forced sequences are recognized in the Pleistocene section, and component subtidal cycles probably include forced cycles and autocycles. Excluding oolites, Holocene facies are similar to those in the Pleistocene and include mud‐mounds, foraminiferal sand shoals in the inner shelf, and within the interiors of Ambergris and surrounding cayes, mangrove swamps, shallow lagoons, and tidal and sea‐marginal flats. Meteoric diagenesis of Pliocene and Pleistocene rocks is indicated by variable degrees of mineralogic stabilization, generally depleted whole‐rock δ18O and δ13C values, and meniscus and whisker‐crystal cements. Differences in the mineralogy and geochemistry of the Pliocene and Pleistocene rocks are attributed to variable extent of meteoric alteration. Dolomitization in the Pliocene carbonates may have begun syndepositionally and continued into the marine shallow‐burial environment. Positive dolomite δ18O and δ13C values suggest precipitation from circulating, near‐normal marine fluids that probably were modified somewhat by methanogenesis. Sedimentologic and diagenetic attributes of the Pliocene–Pleistocene rocks in the study area are similar to those in the Bahamas with which they share a common history of sea‐level fluctuations and climate change.  相似文献   

16.
《Sedimentology》2018,65(2):360-399
Sedimentary gaps are a major obstacle in the reconstruction of a carbonate platform's history. In order to improve the understanding of the early diagenesis and the succession of events occurring during the formation of discontinuity surfaces in limestones, secondary ion mass spectrometry was used for the first time to measure the δ 18O and δ 13C signatures of 11 early cement and fabric stages in several discontinuity surfaces from the Jurassic carbonate platform of the Paris Basin, France. Pendant cements show a high variability in δ 18O, which was impossible to detect by the less precise microdrilling method. The morphology of a given cement can be produced in various environments, and dogtooth cements especially can precipitate in marine phreatic and meteoric phreatic to vadose environments. Marine dogtooth cements and micritic microbially induced fabrics precipitated directly as low‐magnesium calcite in marine waters, as attested to by the preservation of their initial δ 18O and δ 13C signals. Five discontinuity types are recognized based on high‐resolution geochemical analyses, and their palaeoenvironmental history can be reconstructed. Two exposure surfaces with non‐ferroan pendant or meniscus cements formed in the oxidizing vadose zone. A hardground displays marine fibrous cements and non‐ferroan dogtooth cements that formed in a subtidal environment in oxidizing water. Two composite surfaces have undergone both marine and subaerial lithification. Composite surface 1 displays non‐luminescent ferroan dogtooth cements that precipitated in reduced conditions in seawater, followed by brown‐luminescent dogtooth cements characteristic of a meteoric phreatic environment. Composite surface 2 exhibits microbially induced fabrics that formed in marine water with abundant organic matter. The latter discontinuity, initially formed in a subtidal environment, was subsequently exposed to meteoric conditions, as evidenced by ferroan geopetal cements. A high‐resolution ion microprobe study is essential to precisely document the successive diagenetic environments that have affected carbonate rocks and discontinuities with a polygenic and intricate history.  相似文献   

17.
张俊明  彭克兴 《地质科学》1994,29(3):236-245
王家坪古杯礁丘是由不规则古杯和蓝绿藻Renalcis、Epiphyton、Cirvanella等组成的障积礁丘。可分为:孤立小型古杯泥丘和由丘状藻-古杯粘结岩叠置而成的点礁。以Renalcis为主的藻-古杯粘结岩与孤立小型古杯泥丘一样形成于风暴浪基面之下的低能陆架。以Epiphyton为主的藻-古杯粘结岩形成于较动荡的中-高能陆架浅滩。除造礁生物的沉积作用外,早期海底胶结作用和充填固化作用对古杯礁丘的形成亦起了十分重要的作用。  相似文献   

18.
中韩第五次《东北亚地壳演化》学术研讨会在北京举行   总被引:2,自引:0,他引:2  
新疆天山东部广泛发育晚石炭世碳酸盐岩隆。这些岩隆主要为生物丘,少数为生物滩及与岩隆有关的生物层,其中生物丘含大量灰泥和内碎屑。基本岩石类型为泥粒状灰岩、粒泥状灰岩、粒泥状-泥粒状灰岩,少量岩石类型包括颗粒岩、骨架岩和障积岩。成岩作用是碳酸盐岩隆发展演化的重要阶段和过程,在生物丘内,已经识别出四种重要的胶结物,即球粒泥晶、纤状方解石、放射轴状方解石和粒状方解石。尽管缺失典型的造礁生物,但通过岩石类型研究和微相分析,认为碳酸盐岩隆的形成主要取决于生物作用及古环境格局。本区碳酸盐岩隆可以同欧洲瓦尔索坦的岩隆对比  相似文献   

19.
This study documents a Liassic example of the long‐ranging effects of mass extinction on carbonate systems. Biohistoric constraints inherent in the Liassic carbonate depositional system are deciphered from normal‐marine, sub‐tidal deposits of the central High Atlas rift basin (Morocco) through ?Hettangian/Sinemurian to Early Toarcian times. The integration of results from the analysis of lithofacies, depositional geometries, microfacies, macrobenthos, carbonate build‐ups, carbon and oxygen stable isotopes, and rare earth element + yttrium distribution patterns allows the intrinsic (or biohistoric) control on the central High Atlas deposits to be separated from extrinsic factors, such as basin development and palaeoclimate. The survival interval in the aftermath of the end‐Triassic mass extinction persisted until the Early Sinemurian indicated by a severely depleted carbonate system impoverished in skeletal organisms. A tectonic pulse at the Early to Late Sinemurian boundary interval caused a basin widening with immigration of a marine fauna. However, until the latest Sinemurian (macdonelli Subzone of the raricostatum Zone) the deposits were dominated by filter‐feeding benthic heterotrophs (sponges, brachiopods, polychaetes and crinoids). During this stage, primary production within the enlarged basin must have been largely planktonic and there was a net‐flux of organic matter to the sea floor (oxygen minimum zone). A regional radiation of organic‐walled phytoplankton is inferred to explain the selective success of the filter‐feeding community and the occurrence of sponge mounds. Thus, significant effects of the end‐Triassic mass extinction are still present during the Late Sinemurian. Through almost the entire Pliensbachian a highly productive, shoal‐rimmed carbonate platform existed; it developed subsequent to tectonic reorganization and a marine recirculation event (radiolarian facies, Δδ13C ≈ ?1·1, strongly negative Ce‐anomaly). Photosymbiotic sediment producers (mainly large bivalves) now state the success of specialists and environmental equilibrium conditions. In the latest Pliensbachian the climax stage was reached with the development of a coralgal reef‐rimmed carbonate platform. The Liassic carbonate depositional system experienced a terminal, multicausal Early Toarcian drowning event during which most of the large bivalves became extinct.  相似文献   

20.
The sedimentary–diagenetic structure stromatactis is widespread in Palaeozoic spiculitic carbonate mud mounds, but occurs only sporadically in Mesozoic sponge carbonate mud mounds. Comparative analysis of Palaeozoic and Mesozoic stromatactis limestones suggests that this variation results from the degree of siliceous sponge skeletal rigidity and the amount of internal sediment accumulation in the original cavity network. Partial to entire filling by internal sediment resulted in a continuum, from a small amount of internal sediment and large amount of cement (stromatactis, common in the Palaeozoic), to only internal sediments (aborted stromatactis, common in the Mesozoic). These observations match independent lines of evidence concerning the siliceous sponge evolution and sediment recycling (e.g. bioerosion) across the Palaeozoic to Mesozoic biotic revolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号