首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The Tianjiazhen reach of the middle Yangtze is about 8 km long, and characterized by a narrow river width of 650 m and local water depth of > 90 m in deep inner troughs, of which about 60 m is below the mean sea level. The troughs in the channel of such a large river are associated with regional tectonics and local lithology. The channel configuration plays a critical role in modifying the height and duration of river floods and erosion of the riverbed. The formation of the troughs in the bed of the Yangtze is considered to be controlled by sets of NW–SE-oriented neotectonic fault zones, in which some segments consist of highly folded thick Triassic limestone crossed by the Yangtze River. Several limestone hills, currently located next to the river channel, serve as nodes that create large vortices in the river, thereby accelerating downcutting on the riverbed composed of limestone highly susceptible to physical corrosion and chemical dissolution. Hydrological records indicate that the nodal hills and channel configuration at Tianjiazhen do not impact on normal flow discharges but discharges > 50,000 m3s− 1 are slowed down for 2–3 days. Catastrophic floods are held up for even longer periods. These inevitably result in elevated flood stages upstream of prolonged duration, affecting large cities such as Wuhan and a very large number of people.  相似文献   

2.
Sediment rating parameters and their implications: Yangtze River, China   总被引:4,自引:0,他引:4  
This study examines the characteristics of sediment rating parameters recorded at various gauging stations in the Yangtze Basin in relation to their controls. Our findings indicate that the parameters are associated with river channel morphology of the selected reaches. High b-values (> 1.600) and low log(a) values (< − 4.000) occur in the upper course of the steep rock-confined river, characterizing high unit stream power flows. Low b-values (< 0.900) and high log(a) values (> − 1.000) occur in the middle and lower Yangtze River associated with meandering reaches over low gradients, and can be taken to imply aggradation in these reaches with low stream power. Higher b-values (0.900–1.600) and lower log(a)-values (− 4.000 to − 1.000) characterize the reaches between Yichang and Xinchang, immediately below the Three Gorges. These values indicate channel erosion and bed instability that result from changes in channel gradient from the upstream steep valley to downstream low slope flood plain settings. Differences in channel morphology accompany these changes. Confined, V-shaped valleys occur upstream and are replaced downstream by broad U-shaped channels. The middle and lower Yangtze shows an apparent increase in channel instability over the past 40 years. This inference is based on sediment rating parameters from various gauging stations that record increasing b-values against decreasing log(a)-values over that time. Analysis of the sediment load data also reveals a strong correlation between changes in sediment rating curve parameters and reduction of annual sediment budget (4.70 × 108 t to 3.50 × 108 t/year, from the 1950s to 1990s), largely due to the damming of the Yangtze and sediment load depletion through siltation in the Dongting Lake. Short-term deviations from the general trends in the sediment rating parameters are related to hydroclimatic events. Extreme low b-values and high log(a)-values signify the major flood years, while the reverse indicates drought events. When compared with rivers from other climate settings, it is evident that the wide range of values of the Yangtze rating parameters reflects the huge discharge driven by the monsoon precipitation regime of eastern China.  相似文献   

3.
Over the past decades, > 50,000 dams and reforestation on the Yangtze River (Changjiang) have had little impact on water discharge but have drastically altered annual and particularly seasonal sediment discharge. Before impoundment of the Three Gorges Dam (TGD) in June 2003, annual sediment discharge had decreased by 60%, and the hysteresis of seasonal rating curves in the upper reaches at Yichang station had shifted from clockwise to counterclockwise. In addition, the river channel in middle-lower reaches had changed from depositional to erosional in 2002.During the four years (2003–2006) after TGD impoundment, ~ 60% of sediment entering the Three Gorges Reservoir was trapped, primarily during the high-discharge months (June–September). Although periodic sediment deposition continues downstream of the TGD, during most months substantial erosion has occurred, supplying ~ 70 million tons per year (Mt/y) of channel-derived sediment to the lower reaches of the river. If sand extraction (~ 40 Mt/y) is taken into consideration, the river channel loses a total of 110 Mt/y. During the extreme drought year 2006, sediment discharge in the upper reaches drastically decreased to 9 Mt (only 2% of its 1950–1960s level) because of decreased water discharge and TGD trapping. In addition, Dongting Lake in the middle reaches, for the first time, changed from trapping net sediment from the mainstem to supplying 14 Mt net sediment to the mainstem. Severe channel erosion and drastic sediment decline have put considerable pressure on the Yangtze coastal areas and East China Sea.  相似文献   

4.
At the beginning of December 2003, one of the biggest floods for at least 150 yr was recorded on the Rhone River. In the lower part of the river, the peak flood reached 11,000 m3 s−1. The geomorphological and radioecological consequences of such an event were investigated downstream all the nuclear installations by using measured and calculated fluxes and the total export of suspended sediment and associated 137Cs. Results pointed out the major role played by large floods in the annual suspended sediment load, as 3.70 × 106 tons of silts, 0.85 × 106 tons of sands, and 0.84 × 106 tons of clays were transferred towards the coastal environment. Nevertheless, these solid loads were found to be lower than those expected as regards the liquid discharge reached during this event and suggested that previous floods that occurred on the river and on its main tributaries during the last decade have probably led to the removal of available sediment from the channels and their banks. Besides, the 137Cs activity measured within the suspended load was estimated at 14.9 ± 0.4 Bq kg−1, which is a level characteristic of the suspended sediments from the Rhone catchment area and demonstrated that nuclear installations located along the Rhone valley did not significantly contribute to any increase in 137Cs activity in the water during the flood. The total 137Cs particulate export amounted to 77 ± 17 GBq and was mainly associated with the silt fraction that contributes to around 70% of the total 137Cs export.  相似文献   

5.
Beach–dune seasonal elevation changes, aeolian sand transport measurements, bathymetric surveys and shoreline evolution assessments were used to investigate annual and seasonal patterns of dune development on Sfântu Gheorghe beach, the Danube delta coast, from 1997 to 2004. Dune volume increased consistently (1.96 m3 m− 1 y− 1 to 5.1 m3 m− 1 y− 1) over this 7-year period with higher rates in the southward (downdrift) direction. Dune aggradation is periodically limited by storms, each of which marks a new evolutionary phase of the beach–dune system. As a consequence of the variable beach morphology and vegetation density during a year, foredune growth occurs during the April–December interval while between December and April a slightly erosive tendency is present. The pattern of erosion and deposition shown by the topographical surveys is in good agreement with the sand transport measurements and demonstrates the presence of a vigorous sand flux over the foredunes which is 20–50% smaller than on the beach. This high sand flux, due to low precipitation and sparse vegetation cover, creates an aerodynamically efficient morphology on the seaward dune slope. The seaward dune face accretes during low to medium onshore winds (5.5–12 m s− 1) and erodes during high winds (> 12 m s− 1).  相似文献   

6.
The impact of large twentieth century floods on the riparian vegetation and channel morphology of the relatively wide anabranching and braided Nahal Arava, southern Israel, was documented as part of developing tools to (a) identify recent large floods, (b) determine these flood's respective magnitudes in alluvial ungauged streams, and (c) determine long-term upper bounds to flood stages and magnitudes. Along most of its course Nahal Paran, a major tributary that impacts the morphology, floods and sediments of Nahal Arava at the study reach, is a coarse-gravel, braided ephemeral stream. Downstream of the Arava–Paran confluence, aeolian and fluvial sand delivered from eastern Arava valley alters the channel morphology. The sand has accreted up to 2.5 m above the distinct current channels, facilitating the recording of large floods. This sand enhances the establishment of denser riparian vegetation (mainly Tamarix nilotica and Haloxylon persicum) that interacts with floods and affects stream morphology. A temporal association was found between specific floods recorded upstream and tree-ring ages of re-growth of flood-damaged tamarix trees (‘Sigafoos trees’) in the past 30 years. This association can be utilized for developing a twentieth century flood chronology in hyperarid ungauged basins in the region. The minimum magnitude of the largest flood that covered the entire channel width, estimated from flood deposits, is approximately 1700–1800 m3s− 1. This is a larger magnitude than the largest gauged flood of 1150 m3s− 1 that occurred in 1970 about 30 km upstream in Nahal Paran. Our estimation agrees with flood magnitude estimated from the regional envelope curve of the largest floods. Based on Holocene alluvial stratigraphy and OSL dating in the study reach we also conclude that flood stages did not reach the late Holocene ( 2.2 ka) surface and therefore we estimate a non-exceedance upper bound of  2000 m3s− 1 flood magnitudes for Nahal Arava during that interval. This study indicates that in unfavorable areas the combination of hydrology, fluvial morphology and botanic evidence can increase our understanding of ungauged basins and give information crucial for hydrology planning.  相似文献   

7.
J.A. Moody  R.H. Meade 《Geomorphology》2008,99(1-4):387-403
Flood processes no longer actively increase the planform area of terraces. Instead, lateral erosion decreases the area. However, infrequent extreme floods continue episodic aggradation of terraces surfaces. We quantify this type of evolution of terraces by an extreme flood in May 1978 on Powder River in southeastern Montana. Within an 89-km study reach of the river, we (1) determine a sediment budget for each geomorphic feature, (2) interpret the stratigraphy of the newly deposited sediment, and (3) discuss the essential role of vegetation in the depositional processes.Peak flood discharge was about 930 m3 s− 1, which lasted about eight days. During this time, the flood transported 8.2 million tons of sediment into and 4.5 million tons out of the study reach. The masses of sediment transferred between features or eroded from one feature and redeposited on the same feature exceeded the mass transported out of the reach. The flood inundated the floodplain and some of the remnants of two terraces along the river. Lateral erosion decreased the planform area of the lower of the two terraces (~ 2.7 m above the riverbed) by 3.2% and that of the higher terrace (~ 3.5 m above the riverbed) by 4.1%. However, overbank aggradation, on average, raised the lower terrace by 0.16 m and the higher terrace by 0.063 m.Vegetation controlled the type, thickness, and stratigraphy of the aggradation on terrace surfaces. Two characteristic overbank deposits were common: coarsening-upward sequences and lee dunes. Grass caused the deposition of the coarsening-upward sequences, which had 0.02 to 0.07 m of mud at the base, and in some cases, the deposits coarsened upwards to coarse sand on the top. Lee dunes, composed of fine and very fine sand, were deposited in the wake zone downstream from the trees. The characteristic morphology of the dunes can be used to estimate some flood variables such as suspended-sediment particle size, minimum depth, and critical shear velocity. Information about depositional processes during extreme floods is rare, and therefore, the results from this study aid in interpreting the record of terrace stratigraphy along other rivers.  相似文献   

8.
The landscape evolution in Neogene intramontane basins is a result of the interaction of climatic, lithologic, and tectonic factors. When sedimentation ceases and a basin enters an erosional stage, estimating erosion rates across the entire basin can offer a good view of landscape evolution. In this work, the erosion rates in the Guadix–Baza basin have been calculated based on a volumetric estimate of sediment loss by river erosion since the Late Pleistocene. To do so, the distribution of a glacis surface at ca. 43 kyr, characterised by a calcrete layer that caps the basin infilling, has been reconstructed. To support this age, new radiometric data of the glacis are presented. The volume of sediment loss by water erosion has been calculated for the entire basin by comparing the reconstructed geomorphic surface and the present-day topography. The resulting erosion rates vary between 4.28 and 6.57 m3 ha− 1 yr− 1, and are the consequence of the interaction of climatic, lithologic, topographic, and tectonic factors. Individual erosion rates for the Guadix and Baza sub-basins (11.80 m3 ha− 1 yr− 1 and 1.77 m3 ha− 1 yr− 1 respectively) suggest different stages of drainage pattern evolution in the two sub-basins. We attribute the lower values obtained in the Baza sub-basin to the down-throw of this sub-basin caused by very recent activity along the Baza fault.  相似文献   

9.
Flux and fate of Yangtze River sediment delivered to the East China Sea   总被引:57,自引:0,他引:57  
Numerous cores and dating show the Yangtze River has accumulated about 1.16 × 1012 t sediment in its delta plain and proximal subaqueous delta during Holocene. High-resolution seismic profiling and coring in the southern East China Sea during 2003 and 2004 cruises has revealed an elongated ( 800 km) distal subaqueous mud wedge extending from the Yangtze River mouth southward off the Zhejiang and Fujian coasts into the Taiwan Strait. Overlying what appears to be a transgressive sand layer, this distal clinoform thins offshore, from  40 m thickness between the 20 and 30 m water depth to < 1–2 m between 60 and 90 m water depth, corresponding to an across shelf distance of less than 100 km. Total volume of this distal mud wedge is about 4.5 × 1011 m3, equivalent to  5.4 × 1011 t of sediment. Most of the sediment in this mud wedge comes from the Yangtze River, with some input presumably coming from local smaller rivers. Thus, the total Yangtze-derived sediments accumulated in its deltaic system and East China Sea inner shelf have amounted to about 1.7 × 1012 t. Preliminary analyses suggest this longshore and across-shelf transported clinoform mainly formed in the past 7000 yrs after postglacial sea level reached its mid-Holocene highstand, and after re-intensification of the Chinese longshore current system. Sedimentation accumulation apparently increased around 2000 yrs BP, reflecting the evolution of the Yangtze estuary and increased land erosion due to human activities, such as farming and deforestation. The southward-flowing China Coastal Current, the northward-flowing Taiwan Warm Current, and the Kuroshio Current appear to have played critical roles in transporting and trapping most of Yangtze-derived materials in the inner shelf, and hence preventing the sediment escape into the deep ocean.  相似文献   

10.
T.C. Hales  J.J. Roering 《Geomorphology》2009,107(3-4):241-253
In the Southern Alps, New Zealand, large gradients in precipitation (< 1 to 12 m year− 1) and rock uplift (< 1 to 10 mm year− 1) produce distinct post-glacial geomorphic domains in which landslide-driven sediment production dominates in the wet, rapid-uplift western region, and rockfall controls erosion in the drier, low-uplift eastern region. Because the western region accounts for < 25% of the active orogen, the dynamics of erosion in the extensive eastern region are of equal importance in estimating the relative balance of uplift and erosion across the Southern Alps. Here, we assess the efficacy of frost cracking as the primary rockfall mechanism in the eastern Southern Alps using air photo and topographic analysis of scree slopes, cosmogenic radionuclide dating of headwalls, paleo-climate data, and a numerical model of headwall temperature. Currently, active scree slopes occur at a relatively uniform mean elevation ( 1450 m) and their distribution is independent of hillslope aspect and rock type, consistent with the notion that frost cracking (which is maximized between − 3 and − 8 °C) may control rockfall erosion. Headwall erosion rates of 0.3 to 0.9 mm year− 1, measured using in-situ 10Be and 26Al in the Cragieburn Range, confirm that rockfall erosion is active in the late Holocene at rates that roughly balance rock uplift. Models of the predicted depth of frost activity are consistent with the scale of fractures and scree blocks in our field sites. Also, vegetated, paleo-scree slopes are ubiquitous at elevations lower than active scree slopes, consistent with the notion that lower temperatures during the last glacial advance induced pervasive rockfall erosion due to frost cracking. Our modeling suggests temporally-averaged peak frost cracking intensity occurs at 2300 m a.s.l., the approximate elevation of the highest peaks in the central Southern Alps, suggesting that the height of these peaks may be limited by a “frost buzzsaw.”  相似文献   

11.
Alpa Sridhar   《Geomorphology》2007,88(3-4):285-297
This paper attempts to quantify contemporary and palaeo-discharges and changes in the hydrologic regime through the mid–late Holocene in the alluvial reach of the arid Mahi River basin in western India. The occurrence of terraces and pointbars high above active river levels and change in the width/depth ratio can be regarded as geomorphic responses to changes in discharge. Discharge estimates are made based on the channel dimensions and established empirical relations for the three types of channels: mid–late Holocene, historic (the channel that deposited extensive pointbars above the present-day average flow level) and the present ones. The bankfull discharge of the mid–late Holocene channel was  55 000 m3 s− 1 and that of the historic channel was  9500 m3 s− 1, some  25 times and  5 times greater than that of the present river (2000 m3 s− 1), respectively. Since the mid–late Holocene, the channel form has changed from wide, large-amplitude meanders to smaller meanders, and decreases in the width/depth ratio, unit stream power and the bed shear stresses have occurred. It can be inferred that there has been a trend of decreasing precipitation since the mid–late Holocene.  相似文献   

12.
The “La Clapière” area (Tinée valley, Alpes Maritimes, France) is a typical large, complex, unstable rock slope affected by Deep Seated Gravitational Slope Deformations (DGSD) with tension cracks, scarps, and a 60 × 106 m3 rock slide at the slope foot that is currently active. The slope surface displacements since 10 ka were estimated from 10Be ages of slope gravitational features and from morpho-structural analyses. It appears that tensile cracks with a strike perpendicular to the main orientation of the slope were first triggered by the gravitational reactivation of pre-existing tectonic faults in the slope. A progressive shearing of the cracks then occurred until the failure of a large rock mass at the foot of the slope. By comparing apertures, variations and changes in direction between cracks of different ages, three phases of slope surface displacement were identified: 1) an initial slow slope deformation, spreading from the foot to the top, characterized by an average displacement rate of 4 mm yr− 1, from 10–5.6 ka BP; 2) an increase in the average displacement rate from 13 to 30 mm yr− 1 from the foot to the middle of the slope, until 3.6 ka BP; and 3) development of a large failure at the foot of the slope with fast displacement rates exceeding 80 mm yr− 1 for the last 50 years. The main finding of this study is that such a large fractured slope destabilization had a very slow displacement rate for thousands of years but was followed by a recent acceleration. The results obtained agree with several previous studies, indicating that in-situ monitoring of creep of a fractured rock slope may be useful for predicting the time and place of a rapid failure.  相似文献   

13.
Muddy floods, i.e. runoff from cultivated areas carrying large quantities of soil, are frequent and widespread in the European loess belt. They are mainly generated in dry zero-order valleys and are nowadays considered as the most likely process transferring material eroded from cultivated hillslopes during the Holocene to the flood plain. The huge costs of muddy flood damages justify the urgent installation of control measures. In the framework of the ‘Soil Erosion Decree’ of the Belgian Flemish region, a 12 ha-grassed waterway and three earthen dams have been installed between 2002–2004 in the thalweg of a 300-ha cultivated dry valley in the Belgian loess belt. The measures served their purpose by preventing any muddy flood in the downstream village, despite the occurrence of several extreme rainfall events (with a maximum return period of 150 years). The catchment has been intensively monitored from 2005–2007 and 39 runoff events were recorded in that period. Peak discharge (per ha) was reduced by 69% between the upstream and the downstream extremities of the grassed waterway (GWW). Furthermore, runoff was buffered for 5–12 h behind the dams, and the lag time at the outlet of the catchment was thereby increased by 75%. Reinfiltration was also observed within the waterway, runoff coefficients decreasing by a mean of 50% between both extremities of the GWW. Sediment discharge was also reduced by 93% between the GWW's inflow and the outlet. Before the installation of the control measures, specific sediment yield (SSY) of the catchment reached 3.5 t ha− 1 yr− 1 and an ephemeral gully was observed nearly each year in the catchment. Since the control measures have been installed, no (ephemeral) gully has developed and the SSY of the catchment dropped to a mean of 0.5 t ha− 1 yr− 1. Hence, sediment transfer from the cultivated dry valley to the alluvial plain should dramatically decrease. Total cost of the control measures that are built for a 20 year-period is very low (126 € ha− 1) compared to the mean damage cost associated with muddy floods in the study area (54 € ha− 1 yr− 1). Similar measures should therefore be installed to protect other flooded villages of the Belgian loess belt and comparable environments.  相似文献   

14.
In the Mediterranean area, forest fires have become a first-order environmental problem. Increased fire frequency progressively reduces ecosystem recovery periods. The fire season, usually followed by torrential rains in autumn, intensifies erosion processes and increases desertification risk. In this work, the effect of repeated experimental fires on soil response to water erosion is studied in the Permanent Field Station of La Concordia, Valencia, Spain. In nine 80 m2 plots (20 m long × 4 m wide), all runoff and sediment produced were measured after each rainfall event. In 1995, two fire treatments with the addition of different biomass amounts were applied. Three plots were burned with high fire intensity, three with moderate intensity, and three were unburned to be used as control. In 2003, the plots with the fire treatments were burned again with low fire intensities. During the 8-year interval between fires, plots remained undisturbed, allowing regeneration of the vegetation–soil system. Results obtained during the first 5 months after both fire experiments show the high vulnerability of the soil to erosion after a repeated fire. For the burned plots, runoff rates increased three times more than those of 1995, and soil losses increased almost twice. The highest sediment yield (514 g m− 2) was measured in 2003, in the plots of the moderate fire intensity treatment, which yielded only 231 g m− 2 of sediment during the corresponding period in 1995. Runoff yield from the control plots did not show significant temporal changes, while soil losses decreased from 5 g m− 2 in the first post-fire period to 0.7 g m− 2 in the second one.  相似文献   

15.
Transient landscape disequilibrium is a common response to climatic fluctuations between glacial and interglacial conditions. Such landscapes are best suited to the investigation of catchment-wide response to changes in incision. The geomorphology of the Trub and Grosse Fontanne, adjacent stream systems in the Napf region of the Swiss Molasse, was analyzed using a 2-m LIDAR DEM. The two catchments were impacted by the Last Glacial Maximum, LGM, even though the glaciers never overrode this region. They did, however, cause base levels to drop by as much as 80 m. Despite their similar tectonic, lithologic and climatic settings, these two basins show very different responses to the changing boundary conditions. Stream profiles in the Trub tend to be smooth, while in the Fontanne, numerous knickzones are visible. Similarly, cut-and-fill terraces are abundant in the Trub watershed, but absent in the Fontanne, where deep valleys have been incised. The Trub appears to be a coupled hillslope–channel system because the morphometrics throughout the basin are uniform. The morphology of hillslopes upstream of the knickzones in the Fontanne is identical to that of the Trub basin, but different downstream of the knickzones, suggesting that the lower reaches of the Fontanne have been decoupled from the hillslopes. However, the rapid incision of the Fontanne is having little effect on the adjacent upper hillslopes.We tested this interpretation using cosmogenic 10Be-derived basin-averaged denudation rates and terrace dating. The coupled nature of the Trub basin is supported by the similarity of denudation rates, 350 ± 50 mm ky− 1, at a variety of spatial scales. Upstream of the knickzones, rates in the Fontanne, 380 ± 50 mm ky− 1, match those of the Trub. Downstream of the knickzones, denudation rates increase to 540 ± 100 mm ky− 1. The elevated rates in the downstream areas of the Fontanne are due to rapid incision causing a decoupling of the hillslope from the channel. Basin response time and the magnitude of base level drop exert the principal control over the difference in geomorphic response between the two basins. The timing of the filling of the Trub valley, 17 ± 2 ka, and the initial incision of the Fontanne, 16 ± 3 ka, were calculated, verifying that these are responses to late glacial perturbations. Unique lithologic controls allow for one of the fastest regolith production rates yet to be reported,  380 mm ky− 1.  相似文献   

16.
In-stream macrophytes are typically abundant in nutrient-rich chalk streams during the spring and summer months and modify the in-stream environment by altering river flows and trapping sediments. We present results from an inter-disciplinary study of two river reaches in the River Frome catchment, Dorset (UK). The investigation focused on how Ranunculus (water crowfoot), the dominant submerged macrophyte in the study reaches, modified patterns of flow and sediment deposition. Measurements were taken on a monthly basis throughout 2003 to determine seasonal patterns in macrophyte cover, associated changes in the distributions of flow velocities and the character and amount of accumulated fine sediment within stands of Ranunculus.Maximum in-stream cover of macrophytes exceeded 70% at both sites. Flow velocities were less than 0.1 m s− 1 within the stands of Ranunculus and accelerated to 0.8 m s− 1 outside the stands. During the early stages of the growth of Ranunculus, fine sediment mostly accumulated within the upstream section of the plant but the area of fine sediment accumulation extended into the downstream trailing section of the plant later in the growing season. The fine sediment accumulations were dominated by sand (63–1000 μm) with silts and clays (0.37–63 μm) comprising < 10% by volume. The content of organic matter in the accumulated sediments varied within stands, between reaches and through the growing season with values ranging between 9 and 105 mg g− 1 dry weight. At the reach scale the two sites exhibited different growth forms of Ranunculus which created distinctive patterns of flow and fine sediment deposition.  相似文献   

17.
Understanding and quantifying sediment load is important in catchments draining highly erodible materials that eventually contribute to siltation of downstream reservoirs. Within this context, the suspended sediment transport and its temporal dynamics have been studied in the River Isábena (445 km2, south-central Pyrenees, Ebro basin) by means of direct sampling and turbidity recording during a 3-year dry period. The average flood-suspended sediment concentration was 8 g l− 1, with maximum instantaneous values above 350 g l− 1. The high scatter between discharge and suspended sediment concentrations (up to five orders of magnitude) has not permitted the use of rating curve methods to estimate the total load. Interpolation techniques yielded a mean annual sediment load of 184,253 t y− 1 for the study period, with a specific yield of 414 t km− 2 y− 1. This value resembles those reported for small torrents in nearby mountainous environments and is the result of the high connectivity between the badland source areas and stream courses, a fact that maximises sediment conveyance through the catchment. Floods dominated the sediment transport and yield. However, sediment transport was more constant through time than that observed in Mediterranean counterparts; this can be attributed to the role of base flows that entrain fine sediment temporarily stored in the channel and force the river to carry high sediment concentrations (i.e., generally in the order of 0.5 g l− 1), even under minimum flow conditions.  相似文献   

18.
Using the USPED (Unit Stream Power Erosion Deposition) model, three land use scenarios were analysed for an Italian small catchment (15 km2) of high landscape value. The upper Orme stream catchment, located in the Chianti area, 30 km south of Florence, has a long historical agriculture record. Information on land use and soil conservation practices date back to 1821, hence offering an opportunity to model impacts of land use change on erosion and deposition. For this study, a procedure that takes into account soil conservation practices and potential sediment storage is proposed. The approach was to calculate and model the flow accumulation considering rural and logging roads, location of urban areas, drainage ditches, streams, gullies and permanent sediment sinks. This calculation attempts to assess the spatial variability, especially the impact of support practices (P factor). Weather data from 1980–2003 were taken into account to calculate the R factor. However, to consider the intense pluviometric conditions in terms of the erosivity factor, the 0.75th quantile was used, while the lowest erosivity was modelled using the 0.25th quantile. Results of the USPED model simulation show that in 1821 the mean annual net erosion for the watershed was 2.8 Mg ha− 1 y− 1; in 1954 it was 4.2 Mg ha− 1 y− 1; and in 2004 it was 5.3 Mg ha− 1 y− 1. Conservation practices can reduce erosion processes by ≥ 20 Mg ha− 1 y− 1 when the 1821 practices are introduced in the present management. On the other hand, if the support practices are not considered in the model, soil erosion risk is overestimated. Field observation for the present-day simulation confirmed that erosion and associated sediment deposition predicted by the model depend, as expected, on geomorphology and land use. The model shows limitations that are mainly due to the input data. A high resolution DEM is essential for the delineation of reliable topographic potential to predict erosion and deposition especially in vineyards.  相似文献   

19.
Wind tunnel experiments were conducted to determine the efficiency of sediment samplers designed to measure the deposition of aeolian dust. Efficiency was ascertained relative to a water surface, which was considered the best alternative for simulating a perfectly absorbent surface. Two types of samplers were studied: the Marble Dust Collector (MDCO) and the inverted frisbee sampler. Four versions of the latter catcher were tested: an empty frisbee, an empty frisbee surrounded by an aerodynamic flow deflector ring, a frisbee filled with glass marbles, and a frisbee filled with glass marbles and surrounded by a flow deflector ring. Efficiency was ascertained for five wind velocities (range: 1–5 m s− 1) and eight grain size classes (range: 10–89 μm). The efficiency of dust deposition catchers diminishes rapidly as the wind speed increases. It also diminishes as the particles caught become coarser. Adding a flow deflector ring to a catcher substantially improves the catcher's efficiency, by up to 100% in some cases. The addition of glass marbles to a catcher, on the other hand, does not seem to increase the efficiency, at least not at wind velocities inferior to the deflation threshold. For higher velocities the marbles protect the settled particles from resuspension, keeping them in the catcher. The following five parameters determine the accumulation of aeolian dust in a catcher: the horizontal dust flux, the weight of the particles, atmospheric turbulence, resuspension, and the dust shadow effect created by the catcher. The final accumulation flux depends on the combination of these parameters. The catchers tested in this study belong to the best catchers currently in use in earth science and have been the subject of various aerodynamic studies to improve their efficiency. Nevertheless the catching efficiency remains low, in the order of 20–40% for wind speeds above 2 m s− 1. Other catchers suffer from the same low efficiencies. There is, thus, evidence to believe that dust deposition rates published in the aeolian literature and obtained by collecting the sediment in a catcher largely underestimate the true deposition. The errors are considerable, of the order of 100% and more. A reconsideration of the literature data on aeolian dust deposition measured by catchers is, therefore, required.  相似文献   

20.
An expert-based approach was used to identify 10 morphological unit types within a reach of the gravel bed, regulated Yuba River, California, that is heavily utilized by spawning Chinook salmon (Oncorhynchus tshawytscha). Analysis of these units was carried out using two-dimensional hydrodynamic modeling, field-based geomorphic assessment, and detailed spawning surveying. Differently classified morphological units tended to exhibit discrete hydraulic signatures. In most cases, the Froude number adequately differentiated morphological units, but joint depth–velocity distributions proved the most effective hydraulic classification approach. Spawning activity was statistically differentiated at the mesoscale of the morphological unit. Salmon preferred lateral bar, riffle, and riffle entrance units. These units had moderately high velocity (unit median > 0.45 m s− 1) and low depth (unit median < 0.6 m), but each exhibited a unique joint depth–velocity distribution. A large proportion of redds (79%) were associated with conditions of convective flow acceleration at riffle and riffle entrance locations. In addition to reflecting microhabitat requirements of fish, it was proposed that the hydraulic segregation of preferred from avoided or tolerated morphological units was linked to the mutual association of specific hydraulic conditions with suitable caliber sediment that promotes the provision and maintenance of spawning habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号