首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although Quaternary marine terraces have been reported from eastern Saudi Arabia at heights of up to 150 m, unambiguous shoreline deposits could be identified only within 3 m of present-day High Water and close to the modern shoreline. Unaltered aragonitic mollusc shells from five such deposits yielded 14C ages of 3700–6000 yr B.P. Comparison of their elevations with those of coeval deposits on the Zagros coast of Iran demonstrates the relative stability of the Saudi shore of the Gulf during the late Holocene.  相似文献   

2.
Late Pleistocene age terrace deposits are exposed in the narrow cliffed coastal plain of Bahia Coyote, Baja California Sur, resting unconformably on the lagoonal-shallow water volcaniclastics of the early Miocene Cerro Colorado Member of the El Cien Formation. The terrace is dissected by widely spaced arroyos and partically covered by alluvial fans in the inner and central areas. The marine deposits vary in thickness from 0.5 to 10 m and were laid down in pre-existing erosional channels and depressions in the Pleistocene landscape. The sequence begins with a cobble conglomerate with oyster shells, overlain by poorly bedded molluscan-rich bioclastic sands and coral rubble, beds of massive Porites in growth position and coral-rhodolith sands and marls. Beach sands and gravels and coastal dunes cap the sequence.Samples of Porites panamensis selected for U/Th dating are well-preserved aragonite (>95%). Preliminary results yield U/Th ages of 109–209 ka but the corals have initial δ 234U values in excess of modern seawater values. This indicates open-system behavior and uncertainty associated with the ages. A corrected age for the top of the massive Porites unit suggests that the corals grew during the last interglacial, marine isotope stage (MIS) 5e sea level high stand.Assuming global sea level during MIS 5e was ca. 4–5 m above present-day sea level (McCulloch and Esat, 2000) and the growth position of the corals was 1–5 m below sea level, the terraces have been uplifted between 12 and 25 m (12–15 cm/kyr). This is consistent with other terrace-based uplift rates for the central Baja California peninsula, north of the La Paz fault.  相似文献   

3.
A predictive model for locating early Holocene archaeological sites in southern Southeast Alaska was developed based on shell‐bearing raised marine deposits. Fieldwork included coring of select‐raised marine strata, measuring their elevations, and radiocarbon dating the associated shell samples within the cores. A subset of the data was used to produce a relative sea‐level curve spanning the Holocene. The relative sea‐level curve suggests that sites favorable for habitation between 9200 and 7000 14C yr B.P. should be found 16–22 ± 1 m above present zero tide. The sea‐level curve and new high‐resolution digital elevation models allowed reconstruction of past shorelines at various elevations. Surveys to test the model found and recorded over 70 archaeological sites from present sea level up to 32 m above present zero tide. Eleven new sites were within the targeted elevation range and radiocarbon dated to 9280–6890 14C yr B.P. Initial investigations indicate these older sites are rich in microblade and pebble tool technology. The new early Holocene sites indicate more extensive early maritime settlement of Alaska than implied by previous studies and contribute to our understanding of the early movement of people into North America.  相似文献   

4.
《Quaternary Science Reviews》2005,24(10-11):1203-1216
This paper presents preliminary relative sea level curves for the Marguerite Bay region and for the South Shetland Islands. The Marguerite Bay curve is constrained by both new and previously published 14C dates on penguin remains and shells, and on two isolation basins dating back to 6500 14C yr BP. Extrapolation back to the marine limit yields a minimum deglaciation date for Marguerite Bay of ca 9000 14C yr BP. Analysis of beach clasts suggests that there was a period of increased wave activity, perhaps related to a reduction in summer sea-ice extent, between ca 3500 and ca 2400 14C yr BP. The curve for the South Shetland Islands is derived entirely from published 14C dates from isolation basins and on whalebone, penguin bone and seal bone. The curve shows an initial relative sea level fall, which was interrupted by a period in the mid-Holocene when relative sea level rose to a highstand of between 14.5 and 16 m above mean sea level (amsl), before falling again.  相似文献   

5.
The Holocene sea-level high stand or “marine limit” in Wilkes Land, East Antarctica, reached 30 m above present sea level at a few dispersed sites. The most detailed marine limit data have been recorded for the Windmill Islands and Budd Coast at the margin of the Law Dome ice cap, a dome of the East Antarctic Ice Sheet (EAIS). Relative sea-level lowering of 30 m and the associated emergence of the Windmill Islands have occurred since 6900 14C (corr.) yr B.P. Numerical modeling of the Earth's rheology is used to determine the glacio-isostatic component of the observed relative sea-level lowering. Glaciological evidence suggests that most of EAIS thickening occurred around its margin, with expansion onto the continental shelf. Consequently, a regional ice history for the last glacial maximum (LGM) was applied in the glacio-isostatic modeling to test whether the observed relative sea-level lowering was primarily produced by regional ice-sheet changes. The results of the modeling indicate that the postglacial (13,000 to 8000 14C yr B.P) removal of an ice load of between 770 and 1000 m from around the margin of the Law Dome and adjacent EAIS have produced the observed relative sea-level lowering. Such an additional ice load would have been associated with a 40- to 65-km expansion of the Law Dome to near the continental shelf break, together with a few hundred meters of ice thickening on the adjoining coastal slope of the EAIS up to 2000 m elevation. Whereas the observed changes in relative sea level are shown to be strongly influenced by regional ice sheet changes, the glacio-isostatic response at the Windmill Islands results from a combination of regional and, to a lesser extent, Antarctic-wide effects. The correspondence between the Holocene relative sea-level lowering interpreted at the margin of the Law Dome and the lowering interpreted along the remainder of the Wilkes Land and Oates Land coasts (105°–160° E) suggests that a similar ice load of up to 1000 m existed along the EAIS margin between Wilkes Land and Oates Land.  相似文献   

6.
Corals from the Seychelles Islands, Indian Ocean, occur mainly as small coralline algae–vermetid remnants found in cavities adhering to the rock surface, and they rarely attain more than 2 m2in area. Samples ofGoniastreaandPoritesfrom elevations between 1.7 and 6 m above present mean sea level were dated by TIMS238U–234U–230Th techniques. The ages from well-preserved corals lie between 131,000 and 122,000 yr B.P., in agreement with most other observations of the last-interglacial sea level. Field evidence and dating from high marine limestones from two sections at La Digue Island indicate a period of coral buildup until 131,000 yr B.P., followed by a drop in sea level between 131,000 and 122,000 yr B.P.  相似文献   

7.
A re‐analysis of sea‐level data from eastern Australia based on 115 calibrated C‐14 ages is used to constrain the origin, timing and magnitude of sea‐level change over the last 7000 years. We demonstrate that the Holocene sea‐level highstand of +1.0–1.5 m was reached ~7000 cal yr bp and fell to its present position after 2000 yr bp . These findings are in contrast to most previous studies that relied on smaller datasets and did not include the now common conversion of conventional C‐14 ages to calendar years. During this ~5000 year period of high sea level, growth hiatuses in oyster beds and tubeworms and lower elevations of coral microatolls are interpreted to represent short‐lived oscillations in sea‐level of up to 1 m during two intervals, beginning c. 4800 and 3000 cal yr bp . The rates of sea‐level rise and fall (1–2 mm yr?1) during these centennial‐scale oscillations are comparable with current rates of sea‐level rise. The origin of the oscillations is enigmatic but most likely the result of oceanographic and climatic changes, including wind strengths, ice ablation, and melt‐water contributions of both Greenland and Antarctic ice sheets.  相似文献   

8.
U-series ages measured by thermal ionisation mass spectrometry (TIMS) are reported for a Last Interglacial (LI) fossil coral core from the Turtle Bay, Houtman Abrolhos islands, western Australia. The core is 33.4 m long the top of which is approximately 5 m a.p.s.l. (above present sea level). From the232Th concentrations and the reliability of the U-series ages, two sections in the core can be distinguished. Calculated U/Th ages in core section I (3.3 m a.p.s.l to 11 m b.p.s.l) vary between 124±1.7 ka BP (3.3 m a.p.s.l.) and 132.5±1.8 ka (4 m b.p.s.l., i.e. below present sea level), and those of section II (11–23 m b.p.s.l.) between 140±3 and 214±5 ka BP, respectively. The ages of core section I are in almost perfect chronological order, whereas for section II no clear age-depth relationship of the samples can be recognised. Further assessments based on the ϖ234U(T) criteria reveal that none of the samples of core section II give reliable ages, whereas for core section I several samples can be considered to be moderately reliable within 2 ka. The data of the Turtle Bay core complement and extend our previous work from the Houtman Abrolhos showing that the sea level reached a height of approximately 4 m b.p.s.l at approximately 134 ka BP and a sea level highstand of at least 3.3 m a.p.s.l. at approximately 124 ka BP. Sea level dropped below its present position at approximately 116 ka BP. Although the new data are in general accord with the Milankovitch theory of climate change, a detailed comparison reveals considerable differences between the Holocene and LI sea level rise as monitored relative to the Houtman Abrolhos islands. These observation apparently add further evidence to the growing set of data that the LI sea level rise started earlier than recognised by SPECMAP chronology. A reconciliation of these contradictionary observations following the line of arguments presented by Crowley (1994) are discussed with respect to the Milankovitch theory.  相似文献   

9.
The 2004 tsunami deposits and probable paleotsunami deposits were studied at the southern Kho Khao Island, on Andaman Sea coast of Thailand. The 2004 tsunami laid down about 8?cm of fining upward medium sand and locally about 40?cm of massive coarse sand with common mud clasts. The sediments were characterized by the presence of marine foraminiferal assemblage; however, already after 5?years many of carbonate foraminiferal tests were partly or completely dissolved. The probable paleotsunami deposits form layer about 1?m thick. It consists of massive very coarse sand with common big shells and mud clasts. Its composition suggests a marine origin and the presence of mud clasts, and similarity to the 2004 tsunami deposits suggests that the layer was left by paleotsunami, which took place probably during the late Holocene, even though two shells within the layer gave 14C ages of 40,000?years or more.  相似文献   

10.
The alternation of terrestrial and marine deposits is an indicator of past environmental and sea‐level changes. The age of deposition is usually dated by means of radiocarbon. However, radiocarbon dates of molluscan shells from coastal areas may be complicated by various sources of carbon, and problematic for deposits of 40–50 ka or older. Herein, we apply the Optically Stimulated Luminescence (OSL) dating method to date samples from terrestrial and marine/coastal sediments extracted from three cores in the south Bohai Sea, China. Multiple‐ and single‐aliquot regenerative‐dose procedures using OSL signals from fine‐silt (4–11 μm), coarse‐silt (38–63 μm) and fine‐sand (63–90 or 90–125 μm) quartz were employed to determine the equivalent dose (D e). The results showed that: (i) OSL ages from quartz of different grain sizes and different protocols are consistent with each other; (ii) for Holocene samples, most of the radiocarbon dates agree well with OSL ages; (iii) for pre‐Holocene samples, radiocarbon dates cluster at 40–50 14 C ka BP, whereas OSL ages are in stratigraphic order from 11 ka to 176 ka. Because of the self‐consistency of the quartz OSL ages, the stratigraphic agreement in the three cores, and the clustering of the radiocarbon dates, we suggest that the quartz OSL ages are more reliable with respect to dating the samples from the south Bohai Sea. Finally, the four marine strata identified in the south Bohai Sea are likely to have formed during the Holocene, Marine Isotopic Stage (MIS) 3–5, MIS 6 and probably MIS 7, respectively.  相似文献   

11.
在对莱州湾南岸8个钻孔沉积物沉积结构及有孔虫特征分析基础上,识别相关海面标志层位,辅以加速器质谱AMS14C测年,重建了全新世相对海面变化历史,并讨论了海面变化的沉积响应及控制因素。约9200cal BP以前,海面快速上升,研究区海侵时海面于-21.5m左右;9200~8400cal BP海面上升速率减缓至约2mm/a;8400~8000cal BP海面由-14m快速上升至-5.5m,速率约为33mm/a;8000~7600cal BP,海面持续数百年停滞或微弱下降;7600~7000cal BP海面由-5.5m快速上升至0m以上,速率至少约为13mm/a;7000~6000cal BP海面缓慢上升至+2~+3m位置,速率约为3mm/a;约6000cal BP以后海面缓慢下降至现今水平。约9200cal BP以前、8400~8000cal BP、7600~7000cal BP时期的3次海面快速上升,是MWP-1C融水脉冲、诱发8.2ka冷事件的融水脉冲,以及MWP-2融水脉冲的中纬度地区响应。中全新世全球冰融趋于停滞后,由于研究区沉积盆地沉降速度较慢,在冰川均衡调整效应下,使+2~+3m的相对高海面得以呈现。  相似文献   

12.
南海诸岛全新世珊瑚礁演化的特征   总被引:8,自引:0,他引:8       下载免费PDF全文
本文概括了南海诸岛珊瑚礁的分布,礁体地形、地貌和地质的一般特征,论述了老灰沙岛、新灰沙岛和礁坪等几类典型的全新世珊瑚礁礁体演化的基本过程,讨论了全新世珊瑚礁演化与季风、气候和海平面的关系。礁坪是随着冰后期海平面上升在晚更新世侵蚀面上堆积的,全新世中期高海面出现前后分别形成老灰沙岛和新灰沙岛。  相似文献   

13.
以渤海湾西岸现代岸线附近的NP3、CH110和BT113三个钻孔全新世岩心为研究对象,采用沉积岩石学、AMS 14C(accelerator mass spectrometry 14C,加速器质谱14C)测年、微体生物聚类分析等方法精细判别沉积相,重建渤海湾西岸全新世沉积演化历史,并利用微体生物组合分带对水深变化的指示,定量讨论全新世相对海面变化。结果表明:渤海湾西岸全新世受海陆交互作用影响,经历了沼泽-潮滩-浅海-前三角洲-三角洲前缘-三角洲平原环境的演化过程。全新世初始阶段,研究区中部和北部发育沼泽环境,南部未见沉积,与上更新统河流相沉积呈不整合接触。全新世早期,研究区潮滩环境发育。潮滩层厚度约1 m,历时数百至1千余年。至7000 cal BP前后水深增大,研究区进入浅海环境。约6000 cal BP,沿岸南北两端先后进入三角洲过渡环境,中部三角洲环境约开始于1500 cal BP。渤海湾西岸地区全新世的环境演化同时记录了该地区的相对海面变化:约10000 cal BP前后,渤海湾相对海平面已接近21.3~20.4 m。约8000 cal BP,相对海平面介于18.6~17.0 m。约6000 cal BP时相对海平面低于6.8 m,5000~1000 cal BP,相对海平面高于-2.5 m,1000~800 cal BP,相对海平面介于-1.3~-0.4 m。8000~5000 cal BP时,相对海面上升约15.0 m,上升速率达5 m/1 ka。  相似文献   

14.
Along a 70 km section of western Kennedy Channel three prominent weathering zones are identified and serve to differentiate major events in the Quaternary landscape. The oldest zone (Zone 111b) is characterized by a deeply weathered, erratic-free terrain which extends from the mountain summits down to ca. 470 m above sea level. This zone shows no evidence of former glacierization. Zone 111a extends from ca. 470 to 370m above sea level and is characterized by sparse granite, gneiss and quartzite erratics amongst weathered bedrock and extensive, oxidized colluvium. The Precambrian provenance and uppermost profile of these erratics reflect the maximum advance of the northwest Greenland Ice Sheet onto northeastern Ellesmere Island. These uppermost erratics along western Kennedy Channel decrease in elevation southward and suggest that the former Greenland ice was thickest in the direction of the major outlet of Petermann Fiord. No evidence of a former ice ridge in Nares Strait was observed. Zone II is marked by the moraines of the outermost Ellesmere Island ice advance which form a prominent morpho-stratigraphic boundary where they cross-cut the zone of Greenland erratics at ca. 250–350 m above sea level. These moraines show advanced surface weathering and ice recession from them is associated with a pre-Holocene shoreline at 162 m above sea level. Late Wisconsin/Würm glacial deposits, equivalent to Zone I, were not observed in the lower valleys bordering Kennedy Channel. The outermost Ellesmere Island ice advance (Zone II) is radiometrically bracketed by 14C dates on in situ shells from subtill and supratill marine units which are 40,350±750 and>39,000 B.P., respectively. Amino acid age estimates on the same shell samples and others from similar stratigraphic positions all suggest ages of >35,000 B.P. Stratigraphically and chronologically this ice advance is correlated with the outermost Ellesmere Island ice advance 20–40 km to the north which formed small ice shelves when the relative sea level was ca. 175 m above sea level. The Holocene marine transgression along western Kennedy Channel occurred in an ice-free corridor maintained between the separated margins of the northwest Greenland and northeast Ellesmere Island ice sheets during the last glaciation. Initial emergence may have begun ca. 12,300 B.P., however, sea level had dropped only 15 m by ca. 8000 B.P. after which glacio-isostatic unloading of the corridor was rapid. The implications of these data are discussed in the context of existing models on high latitude glaciation and paleoclimatic change  相似文献   

15.
Relic carbonate deposits along the western margin of India occur as dolomite crusts, aragonite sands (pelletal / oolitic) and aragonite-cemented limestones, oyster shells, corals, encrusted coralline algal and foraminiferal-dominated nodules. The petrology and mineralogy of the deposits indicate that except for aragonite sands and foraminiferal nodules, the others were formed in shallow marine conditions and serve as sea level indicators. Radiocarbon dates were measured for 62 relic deposits covering the entire margin. The age of these deposits on the continental shelf off Cape Comorin and Mangalore, between 110 and 18 m depth, ranges between 12, 61014C yr BP and 6,39014C yr BP. On the northwestern margin of India, especially on the carbonate platform (between 64 and 100 m), the age ranges from 17,250 to 6,73014C yr BP. The relic deposits of the Gulf of Kachchh at depths between 35 and 25 m are dated at 12,550–9,63014C yr BP. The age vs. depth plot of the relic deposits further indicates that the Gulf of Kachchh was inundated much early, atleast by 15 ka, after the Last Glacial Maximum, and was subjected to uplift and subsidence during the Holocene. The carbonate platform subsided during the early Holocene. Some of the relic deposits between Cape Comorin and Mangalore plot on or, closely follow the glacio-eustatic sea level curve. Despite abundant siliciclastic flux discharged by the Narmada and Tapti during the early Holocene, the platform off these rivers is largely devoid of this flux and carbonate sedimentation continued until 6,70014C yr BP. We suggest that the river-derived sediment flux diverted southwards under the influence of the SW monsoon current and, thereby, increased the turbidity on the shelf and slope southeast of the carbonate platform and facilitated the formation of deeper water foraminiferal nodules off Vengurla-Goa.  相似文献   

16.
More than 100 radiocarbon dates of penguin guano and remains, shells and seal skin afford ages for raised beaches adjacent to Terra Nova Bay, Antarctica. These dates permit construction of a new relative sea‐level curve that bears on the timing of deglaciation. Recession of the Ross Sea ice‐sheet grounding line from Terra Nova Bay occurred no earlier than 7200 14C yr (8000 cal. yr) BP. Retreat along the Victoria Land coast may have been rapid, possibly contributing to eustatic sea‐level rise centred at ca. 7600 cal. yr BP. The presence of a significant amount of ice remaining in the Ross Sea Embayment in Holocene time lessens the chance that Antarctica contributed significantly to meltwater pulse 1A several thousand years earlier. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
The architectural framework and Holocene evolution of the Zeballos fjord‐head delta on west‐central Vancouver Island was established through a multidisciplinary field‐based study. The Zeballos delta is a composite feature, consisting of an elevated, incised, late Pleistocene delta and an inset Holocene delta graded to present sea level. Both deltas have a classic Gilbert‐type tripartite architecture, with nearly flat topset and bottomset units and an inclined foreset unit. Time domain electromagnetic (TDEM) and ground‐penetrating radar (GPR) surveys, borehole data, and gravel pit exposures provided information on the internal form, lithologies and substrate of both deltas. Both sets of deltaic deposits coarsen upward from silt in the bottomset unit to gravel in the topset unit. The TDEM survey revealed a highly irregular, buried bedrock surface, ranging from 20 m to 190 m in depth, and it delineated saltwater intrusion into the deltaic sediments. Late Quaternary sea‐level change at Zeballos was inferred from delta morphology and the GPR survey. The elevated, late Pleistocene delta was constructed when the sea was about 21 m higher relative to the land than it is today. It was dissected when sea‐level fell rapidly as a result of glacio‐isostatic rebound. Relative sea‐level reached a position about 20 m below the present datum during the early Holocene. Foreset beds that overlap and progressively climb in a seaward direction and topset beds that thicken to 26 m landward imply that the delta aggraded and prograded into Zeballos Inlet during the middle and late Holocene transgression. Sea‐level may have risen above the present datum during the middle Holocene, creating a delta plain at about 4 m a.s.l. Remnants of this surface are preserved along the valley margins. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Field surveys of several sea-level indicators (exposed in situ reef framework, conglomerates, coral colonies and Tridacna shells in a growth position, sea-corrosion notches) carried out on six atolls from the NW Tuamotus (Mataiva, Rangiroa, Arutua, Kaukura, Apataki and Takapoto) and data from four subsurface boreholes drilled through Mataiva show that during the late Holocene mean sea level (MSL) reached a maximum elevation at approximately + 0.9 m. It remained above the present MSL from between 6000 and 5500 yr B.P. until at least 1200 yr B.P. Human settlements on the atolls were extremely unlikely and probably impossible throughout this time. The area investigated seems to have been tectonically quite stable during the late Holocene. A local curve of MSL variations may be representative of the regional eustatic pattern.  相似文献   

19.
A relative sea‐level curve over the Holocene is constructed for the Young Sound region in northeastern Greenland. The reconstruction is derived by dating the heights of raised beach ridges in coastal plains using optically stimulated luminiscence (OSL), and by dating palaeoterrestrial surface levels now buried beneath the intertidal frame using the 14C technique. The relative sea‐level curve reveals a rapid fall of at least 10 mm a?1 from ca. 9500 to 7500 a ago, which slowed to 2 mm a?1 until it reached the present sea level ca. 3000 a ago. This part of the curve is based on the raised beach ridge data. Thereafter, relative sea level continued to fall, to reach a minimum level at about 0.5 m below the present sea level ca. 2300 a ago. Since then, relative sea level has experienced a slow rise of about 0.2 mm a?1. This part of the curve uses the data from the palaeoterrestrial surfaces. The study supplements other estimates of Holocene relative sea‐level changes and supports the observations of a decreasing trend in the timing of the cross point and in minimum relative sea level from South to North Greenland. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Complex glacier and tree-line fluctuations in the White River valley on the northern flank of the St. Elias and Wrangell Mountains in southern Alaska and Yukon Territory are recognized by detailed moraine maps and drift stratigraphy, and are dated by dendrochronology, lichenometry, 14C ages, and stratigraphic relations of drift to the eastern (1230 14C yr BP) and northern (1980 14C yr BP) lobes of the White River Ash. The results show two major intervals of expansion, one concurrent with the well-known and widespread Little Ice Age and the other dated between 2900 and 2100 14C yr BP, with a culmination about 2600 and 2800 14C yr BP. Here, the ages of Little Ice Age moraines suggest fluctuating glacier expansion between ad 1500 and the early 20th century. Much of the 20th century has experienced glacier recession, but probably it would be premature to declare the Little Ice Age over. The complex moraine systems of the older expansion interval lie immediately downvalley from Little Ice Age moraines, suggesting that the two expansion intervals represent similar events in the Holocene, and hence that the Little Ice Age is not unique. Another very short-lived advance occurred about 1230 to 1050 14C yr BP. Spruce immigrated into the valley to a minimum altitude of 3500 ft (1067 m), about 600 ft (183 m) below the current spruce tree line of 4100 ft (1250 m), at least by 8020 14C yr BP. Subsequent intervals of high tree line were in accord with glacier recession; in fact, several spruce-wood deposits above current tree line occur bedded between Holocene tills. High deposits of fossil wood range up to 76 m above present tree line and are dated at about 5250, 3600 to 3000, and 2100 to 1230 14C yr BP. St. Elias glacial and tree-line fluctuations, which probably are controlled predominantly by summer temperature and by length of the growing and ablation seasons, correlate closely with a detailed Holocene tree-ring curve from California, suggesting a degree of synchronism of Holocene summer-temperature changes between the two areas. This synchronism is strengthened by comparison with the glacier record from British Columbia and Mt. Rainier, Likewise, broad synchronism of Holocene events exists across the Arctic between the St. Elias Mountains and Swedish Lappland. Finally, two sequences from the Southern Hemisphere show similar records, in so far as dating allows. Hence, we believe that a preliminary case can be made for broad synchronism of Holocene climatic fluctuations in several regions, although further data are needed and several areas, particularly Colorado and Baffin Island, show major differences in the regional pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号