首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The composition of sand-silt and pelite fractions of deep-sea sediments deposited under different hydrodynamic conditions was studied. Assemblages of clastic, clayey, biogenic, and authigenic minerals formed under the influence of surface and bottom currents were traced. It is shown that biogenic opal, fine-dispersed celestobarite, and authigenic protosyngenetic ferromanganese micronodules, which are composed of only manganese phases, represent indicators of cyclonic gyres characterized by enhanced bioproductivity. Collophane (bone detritus), phillipsite, palagonite, and large celestobarite crystals prevail in mineral assemblages below the anticyclonic gyres, whereas ore micronodules are depleted in manganese. Surface and bottom currents control the distribution of clastic (terrigenous edaphogenic, terrestrial-volcanogenic) and clay minerals, as well as biogenic opal in the form of Ethmodiscus frustules in sediments. Edaphogenic mineral assemblages represent the reliable indicators of bottom currents.  相似文献   

2.
A total of about 1100 well-distributed samples of suspended matter in surface waters off the length of eastern Asia are available. From these samples, 180 were selected for detailed examination of the non-combustible fraction using optical and electron microscopy along with computer methods of particle measurement and counting. The results showed that, generally, all major components of the suspended matter are most abundant in the nearshore belt (combustible fraction, mineral grains of silt size, skeletal debris, and clay minerals), the result of mechanical transport of detrital sediment and chemical transport of nutrients from the land. Mineral grains of silt size average about 2%, skeletal debris plus clay minerals—23%, and combustible organic matter—75% of total sample weights, but the last two categories vary over a wide range depending upon geographical positions of the samples. Most evident is an oceanward decrease in percentage and concentration of the total noncombustible fraction and an oceanward increase in median diameter of the mineral grains.  相似文献   

3.
Petrographic studies undertaken on samples from outcrops of the Jurassic Pilliga Sandstone intake beds in the extreme southeastern portion of the Great Australian Basin reveal an abundance of low birefringent clay material filling pore spaces and detrital grain fractures. Thin-section petrography and scanning electron microscopy indicate that much of this material is authigenic and X-ray diffraction studies show it to be essentially monomineralic, consisting of well-ordered kaolinite. Although the Pilliga Sandstone is quartz-rich, micrometric analysis indicates that potassium feldspar is present in quantities up to 20% of the total detrital material. Sporadic biotite mica is also present, constituting up to 3% of the detrital volume.Mechanisms for the formation of authigenic kaolinite are discussed in terms of chemical equilibrium and detrital mineral stability in aqueous systems. Chemical data from bore water and surface waters from this stratigraphic unit indicate that kaolinite is the major stable mineral phase in contact with these natural waters and that minerals such as potassium feldspar or mica would chemically alter to kaolinite. Such alteration of detrital mineral grains is supported by thin-section petrography and this mechanism is considered to be the source for the majority of the authigenic kaolinite observed.The hydrogeological characteristics of the Pilliga Sandstone intake beds are related to the extent of development of authigenic kaolinite.  相似文献   

4.
Numerous previous studies indicate that several different authigenic aluminosilicates form in the oceans. In this study we show, using dissolved Al distributions in sediments and waters from the nearshore regions of the East China Sea, that the process of aluminosilicate formation probably begins rapidly upon contact of detrital clays with seawater. Statistical analyses of dissolved Al-Si-H+ relations in surface sediments indicate that the minerals forming in East China Sea sediments low in dissolved Fe are dioctahedral chlorites with an average composition EX0.91Mg0.77Al5.0Si2.7O10(OH)8 (where EX = exchangeable + 1 cation). This composition is also consistent with dissolved Al and Si measurements as a function of salinity in turbid overlying waters. Results suggest a dissolution—reprecipitation mechanism for clay mineral reconstitution. This mechanism can help to explain why different authigenic clays are found in different areas of the oceans. In the East China Sea the total amount of authigenic clays present must constitute a very minor fraction of the bottom sediments. Thus, the formation of these minerals has a relatively small impact upon dissolved Si distributions. Clay mineral reconstitution in nearshore regions may provide a mechanism for buffering sediments and overlying waters with respect to pH, as the composition of minerals formed should be a direct function of the H+ activity in the surrounding environment.  相似文献   

5.
This paper discusses the formation of whiting events, drifting milky clouds of water, and their role in the formation of recent aragonite sediments in a semi-enclosed, karstic, marine lake on the island of Mljet (Adriatic Sea). This study is based on detailed structural, morphological and sedimentological characterization of, and strontium distribution in, particles originating from suspended matter and sediments. The particles were examined by X-ray diffraction and electron diffraction analyses, scanning and transmission electron microscopy, as well as electron microprobe energy dispersive X-ray analyses and atomic absorption spectroscopy. Morphological features, granulometric characteristics, strontium enrichment and characteristic details of the aragonite structure in the needle-like particles were identical in both the suspended matter collected during whiting events and in the bottom sediments. The whiting events, which occasionally occurred in surface waters, were found to be sites of short-term active authigenic aragonite precipitation and the main source of fine-grained aragonite mud. This study exemplifies the role of biologically induced inorganic precipitation processes in the formation of recent aragonite mud in a restricted Mediterranean environment.  相似文献   

6.
Components of suspended matter in surface waters between western Africa and the Mid-Atlantic Ridge were removed by filtration and measured by scanning electron and optical microscopy. Skeletal debris from diatoms, dinoflagellates, and other plankton are most concentrated in Antarctic surface water and in regions of coastal upwelling. Detrital mineral grains are most concentrated in nearshore regions, from discharge of major rivers, erosion of sea cliffs, and deposition from offshore winds. Farther offshore are high concentrations of mineral grains brought by trade winds from deserts in both northern and southern Africa. The winds also bring freshwater diatoms and woody tissue. The remaining component on the filters is marine organic matter, mostly in thin films. These films trap skeletal debris and mineral grains. Presumably, animals that graze upon the films further concentrate the grains into faecal pellets whose rapid settling carries the grains into deeper waters and to the bottom. The films were found in all other areas of the world ocean from which surface samples were spot-checked: off eastern Asia, off eastern North America, and the central Pacific. Thus they appear to be a major factor in marine sedimentation. In areas of upwelling off western Africa, the total suspended matter in surface waters averages about 0.1 mg/1 of filtrate, about five times that present in the open ocean. It consists of about 70% organic matter, 29.6% skeletal debris, and 0.4% mineral grains, in contrast with concentrations in the open ocean of 90%, 8% and 2%, respectively.  相似文献   

7.
We studied recent sedimentation in small saline and brackish lakes located in the Ol’khon region (western Baikal area) with arid and semiarid climate. The lakes belong to the Tazheran system; it is a series of compactly located closed shallow lakes, with a limited catchment area and different mineralization, under the same landscape, climatic, geologic, and geochemical conditions. Two complementary approaches are applied in the research: (1) a detailed study of individual lake and (2) a comparison of the entire series of lakes, which can be considered a natural model for studying the relationship between endogenic mineral formation and the geochemistry of lake waters. The lake waters and bottom sediments were studied by a set of modern methods of geochemistry, mineralogy, and crystal chemistry. The mineral component of the bottom sediments was analyzed by powder X-ray diffraction (XRD), IR spectroscopy, and electron microscopy. The lakes are characterized by predominant carbonate sedimentation; authigenic pyrite, smectite, chlorite, and illite are detected in assemblage with carbonate minerals in the bottom sediments. Carbonate phases have been identified, and their proportions have been determined in the samples by decomposition of the complex XRD profiles of carbonate minerals into peaks using the Pearson VII function. Mathematical modeling of the XRD profiles of carbonates has revealed that predominantly Mg-calcites with variable Mg content and excess-Ca dolomite accumulate in lake bottom sediments influenced by biogenic processes. Aragonite, monohydrocalcite, and rhodochrosite form in some lakes along with carbonates of the calcite-dolomite series. We show a dependence of the composition of the assemblages of the newly formed endogenic carbonate minerals and their crystallochemical characteristics on the chemical composition of lake waters.  相似文献   

8.
The formation of authigenic manganese minerals and ores in the pelagic regions of the ocean is related to oxidation of Mn2+ extracted from basalts and other rocks with heated seawater. For littoral parts of the ocean and lakes mobilization of Mn2+ and Fe2+ is admitted finding its way to the bottom sediments (along with the organic substances) from land in the form of Mn4+. The main manganese mineral of oceanic and continental basins is vernadite. Its deposition is considered a result of the activity of microorganisms.  相似文献   

9.
Seventy-six samples of formation waters were collected from oil wells producing from the Aux Vases or Cypress Formations in the Illinois Basin. Forty core samples of the reservoir rocks were also collected from the two formations. Analyses of the samples indicated that the total dissolved solids content (TDS) of the waters ranged from 43,300 to 151,400 mg/L, far exceeding the 35,400 mg/L of TDS found in typical seawater. Cl-Br relations suggested that high salinities in the Aux Vases and Cypress formation waters resulted from the evaporation of original seawater and subsequent mixing of the evaporated seawater with concentrated halite solutions. Mixing with the halite solutions increased Na and Cl concentrations and diluted the concentration of other ions in the formation waters. The elemental concentrations were influenced further by diagenetic reactions with silicate and carbonate minerals. Diagenetic signatures revealed by fluid chemistry and rock mineralogy delineated the water-rock interactions that took place in the Aux Vases and Cypress sandstones. Dissolution of K-feldspar released K into the solution, leading to the formation of authigenic illite and mixed-layered illite/smectite. Some Mg was removed from the solution by the formation of authigenic chlorite and dolomite. Dolomitization, calcite recrystallization, and contribution from clay minerals raised Sr levels significantly in the formation waters. The trend of increasing TDS of the saline formation waters with depth can be explained with density stratification. But, it is difficult to explain the combination of the increasing TDS and increasing Ca/Na ratio with depth without invoking the controversial 'ion filtration' mechanism.  相似文献   

10.
When Fe(II) bearing groundwaters surface in streams, particulate authigenic Fe-rich material is produced by oxidation. Such freshly precipitated Fe minerals may be transported as suspended sediment and have a profound impact on the fate of trace metals and nutrients in rivers. The objective of this study was to monitor changes in mineralogy and composition of authigenic material from its source to streams of increasing order. Groundwaters, surface waters, and suspended sediment in streams of different order were sampled in the Kleine Nete catchment (Belgium), a lowland with Fe-rich groundwaters (3.5–53.8 mg Fe/L; pH 6.3–6.9). Fresh authigenic material (>0.45 μm) was produced by oxidising filtered (<0.45 μm) groundwater and surface water. This material contained, on average, 44% Fe, and smaller concentrations of C, P, and Ca. Iron EXAFS (Extended X-ray Absorption Fine Structure) spectroscopy showed that the Fe was present as poorly crystalline hydrous ferric oxides with a structure similar to that of ferrihydrite. The Fe concentration in the suspended sediment samples decreased to 36–40% (stream order 2), and further to 18–26% (stream order 4 and 5). Conversely, the concentrations of organic C, Ca, Si, and trace metals increased with increasing stream order, suggesting mixing of authigenic material with suspended sediment from a different source. The Fe speciation in the suspended sediment was similar to that in fresh authigenic material, but more Fe–Fe interactions were observed, i.e. it was increasingly hydrolysed, suggesting ageing reactions. The suspended sediment in the streams of order 4 and 5 is estimated to contain between 31% and 59% of authigenic material, but more data are needed to refine this estimate. The authigenic material is an important sink for P in these streams which may alleviate the eutrophication risk in this catchment.  相似文献   

11.
The Dianchi, Erhai and Fuxian lakes lie in faulted basins in a subtropical humid region of the Yunnan Plateau, China. Three groups of authigenic minerals have been recognized in their recent sediments - carbonate minerals, Fe-bearing minerals and silica minerals. The main authigenic minerals are goethite, calcite, aragonite, siderite and quartzine. Goethite is chemically precipitated from a colloidal suspension. Calcite is a widespread chemical precipitate that is present in deep parts of the lakes and in shallow areas associated with aquatic macrophytes. Aragonite is mainly biochemical in origin, and commonly associated with shallow benthos. Siderite forms in reducing environments, associated with pore waters with a high PCO2 that resulted from microbial degradation of organic matter. It forms mainly in deep-water environments. Quartzine, which occurs mainly in delta front and prodeltaic sites, forms from diatom dissolution and dissolved silica introduced by streams. Six authigenic mineral associations are recognized, each of which can be related to depositional setting within the lake and the stage of lake development. The same associations can also be recognized in a 480-m-long core recovered from Dianchi Lake. Strong reducing environments and migrating pore fluids with high PCO2 have led to the early diagenetic alteration of some of the initial authigenic minerals. Using the mineral associations from the modern lakes, the Pliocene to Recent history of Dianchi Lake has been interpreted, and is in general agreement with palaeoenvironmental reconstructions based upon palaeontological and other evidence.  相似文献   

12.
Minerals of native elements (Pd, Pt, Au, Ag, and Au-Ag solid solutions) as well as Pb, Zn, Cu, Bi, Fe, Cr, Ni, W, Al, and their intermetallides, and a number of other ore minerals were discovered in brown coals of the Erkovets field. The structural reorganization of the noble metal grains and most of the other minerals found in the brown coals suggest their authigenic paragenesis. The input of noble metals in brown coals is possible in an ionic mode from the surface and underground waters as mineral particles transported by wind from goldfields.  相似文献   

13.
The Tazheran lakes are located compactly in the small Tazheran steppe area. Their bottom sediments are predominantly various calcite-dolomite carbonates, and their waters are rich in uranium. The studies have shown that the main process in these lakes is chemogenic carbonate precipitation with the participation of carbon dioxide formed through the bacterial destruction of organic matter. For thermodynamic modeling of the composition of bottom sediments, we chose two lakes with different basic parameters. Calculations were made for the 15-component heterogeneous system H2O-Na-Ca-Mg-K-Sr-Ba-Si-Al-Cl-C-S-Fe-U-Mn including particles in the solution, minerals, and gases at 25 °C and 1 bar. As starting information, we used the obtained analytical data on the natural composition of waters and bottom sediments. The results show that calcite-dolomite carbonates are predominant in the bottom sediments and the destruction of organic matter results in reducing conditions. This confirms the hypothesis of the formation of mineral phases of U(IV) during diagenetic processes in the bottom sediments of the studied lakes.  相似文献   

14.
Production from geothermal reservoirs in volcanic-igneous hydrothermal systems may be disturbed owing to the formation of authigenic minerals that reduce primary porosity and infill fissure systems. Crystallization may be induced by natural processes or human activity related to the reservoir exploitation. In volcanic and volcaniclastic rocks, zeolites and related authigenic silicate minerals commonly develop. Two selected study sites—Pauzhetka geothermal field in Russia and Smrekovec volcanic complex in Slovenia are characterized by extensive development of progressive stage medium- and low-temperature propylitization and zeolitization with similar mineral assemblages that reduced original reservoir rock porosity and permeability. Retrograde and overprinting reactions of argillitization commonly enhance porosity and permeability of rocks, but some other reactions, like from prehnite to laumontite, from laumontite to heulandite, and from laumontite to analcime, encountered in the Smrekovec volcanic complex reduced it appreciably. Retrograde reactions recognized in the study sites were not induced by the temperature drop only, but were accompanied by the change in chemical composition of reacting fluids. Chemical composition of interstitial waters produced from exploitation wells in the Pauzhetka geothermal field indicate that propylitic and zeolite facies alteration is related to Na–Cl, slightly alkaline waters, while argillitization involved acidic thermal waters with more complex ion composition.  相似文献   

15.
Trace element data from 59 Pliocene lignite cores from the lignite field in the Kosovo Basin, southern Serbia, show localized enrichment of Ni and Cr (33–304 ppm and 8–176 ppm, respectively, whole-coal basis). Concentrations of both elements decrease from the western and southern boundaries of the lignite field. Low-temperature ash and polished coal pellets of selected bench and whole-coal samples were analyzed by X-ray diffraction and scanning electron microscopy with energy-dispersive X-ray analyses. These analyses show that most of the Ni and Cr are incorporated in detrital and, to a lesser degree, in authigenic minerals. The Ni- and Cr-bearing detrital minerals include oxides, chromites, serpentine-group minerals and rare mixed-layer clays. Possible authigenic minerals include Ni---Fe sulfates and sulfides. Analyses of three lignite samples by a supercritical fluid extraction technique indicate that some (1–11%) of the Ni is organically bound. Ni- and Cr-bearing oxides, mixed-layer clays, chromites and serpentine-group minerals were also identified in weathered and fresh samples of laterite developed on serpentinized Paleozoic peridotite at the nearby Glavica and ikatovo Ni mines. These mines are located along the western and northwestern rim, respectively, of the Kosovo Basin, where Ni contents are highest. The detrital Ni- and Cr-bearing minerals identified in lignite samples from the western part of the Kosovo Basin may have been transported into the paleoswamp by rivers that drained the two Paleocene laterites. Some Ni may have been transported directly into the paleoswamp in solution or, alternatively, Ni may have been leached from detrital minerals by acidic peat water and adsorbed onto organic matter and included into authigenic mineral phases. No minable source of Ni and Cr is known in the southern part of the lignite field; however, the mineral and chemical data from the lignite and associated rocks suggest that such a source area may exist.  相似文献   

16.
The mineral and inorganic chemical composition of five types of samples from the Pernik subbituminous coals and their products generated from the Pernik preparation plant were studied. They include feed coal, low-grade coal, high-grade coal, coal slime, and host rock. The mineral matter of the coals contains 44 species that belong mainly to silicates, carbonates, sulphates, sulphides, and oxides/hydroxides, and to a lesser extent, chlorides, biogenic minerals, and organic minerals. The detrital minerals are quartz, kaolinite, micas, feldspars, magnetite, cristobalite, spessartine, and amphibole. The authigenic minerals include various sulphides, silicates, oxihydroxides, sulphates, and carbonates. Several stages and substages of formation were identified during the syngenetic and epigenetic mineral precipitations of these coals. The authigenic minerals show the greatest diversity of mineral species as the epigenetic mineralization (mostly sulphides, carbonates, and sulphates) dominates qualitatively and quantitatively. The epigenetic mineralization was a result of complex processes occurring mostly during the late development of the Pernik basin. These processes indicate intensive tectonic, hydrothermal and volcanic activities accompanied by a change from fresh to marine sedimentation environment. Thermally altered organic matter due to some of the above processes was also identified in the basin. Most of the trace elements in the Pernik coals (Mo, Be, S, Zr, Y, Cl, Ba, Sc, Ga, Ag, V, P, Br, Ni, Co, Pb, Ca, and Ti) show an affinity to OM and phases intimately associated with OM. Some of the trace elements (Sr, Ti, Mn, Ba, Pb, Cu, Zn, Co, Cr, Ni, As, Ag, Yb, Sn, Ga, Ge, etc.) are impurities in authigenic and accessory minerals, while other trace elements (La, Ba, Cu, Ce, Sb, Bi, Zn, Pb, Cd, Nd, etc.) occur as discrete phases. Elements such as Sc, Be, Y, Ba, V, Zr, S, Mo, Ti, and Ga exceed Clarke concentrations in all of the coal types studied. It was also found that a number of elements in the Pernik coals (F, V, As, Pb, Mo, Li, Sr, Ti, Ga, Ni, Ge, Cr, Mn, etc.) reveal mobility in water and could have some environmental concerns.  相似文献   

17.
The concentrations of major and trace inorganic elements in a succession of Permian coals from the Gunnedah Basin, New South Wales, have been determined by X-ray fluorescence techniques applied to both whole-coal and high-temperature ash samples. The results have been evaluated in the light of quantitative data on the minerals in the same coals, determined from X-ray diffraction study of whole-coal samples using a Rietveld-based interpretation program ( ™), to determine relationships of the trace elements in the coals to the mineral species present. Comparison of the chemical composition of the coal ash interpreted from the quantitative mineralogical study to the actual ash composition determined by XRF analysis shows a high degree of consistency, confirming the validity of the XRD interpretations for the Gunnedah Basin materials. Quartz, illite and other minerals of detrital origin dominate the coals in the upper part of the sequence, whereas authigenic kaolinite is abundant in coals from the lower part of the Permian succession. These minerals are all reduced in abundance, however, and pyrite is a dominant constituent, in coals formed under marine influence at several stratigraphic levels. Calcite and dolomite occur as cleat and fracture infillings, mostly in seams near the top and bottom of the sequence. The potassium-bearing minerals in the detrital fraction are associated with significant concentrations of rubidium, and the authigenic kaolinite with relatively high proportions of titanium. Zirconium is also abundant, with associated P and Hf, in the Gunnedah Basin coal seams. Relationships exhibited by Ti, Zr, Nd and Y are consistent with derivation of the original sediment admixed with the seams from an acid volcanic source. Pyrite in the coals is associated with high concentrations of arsenic and minor proportions of thallium; no other element commonly associated with sulphides in coals, however, appears to occur in significant proportions with the pyrite in the sample suite. Small concentrations of Cl present in the coal are inversely related to the pyrite content, and appear to represent ion-exchange components associated with the organic matter. Strontium and barium are strongly associated with the cleat-filling carbonate minerals. Ge and Ga appear to be related to each other and to the coal's organic matter. Cr and V are also related to each other, as are Ce, La, Nd and Pr, but none of these show any relationship to the organic matter or a particular mineral component.  相似文献   

18.
SEM examination of suspended material collected by filtration from samples of surface waters over continental shelves and deeper areas off eastern Asia reveals the presence of irregular organic films that are longer, cover more filter area, and have more tapered edges in samples from nearshore than offshore regions. Associated diatoms include species diagnostic of coastal environments. Films and coastal diatoms are most abundant in waters above continental shelves where river discharges cause the waters to be more dilute than 33.5‰ salinity. Farther from shore, both films and skeletal elements are broken and partly dissolved. Skeletal elements, faecal matter, and other debris are trapped or adhere to the films, which therefore provide a concentrated food source for small organisms beyond nearshore regions of high primary productivity. The films contribute an unknown percentage of the total organic matter that reaches bottom sediments.  相似文献   

19.
Surface waters are subject to intense contamination with trace elements in ore mining areas. A complex study was performed for the state of waters and bottom sediments from the Bogachukha and Urup Rivers in the area of the abandoned tailing dump of the Urupsky Ore Mining. The impact exerted by the tailing dump on the concentration of elements in the water, suspended particulate matter, and bottom sediments of the rivers is evaluated. The major contaminants of surface waters and bottom sediments, as well as the forms of their element distribution are revealed.  相似文献   

20.
The origin of high dissolved manganese concentrations in slightly acidic mine runoff from a surface mine operated by the Cumberland Coal Company in eastern Tennessee was investigated. Mineralogical and chemical analyses were performed on 31 samples of sandstone, shale, coal, and mudstone from the mine to identify the sources and stratigraphic distribution of high extractable manganese contents in the spoil materials. The samples were analyzed for their bulk mineral content by X-ray diffraction, net acid-base potential, and reaction to 2 or 4 chemical extraction procedures. A limited number of samples were analyzed for petrographic characteristics, clay mineral composition by X-ray diffraction, and mineral compositions by electron microprobe. Analysis of the data and consideration of the geochemical conditions at the mine were used to identify probable sources for the high extractable manganese contents.The results indicate 2 prominent, independent sources of extractable manganese. The first source is exchangeable manganese on clay minerals (mainly illite + muscovite and chlorite) and is concentrated in shale and mudstone rock types. The second and more significant source is manganese in siderite concretions and cement, mainly in shale and mudstone. Comparison to other coal-bearing strata indicates that manganese-rich siderite is common in fresh- to brackish-water subaqueous sediments that overlie coal. This is especially the case for coals formed in wet, tropical environments.Ratios of manganese to calcium and magnesium in mine runoff suggest that manganese from siderite is the major cause of the high dissolved manganese contents. A conceptual model is developed to explain the high manganese contents of the mine runoff. Oxidation of pyrite creates mildly acidic waters that are subsequently partially neutralized by reaction with impure siderite. Solubilized manganese remains dissolved in the slightly acidic runoff water, whereas dissolved iron precipitates as ferric hydroxide or goethite. Consideration of data from other coal mining regions suggests that similar reactions involving impure siderite may be responsible for high manganese concentrations in acidic to slightly acidic mine runoff. Geochemical reaction path modeling of pyrite and impure siderite with rainwater illustrate how resulting water compositions may vary depending on pyrite to siderite ratios in spoil materials. Spoil water compositions from the Cumberland mine are largely consistent with reaction of pyrite and impure siderite in proportions observed in the sediments; however, deviations may be explained by minor mixing with waters that reacted only with impure siderite or clay mineral exchange reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号