首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Crustal structure across the passive continental margin of the northeastern South China Sea (SCS) is presented based on a deep seismic survey cooperated between Taiwan and China in August 2001. Reflection data collected from a 48-hydrophone streamer and the vertical component of refraction/reflection data recorded at 11 ocean-bottom seismometers along a NW–SE profile are integrated to image the upper (1.6–2.4 km/s), lower (2.5–2.9 km/s), and compacted (3–4.5 km/s) sediment, the upper (4.5–5.5 km/s), middle (5.5–6.5 km/s) and lower (6.5–7.5 km/s) crystalline crust successively. The velocity model shows that the thickness (0.5–3 km) and the basement of the compacted sediment are strongly varied due to intrusion of the magma and igneous rocks after seafloor spreading of the SCS. Furthermore, several volcanoes and igneous rocks in the upper/middle crust (7–10 km thick) and a high velocity layer (0–5 km thick) in the lower crust of the model are identified as the ocean–continent transition (OCT) below the lower slope in the northeastern margin of the SCS. A thin continent NW of the OCT and a thick oceanic crust SE of the OCT in the continental margin of the northeastern SCS are also imaged, but these transitional crusts cannot be classified as the OCT due to their crustal thickness and the limited amount of the volcano, the magma and the high velocity layer. The extended continent, next to the gravity low and a sag zone extended from the SW Taiwan Basin, may have resulted from subduction of the Eurasian Plate beneath the Manila Trench whereas the thick oceanic crust may have been due to the excess volcanism and the late magmatic underplating in the oceanic crust after seafloor spreading of the SCS.  相似文献   

2.
Despite the various opening models of the southwestern part of the East Sea (Japan Sea) between the Korean Peninsula and the Japan Arc, the continental margin of the Korean Peninsula remains unknown in crustal structure. As a result, continental rifting and subsequent seafloor spreading processes to explain the opening of the East Sea have not been adequately addressed. We investigated crustal and sedimentary velocity structures across the Korean margin into the adjacent Ulleung Basin from multichannel seismic (MCS) reflection and ocean bottom seismometer (OBS) data. The Ulleung Basin shows crustal velocity structure typical of oceanic although its crustal thickness of about 10 km is greater than normal. The continental margin documents rapid transition from continental to oceanic crust, exhibiting a remarkable decrease in crustal thickness accompanied by shallowing of Moho over a distance of about 50 km. The crustal model of the margin is characterized by a high-velocity (up to 7.4 km/s) lower crustal (HVLC) layer that is thicker than 10 km under the slope base and pinches out seawards. The HVLC layer is interpreted as magmatic underplating emplaced during continental rifting in response to high upper mantle temperature. The acoustic basement of the slope base shows an igneous stratigraphy developed by massive volcanic eruption. These features suggest that the evolution of the Korean margin can be explained by the processes occurring at volcanic rifted margins. Global earthquake tomography supports our interpretation by defining the abnormally hot upper mantle across the Korean margin and in the Ulleung Basin.  相似文献   

3.
The Levantine Basin—crustal structure and origin   总被引:1,自引:0,他引:1  
The origin of the Levantine Basin in the Southeastern Mediterranean Sea is related to the opening of the Neo-Tethys. The nature of its crust has been debated for decades. Therefore, we conducted a geophysical experiment in the Levantine Basin. We recorded two refraction seismic lines with 19 and 20 ocean bottom hydrophones, respectively, and developed velocity models. Additional seismic reflection data yield structural information about the upper layers in the first few kilometers. The crystalline basement in the Levantine Basin consists of two layers with a P-wave velocity of 6.0–6.4 km/s in the upper and 6.5–6.9 km/s in the lower crust. Towards the center of the basin, the Moho depth decreases from 27 to 22 km. Local variations of the velocity gradient can be attributed to previously postulated shear zones like the Pelusium Line, the Damietta–Latakia Line and the Baltim–Hecateus Line. Both layers of the crystalline crust are continuous and no indication for a transition from continental to oceanic crust is observed. These results are confirmed by gravity data. Comparison with other seismic refraction studies in prolongation of our profiles under Israel and Jordan and in the Mediterranean Sea near Greece and Sardinia reveal similarities between the crust in the Levantine Basin and thinned continental crust, which is found in that region. The presence of thinned continental crust under the Levantine Basin is therefore suggested. A β-factor of 2.3–3 is estimated. Based on these findings, we conclude that sea-floor spreading in the Eastern Mediterranean Sea only occurred north of the Eratosthenes Seamount, and the oceanic crust was later subducted at the Cyprus Arc.  相似文献   

4.
P. Giese  C. Morelli  L. Steinmetz   《Tectonophysics》1973,20(1-4):367-379
During the past two decades deep seismic sounding measurements have been carried out in western and southern Europe, mainly using the refraction method. These investigations were performed partly on a national basis but as well within international cooperative programs under the sponsorship of the European Seismological Commission.

In France, a systematic study has been executed to determine the main feature of deep structures under the Central Massif and the Paris Basin. In the Forez and Margeride regions, the sub-crustal velocity is lower (7.2 km/sec) than the normal value (8.0 km/sec) observed in the adjacent areas.

The central and southern part of Western Germany is covered by an extensive network of refraction profiles. The crustal thickness varies, similarly to France, from 25 to 35 km. A great amount of deep reflection data was obtained by commercial and special reflection work. The crust beneath the Rhinegraben area shows the typical “rift system” structure with a low subcrustal velocity (7.4–7.7 km/sec).

Very intensive refraction work has been carried out in the Alpine area. The maximum crustal thickness found near the axis of the negative gravity anomaly is about 55–60 km. Furthermore, a clear lowvelocity layer at a depth between 10 and 30 km has been detected. A key position with regard to the geotectonic structure of the Alps is held by the zone of Ivrea characterized by a pronounced gravity high. From the refraction work it may be concluded that there material of the lower crust and the upper mantle (7.2–7.5 km/sec) is overlying a layer of extremely low velocity (5.0 km/sec) which is interpreted as sialic crust.

Three years ago, a systematic study of crustal structure of the Italian peninsula has been started. Reversed profiles were observed on Sicily, in Calabria, and in Puglia. On Sicily, the structure is very complicated; the crust of the western part looks like a transition between a continental and oceanic structure whereas the eastern side shows a continental-type crust. In Calabria and Puglia, the crustal thickness has been determined to be about 25–35 km.  相似文献   


5.
The Tsushima Basin is located in the southwestern Japan Sea, which is a back-arc basin in the northwestern Pacific. Although some geophysical surveys had been conducted to investigate the formation process of the Tsushima Basin, it remains unclear. In 2000, to clarify the formation process of the Tsushima Basin, the seismic velocity structure survey with ocean bottom seismometers and airguns was carried out at the southeastern Tsushima Basin and its margin, which are presumed to be the transition zone of the crustal structure of the southwestern Japan Island Arc. The crustal thickness under the southeastern Tsushima Basin is about 17 km including a 5 km thick sedimentary layer, and 20 km including a 1.5 km thick sedimentary layer under its margin. The whole crustal thickness and thickness of the upper part of the crust increase towards the southwestern Japan Island Arc. On the other hand, thickness of the lower part of the crust seems more uniform than that of the upper part. The crust in the southeastern Tsushima Basin has about 6 km/s layer with the large velocity gradient. Shallow structures of the continental bank show that the accumulation of the sediments started from lower Miocene in the southeastern Tsushima Basin. The crustal structure in southeastern Tsushima Basin is not the oceanic crust, which is formed ocean floor spreading or affected by mantle plume, but the rifted/extended island arc crust because magnitudes of the whole crustal and the upper part of the crustal thickening are larger than that of the lower part of the crustal thickening towards the southwestern Japan Island Arc. In the margin of the southeastern Tsushima Basin, high velocity material does not exist in the lowermost crust. For that reason, the margin is inferred to be a non-volcanic rifted margin. The asymmetric structure in the both margins of the southeastern and Korean Peninsula of the Tsushima Basin indicates that the formation process of the Tsushima Basin may be simple shear style rather than pure shear style.  相似文献   

6.
南海南部地壳结构的重力模拟及伸展模式探讨   总被引:1,自引:0,他引:1       下载免费PDF全文
对南海南部地壳结构研究有助于揭示南海完整的演化历史。本研究对南海南部获取的两条多道地震剖面进行了地震 解释,并对重力数据进行了壳幔密度反演。其中 NH973-1 测线始于南海西南次海盆,覆盖了南沙中部的北段;NH973-2 测 线始于南海东部次海盆,穿越礼乐滩东侧。反演结果显示,莫霍面埋深在海盆区 10~11 km,陆缘区 15~21 km 左右,洋壳向 陆壳莫霍面深度迅速增加。海盆区厚度在 6~7 km,为典型的洋壳;陆缘区地壳厚度在 15~19 km,为减薄型地壳。进一步研 究表明(1)在西南次海盆残余扩张脊之下,莫霍面比两侧略深;(2)在礼乐滩外侧海盆区有高值重力异常体,推测为洋壳与深 部岩浆混合的块体;(3)南沙区域上地壳存在高密度带,且横向上岩性可能变化。南海南部陆缘未发现有下地壳高速层,有 比较一致的构造属性和拉张样式,为非火山型陆缘。我们对两条测线陆缘的伸展因子进行了计算,发现上地壳脆性拉伸因 子与全地壳拉伸因子存在差异,其陆缘的拉张模式在纵向上是不均匀一的。  相似文献   

7.
We present results from a 484 km wide-angle seismic profile acquired in the northwest part of the South China Sea (SCS) during OBS2006 cruise. The line that runs along a previously acquired multi-channel seismic line (SO49-18) crosses the continental slope of the northern margin, the Northwest Subbasin (NWSB) of the South China Sea, the Zhongsha Massif and partly the oceanic basin of the South China Sea. Seismic sections recorded on 13 ocean-bottom seismometers were used to identify refracted phases from the crustal layer and also reflected phases from the crust-mantle boundary (Moho). Inversion of the traveltimes using a simple start model reveals crustal images in the study area. The velocity model shows that crustal thickness below the continental slope is between 14 and 23 km. The continental part of the line is characterized by gentle landward mantle uplift and an abrupt oceanward one. The velocities in the lower crust do not exceed 6.9 km/s. With the new data we can exclude a high-velocity lower crustal body (velocities above 7.0 km/s) at the location of the line. We conclude that this part of the South China Sea margin developed by a magma-poor rifting. Both, the NWSB and the Southwest Sub-basin (SWSB) reveal velocities typical for oceanic crust with crustal thickness between 5 and 7 km. The Zhongsha Massif in between is extremely stretched with only 6–10 km continental crust left. Crustal velocity is below 6.5 km/s; possibly indicating the absence of the lower crust. Multi-channel seismic profile shows that the Yitongansha Uplift in the slope area and the Zhongsha Massif are only mildly deformed. We considered them as rigid continent blocks which acted as rift shoulders of the main rift subsequently resulting in the formation of the Northwest Sub-basin. The extension was mainly accommodated by a ductile lower crustal flows, which might have been extremely attenuated and flow into the oceanic basin during the spreading stage. We compared the crustal structures along the northern margin and found an east-west thicken trend of the crust below the continent slope. This might be contributed by the east-west sea-floor spreading along the continental margin.  相似文献   

8.
By compiling wide-angle seismic velocity profiles along the 400-km-long Lofoten–Vesterålen continental margin off Norway, and integrating them with an extensive seismic reflection data set and crustal-scale two-dimensional gravity modelling, we outline the crustal margin structure. The structure is illustrated by across-margin regional transects and by contour maps of depth to Moho, thickness of the crystalline crust, and thickness of the 7+ km/s lower crustal body. The data reveal a normal thickness oceanic crust seaward of anomaly 23 and an increase in thickness towards the continent–ocean boundary associated with breakup magmatism. The southern boundary of the Lofoten–Vesterålen margin, the Bivrost Fracture Zone and its landward prolongation, appears as a major across-margin magmatic and structural crustal feature that governed the evolution of the margin. In particular, a steeply dipping and relatively narrow, 10–40-km-wide, Moho-gradient zone exists within a continent–ocean transition, which decreases in width northward along the Lofoten–Vesterålen margin. To the south, the zone continues along the Vøring margin, however it is offset 70–80 km to the northwest along the Bivrost Fracture Zone/Lineament. Here, the Moho-gradient zone corresponds to a distinct, 25-km-wide, zone of rapid landward increase in crustal thickness that defines the transition between the Lofoten platform and the Vøring Basin. The continental crust on the Lofoten–Vesterålen margin reaches a thickness of 26 km and appears to have experienced only moderate extension, contrasting with the greatly extended crust in the Vøring Basin farther south. There are also distinct differences between the Lofoten and Vesterålen margin segments as revealed by changes in structural style and crustal thickness as well as in the extent of elongate potential-field anomalies. These changes may be related to transfer zones. Gravity modelling shows that the prominent belt of shelf-edge gravity anomalies results from a shallow basement structural relief, while the elongate Lofoten Islands belt requires increased lower crustal densities along the entire area of crustal thinning beneath the islands. Furthermore, gravity modelling offers a robust diagnostic tool for the existence of the lower crustal body. From modelling results and previous studies on- and off-shore mid-Norway, we postulate that the development of a core complex in the middle to lower crust in the Lofoten Islands region, which has been exhumed along detachments during large-scale extension, brought high-grade, lower crustal rocks, possibly including accreted decompressional melts, to shallower levels.  相似文献   

9.
西北次海盆的深部地壳结构蕴含着南海北部陆缘拉张过程的重要信息.广角反射/折射测线(OBS2006-2)长386 km,是目前唯一的一条沿NEE向穿过西沙地块、并平行于西北次海盆扩张脊的深地震测线.通过射线追踪与走时模拟方法(RAYINVR),获得了OBS2006-2测线下方的速度结构.结果表明:西沙地块的沉积层厚度约为1~2 km,而西北次海盆的沉积层厚度大约为2~3 km;Moho界面从西沙地块的27 km逐步抬升到西北次海盆的12 km,Moho界面下方的速度为7.8~8.0 km/s;未发现壳内高速层和低速层.在西沙地块和西北次海盆的过渡区,有着较大量的岩浆活动信息,推测与西北次海盆的初始扩张有关.OBS2006-2测线中114.5°E以西的地区为减薄的陆壳,而114.5°E以东的地区为洋壳,莫霍面在陆壳与洋壳的结合处剧烈抬升,地壳厚度明显减薄.西北次海盆的扩张脊下方可能有残余岩浆的存在.   相似文献   

10.
Approximately 39,000 km of marine gravity data collected during 1975 and 1976 have been integrated with U.S. Navy and other available data over the U.S. Atlantic continental margin between Florida and Maine to obtain a 10 mgal contour free-air gravity anomaly map. A maximum typically ranging from 0 to +70 mgal occurs along the edge of the shelf and Blake Plateau, while a minimum typically ranging from −20 to −80 mgal occurs along the base of the continental slope, except for a −140 mgal minimum at the base of the Blake Escarpment. Although the maximum and minimum free-air gravity values are strongly influenced by continental slope topography and by the abrupt change in crustal thickness across the margin, the peaks and troughs in the anomalies terminate abruptly at discrete transverse zones along the margin. These zones appear to mark major NW—SE fractures in the subsided continental margin and adjacent deep ocean basin, which separate the margin into a series of segmented basins and platforms. Rapid differential subsidence of crustal blocks on either side of these fractures during the early stages after separation of North America and Africa (Jurassic and Early Cretaceous) is inferred to be the cause of most of the gravity transitions along the length of margin. The major transverse zones are southeast of Charleston, east of Cape Hatteras, near Norfolk Canyon, off Delaware Bay, just south of Hudson Canyon and south of Cape Cod.Local Airy isostatic anomaly profiles (two-dimensional, without sediment corrections) were computed along eight multichannel seismic profiles. The isostatic anomaly values over major basins beneath the shelf and rise are generally between −10 and −30 mgal while those over the platform areas are typically 0 to +20 mgal. While a few isostatic anomaly profiles show local 10–20 mgal increases seaward of the East Coast Magnetic Anomaly (ECMA: inferred to mark the ocean-continent boundary), the lack of a consistent correlation indicates that the relationship of isostatic gravity anomalies to the magnetic anomalies and the ocean—continent transition is variable.Two-dimensional gravity models have been computed for two profiles off Cape Cod, Massachusetts and Cape May, New Jersey, where excellent reflection, refraction and magnetic control appear to define 10 and 12 km deep sedimentary basins beneath the shelf, respectively and 10 km deep basins beneath the rise. The basins are separated by a 6–8 km deep basement ridge which underlies the ECMA and appears to mark the landward edge of oceanic crust. The gravity models suggest that the oceanic crust is between 11 and 18 km thick beneath the ECMA, but decreases to a thickness of less than 8 km within the first 20–90 km to the southeast. In both profiles, the derived crustal thickness variations support the interpretation that the ECMA occurs over the ocean-continent boundary. The crust underlying the sedimentary cover appears to be 12 to 15 km thick on the landward side of the ECMA and gradually thickens to normal continental values of greater than 25 km within the first 60 to 110 km to the northwest. Multichannel seismic profiles across platform areas, such as Cape Hatteras and Cape Cod, indicate the ocean-continent transition zones there are much narrower than profiles across major sedimentary basins, such as the one off New Jersey.  相似文献   

11.
Anomalous crustal and upper mantle structure of northern Juan de Fuca plate is revealed from wide-angle seismic and gravity modelling. A 2-D velocity model is produced for refraction line II of the 1980 Vancouver Island Seismic Project (VISP80). The refraction data were recorded on three ocean bottom seismometers (OBSs) deployed at the ends and middle of a 110 km line oriented parallel to the North American continental margin. The velocity model is constructed via ray tracing and conforms to first-arrival amplitude observations and travel time picks of direct, converted and reflected phases. Between sub-sediment depths of 3 to 11 km, depths normally associated with the lower crust and upper oceanic mantle, the final model shows that compressional-wave velocities decrease significantly from southeast to northwest along the profile. At sub-sediment depths of 11 km at the northwestern end of the profile, P-wave velocities are as low as 7.2 km/s. A complementary 2-D gravity model using the geometry of the velocity model and velocity–density relationships characteristic of oceanic crust is produced. The high densities required to match the gravity field indicate the presence of peridotites containing 25–30% serpentine by volume, rather than excess gabbroic crust, within the deep low velocity zone. Anomalous travel time delays and unusual reflection characteristics observed from proximal seismic refraction and reflection experiments suggest a broader zone of partially serpentinized peridotites coincident with the trace of a pseudofault. We propose that partial serpentinization of the upper mantle is a consequence of slow spreading at the tip of a propagating rift.  相似文献   

12.
The Barents Sea is located in the northwestern corner of the Eurasian continent, where the crustal terrain was assembled in the Caledonian orogeny during Late Ordovician and Silurian times. The western Barents Sea margin developed primarily as a transform margin during the early Tertiary. In the northwestern part south of Svalbard, multichannel reflection seismic lines have poor resolution below the Permian sequence, and the early post-orogenic development is not well known here. In 1998, an ocean bottom seismometer (OBS) survey was collected southwest to southeast of the Svalbard archipelago. One profile was shot across the continental transform margin south of Svalbard, which is presented here. P-wave modeling of the OBS profile indicates a Caledonian suture in the continental basement south of Svalbard, also proposed previously based on a deep seismic reflection line coincident with the OBS profile. The suture zone is associated with a small crustal root and westward dipping mantle reflectivity, and it marks a boundary between two different crystalline basement terrains. The western terrain has low (6.2–6.45 km s−1) P-wave velocities, while the eastern has higher (6.3–6.9 km s−1) velocities. Gravity modeling agrees with this, as an increased density is needed in the eastern block. The S-wave data predict a quartz-rich lithology compatible with felsic gneiss to granite within and west of the suture zone, and an intermediate lithological composition to the east. A geological model assuming westward dipping Caledonian subduction and collision can explain the missing lower crust in the western block by subduction erosion of the lower crust, as well as the observed structuring. Due to the transform margin setting, the tectonic thinning of the continental block during opening of the Norwegian-Greenland Sea is restricted to the outer 35 km of the continental block, and the continent–ocean boundary (COB) can be located to within 5 km in our data. Distinct from the outer high commonly observed on transform margins, the upper part of the continental crust at the margin is dominated by two large, rotated down-faulted blocks with throws of 2–3 km on each fault, apparently formed during the transform margin development. Analysis of the gravity field shows that these faults probably merge to one single fault to the south of our profile, and that the downfaulting dominates the whole margin segment from Spitsbergen to Bjørnøya. South of Bjørnøya, the faulting leaves the continental margin to terminate as a graben 75 km south of the island. Adjacent to the continental margin, there is no clear oceanic layer 2 seismic signature. However, the top basement velocity of 6.55 km s−1 is significantly lower than the high (7 km s−1) velocity reported earlier from expanding spread profiles (ESPs), and we interpret the velocity structure of the oceanic crust to be a result of a development induced by the 7–8-km-thick sedimentary overburden.  相似文献   

13.
K. Hinz 《Tectonophysics》1973,20(1-4):295-302
Within the frame of the German-French project ANNA-1970, two long refraction profiles were investigated north and south of the island of Majorca.

For the southern Balearic Basin an oceanic crust can be derived from the travel-time curves consisting of a 4.0 km thick Cenozoic sedimentary layer with: Vp = 2.35 (km/sec) + 0.35 (sec−1) × Z (km) and a 5 km thick layer with: Vp = 4.0 (km/sec) + 0.28 (sec−1) × Z (km)

The transition to the upper mantle takes place at a depth of 12 km. Directly south of Majorca a crustal thickening was measured which may be caused by the process of crustal shortening. P]In the northern Balearic Basin a faulted transitional type of crust has been observed indicating probably an embryonic and juvenile ocean expansion.  相似文献   


14.
We herein present a new seismic refraction/wide-angle reflection profile that crosses the Songpan–Ganzi terrane, the Animaqing suture zone and the eastern Kunlun mountains (comprised of the South Kunlun and Middle Kunlun blocks separated by the Middle Kunlun fault). The profile is 380 km long and extends from Moba to Guide in eastern Tibet. The crustal thickness is about 62 km under the Songpan–Ganzi terrane, 62–64 km under the South Kunlun, and 60 km under the Middle Kunlun block. The Songpan–Ganzi flysch seems to be present up to a depth of 15 km south of the Animaqing suture zone, and up to a depth of 10 km in the Middle Kunlun block, with thicknesses elsewhere that depend on assumptions about the likely lithologies. The profile exhibits clear lateral variations both in the upper and lower crust, which are indicative of different crustal blocks juxtaposed by the Kunlun fault system. Whether or not the Songpan–Ganzi flysch was originally deposited on oceanic crust, at the longitude of our profile (100°E) it is now underlain by continental crust, and the presence of continental crust beneath the Songpan–Ganzi terrane and of a continental arc under the South Kunlun block suggest Paleozoic continent–continent arc collision in the eastern Kunlun Mountains. Comparison of crustal velocity columns from all wide-angle seismic profiles across the eastern Kunlun mountains indicates a remarkable west-to-east change in the Moho topography across the Kunlun fault system (15–20 km Moho step at 95°E, but only 2–5 km along our profile at 100°E). Lower-crustal thickness of the Kunlun terranes is rather uniform, about 35 km, from 80°–95°E, which suggests that similar thrust-thickening processes have played a role where the Qaidam Basin abuts the Kunlun fault, but thins to 20–25 km at 100°E, east of the Qaidam Basin. The increased crustal thickness from 93° to 98°E compared to that at 100°E may be due to the differences in the thickness of the crust of the two plates before their collision, and/or largely achieved by thickening of the lower crust, perhaps indicating a crustal flow mechanism operating more strongly in the western region.  相似文献   

15.
Three long, strike-parallel, seismic-refraction profiles were made on the continental shelf edge, slope and upper rise off New Jersey during 1975. The shelf edge line lies along the axis of the East Coast Magnetic Anomaly (ECMA), while the continental rise line lies 80 km seaward of the shelf edge. Below the unconsolidated sediments (1.7–3.6 km/sec), high-velocity sedimentary rocks (4.2–6.2 km/sec) were found at depths of 2.6–8.2 km and are inferred to be cemented carbonates. Although multichannel seismic-reflection profiles and magnetic depth-to-source data predicted the top of oceanic basement at 6–8 km beneath the shelf edge and 10–11 km beneath the rise, no refracted events occurred as first arrivals from either oceanic basement (layer 2, approximately 5.5 km/ sec) or the upper oceanic crust (layer 3A, approximately 6.8 km/sec). Second arrivals from 10.5 km depth beneath the shelf edge are interpreted as events from a 5.9 km/sec refractor within igneous basement. Other refracted events from either layers 2 or 3A could not be resolved within the complex second arrivals. A well-defined crustal layer with a compressional velocity of 7.1–7.2 km/sec, which can be interpreted as oceanic layer 3B, occurred at 15.8 km depth beneath the shelf and 12.9 km beneath the upper rise. A well-reversed mantle velocity of 8.3 km/sec was measured at 18–22 km depth beneath the upper continental rise. Comparison with other deep-crustal profiles along the continental edge of the Atlantic margin off the United States, specifically in the inner magnetically quiet zone, indicates that the compressional wave velocities and layer depths determined on the U.S.G.S. profiles are very similar to those of nearby profiles. This suggests that the layers are continuous and that the interpretation of the oceanic layer 3B under the shelf edge east of New Jersey implies progradation of the shelf outward over the oceanic crust in that area. This agrees with magnetic anomaly evidence which shows the East Coast Magnetic Anomaly landward of the shelf edge off New Jersey and with previous seismic reflection data which reveal extensive outbuilding of the shelf edge during the Jurassic and Lower Cretaceous, probably by carbonate bank-margin accretion.  相似文献   

16.
Seismic refraction surveys conducted in 1976 and 1979 over the broken ice surface of the Arctic Ocean, reveal distinctly different crustal structures for the Fram, Makarov and Canada basins. The Canada Basin, characterized by a 2–4 km thick sedimentary layer and a distinct oceanic layer 3B of 7.5 km/s velocity has the thickest crust and is undoubtedly the oldest of the three. The crust of the Makarov Basin has a thin sedimentary layer of less than 1 km and is about 9 km in total thickness. The Fram Basin has a similarly thin sedimentary layer but is 3–4 km thicker than the Makarov as it approaches the Lomonosov Ridge near the North Pole. The ridge itself is cored by material with a velocity of 6.6 km/s and may be a metagabbro similar to oceanic layer 3A. This ridge root material extends to a depth of about 27 km, where a change occurs to upper-mantle material with a velocity of 8.3 km/s. The core is overlain by up to 6 km of material with a velocity of about 4.7 km/s which could be oceanic layer 2A basalts or continental crystalline rocks with some sedimentary material.The Fram Basin probably began to open contemporaneously with the North Atlantic about 70 m.y. ago, by spreading along the Nansen-Gakkel Ridge. Although not yet dated, the Makarov Basin is probably no older than the initiation of the Fram Basin and may be much younger. The Alpha Ridge may once have been part of the Lomonosov Ridge, splitting off to form the Makarov Basin between 70 and 25 m.y. ago and possibly contributing to the Eurekan Orogeny of 25 m.y. ago, evident on Ellesmere Island. In contrast, the likely age of the Canada Basin lies in the 125–190 m.y. range and may have been formed by the counter-clockwise rotation of Alaska and the Northwind Ridge away from the Canadian Arctic Islands. The Lomonosov Ridge emerges from this scenario as a block resulting from a strike-slip shear zone on the European continental shelf, related to the opening of the Canada basin (180-120 my) and then becomes an entity broken from this shelf by the opening of the Eurasia Basin (70-0 m.y.).  相似文献   

17.
We present results from a seismic refraction experiment on the northern margin of the Guayana Shield performed during June 1998, along nine profiles of up to 320 km length, using the daily blasts of the Cerro Bolívar mines as energy source, as well as from gravimetric measurements. Clear Moho arrivals can be observed on the main E–W profile on the shield, whereas the profiles entering the Oriental Basin to the north are more noisy. The crustal thickness of the shield is unusually high with up to 46 km on the Archean segment in the west and 43 km on the Proterozoic segment in the east. A 20 km thick upper crust with P-wave velocities between 6.0 and 6.3 km/s can be separated from a lower crust with velocities ranging from 6.5 to 7.2 km/s. A lower crustal low velocity zone with a velocity reduction to 6.3 km/s is observed between 25 and 25 km depth. The average crustal velocity is 6.5 km/s. The changes in the Bouguer Anomaly, positive (30 mGal) in the west and negative (−20 mGal) in the east, cannot be explained by the observed seismic crustal features alone. Lateral variations in the crust or in the upper mantle must be responsible for these observations.  相似文献   

18.
Recently, two diverse seismic techniques were applied independently to the study of the crustal structure of the Cumberland Plateau, eastern Tennessee. One involved a reinterpretation of a refraction experiment performed in 1965 by the U.S. Geological Survey, consisting of two 400 km long, reversed refraction lines. The other entailed the inversion of broadband teleseismic P waveforms recorded at a single three-component broadband station, RSCP, located at the intersection of the two refraction profiles. A comparison of the two sets of velocity profiles revealed many similarities and some significant differences. Both sets of velocity models consist of three major crustal layers: (1) an upper crust (Vp = 6.1–6.4 km/s) down to about 17 km, (2) a mid-crust (Vp = 6.7–6.9 km/s) between 17 and 40 km depth, (3) a lower crust (Vp = 7.2–7.4 km/s) from 40 to 51 km depth. The refraction models have linear transition zones up to 11 km thick at the base of each layer, whereas the teleseismic models have more irregular transition zones at the base of the mid- and lower crust. The differences in the results of these studies are attributed to the differing frequency bandwidths of the data sets; the predominant sensitivity of the teleseismic data to shear velocities, compared to compressional velocities for the refraction data; and the different analysis procedures involved in each method. Nevertheless, the similarities indicate that the teleseismic waveform method with broadband data is capable of retreiving comparable crustal information as the Cumberland Plateau refraction survey. In addition, it provides the kind of complementary information required to constrain the composition of the continental lower crust and uppermost mantle.  相似文献   

19.
The 2-D density modeling of the sublatitudinal deep seismic sounding profile in the Tsushima Basin (Sea of Japan) was performed. The available data allow us to presume that the opening of the Tsushima Basin took place under conditions of an anomalously heated mantle that fostered emplacement of mantle material into the basinal crust and basin/continental margin transition zone of the Korean Peninsula attended by formation of the oceanic crust. The increased (relative to the normal oceanic crust) thickness of the basinal crust was conditioned by the accumulation of a large amount of terrigenous material and volcanogenic rocks in the upper part of the crust and underplating of mantle material in the crustal base.  相似文献   

20.
We have mapped the transition from the continental Faroe block (the Faroe Islands and surrounding shelf) to the thickened oceanic crust of the Faroe–Iceland Ridge in the North Atlantic using the results of a detailed sea-to-land seismic profile with wide-angle to normal-incidence recordings of explosive and airgun shots fired at sea along the Faroe–Iceland Ridge. Interpretation of all available seismic and gravity data indicates that this aseismic ridge is composed of 30±3-km-thick oceanic crust, with a gradual transition to ancient continental crust from 100 to 40 km northwest of the Faroe Islands, close to the shelf edge. This confirms that the crust beneath the Faroe Islands, which may be up to 46 km thick, comprises continental material in agreement with previous seismic and geochemical results. Results suggest that the upper 5.2±0.7 km of the Faroe crust consists of Tertiary basalts generated during continental breakup, overlying the continental crust beneath. The lower crust, where seismic constraint is poor, may exhibit high seismic velocities (7.1–7.6 km s−1) which we attribute to underplating or intrusion by mafic melts during continental breakup in the early Tertiary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号