首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Amorphous tin(VI) hydrogen phosphate (ATHP) was synthesized using the liquid phase precipitation method and served as an adsorbent to remove Pb(II), Cu(II), and Zn(II) from aqueous solutions. The ATHP was characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption–desorption techniques. Adsorption properties were evaluated as a function of pH, reaction time, concentration of reactants, and salinity. Their equilibrium adsorption data were modeled using Freundlich, Langmuir, and Dubinin–Kaganer–Radushkevich isotherms, respectively. The results revealed that adsorption equilibrium reached within 180 min. ATHP indicated good adsorption even below the pHZPC, and best adsorption at pH 5 for Pb(II) and Cu(II) and at pH 5.5 for Zn(II) was observed. Equilibrium data fitted better to the Langmuir model for Pb(II) and Cu(II) and fitted better to the Freundlich model for Zn(II). The saturated adsorption capacities deduced from the Langmuir model were 2.425, 1.801, and 0.600 mmol/g for Cu(II), Pb(II), and Zn(II), respectively, indicating an adsorption affinity order of Cu > Pb > Zn. There is a negative correlation between the concentration of NaCl and adsorption capacity of ATHP, yet ATHP still exhibited excellent adsorption having an adsorption capacity of 19.35, 15.16, 6.425 mg/g when the concentration of NaCl was 0.6 mol/L. The free energy (E) was 12.33, 10.70, and 14.74 kJ/mol for Pb(II), Cu(II), and Zn(II), respectively. An adsorption mechanism based on ion exchange between heavy metal ions and H+ in the ATHP is proposed. Furthermore, the used ATHP was regenerated by HCl solution and the adsorbent was used repeatedly.  相似文献   

2.
The ability of ochre to remove Pb(II) and Cu(II) from aqueous media has been studied by batch sorption studies varying the contact time, initial metal concentration, initial solution pH and temperature to understand the adsorption behaviour of these metals through adsorption kinetics and isotherms. The pH of the solution and the temperature controlled the adsorption of metal ions by ochre and rapid uptake occurred in the first 30 min of reaction. The kinetics of adsorption followed a pseudo-second-order rate equation (R 2 > 0.99) and the isotherms are well described by the Freundlich model. Adsorption of metals onto ochre is endothermic in nature. Between the two metals, Pb(II) showed more preference towards the exchangeable sites on ochre than Cu(II). This study indicates that ochre is a very effective adsorbent in removing Pb(II) and Cu(II) from the aqueous environment with an adsorptive capacity of 0.996 and 0.628 mg g?1 and removal efficiency of 99.68 and 62.80 %, respectively.  相似文献   

3.
This work aimed to investigate the adsorption characteristics, both kinetically and thermodynamically, of Cu(II) and Pb(II) removal from aqueous solutions onto mixed-waste activated carbon, as well as to study the competitive behavior found in mixed heavy metal solution systems. This study shows that activated carbon prepared from mixed waste is an effective adsorbent for the removal of Cu(II) and Pb(II) from aqueous solutions, with the aim of detoxifying industrial effluents before their safe disposal onto water surfaces. The adsorption process was characterized in terms of kinetic and thermodynamic studies. In addition, the influence of presence of Cu(II) and Pb(II) in a competitive system was investigated. The results showed that the maximum adsorption capacities were gained at a pH of 6 with a contact time of 180 min, a metal solution concentration of 300 ppm, and an adsorbent dose of 0.3 g/L. The adsorption process was found to follow a pseudo-first-order kinetic model. Thermodynamic parameters such as ΔG o, ΔH o, and ΔS o showed that the sorption process was spontaneous and endothermic in nature. A competitive study demonstrated the applicability of mixed-waste activated carbon to adsorb Cu(II) and Pb(II) from a solution of mixed metals. In addition, the adsorption capacity was found to be as effective as other adsorbents reported in the literature. The developed adsorptive removal procedure was applied for treatment of real wastewater samples and showed high removal efficiency.  相似文献   

4.
In this study, the adsorption behavior of Ni(II) in an aqueous solution system using natural adsorbent Peganum harmala-L was measured via batch mode. The prepared sorbent was characterized by scanning electron microscope, Fourier transform infrared spectroscopy, N2 adsorption–desorption and pHzpc. Adsorption experiments were carried out by varying several conditions such as contact time, metal ion concentration and pH to assess kinetic and equilibrium parameters. The equilibrium data were analyzed based on the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms. Kinetic data were analyzed using the pseudo-first-order, pseudo-second-order and intra-particular diffusion models. Experimental data showed that at contact time 60 min, metal ion concentration 50 mg/L and pH 6, a maximum amount of Ni(II) ions can be removed. The experimental data were best described by the Langmuir isotherm model as is evident from the high R 2 value of 0.988. The adsorption capacity (q m) obtained was 68.02 mg/g at an initial pH of 6 and a temperature of 25 °C. Kinetic studies of the adsorption showed that equilibrium was reached within 60 min of contact and the adsorption process followed the pseudo-first-order model. The obtained results show that P. harmala-L can be used as an effective and a natural low-cost adsorbent for the removal of Ni(II) from aqueous solutions.  相似文献   

5.
A hydrophilic kapok fiber was prepared by a chemical process of the Fenton reaction and used as an adsorbent to remove Pb(II) from aqueous solution. The effects of experimental parameters including pH, contact time, Pb(II) concentration, and coexisting heavy metals were estimated as well as evaluated. The optimum concentrations of FeSO4 and H2O2 for the Fenton reaction-modified kapok fiber (FRKF) were 0.5 mol L?1 and 1 mol L?1, respectively. The adsorption kinetic models and isotherm equations of Langmuir and Freundlich were conducted to identify the most optimum adsorption rate and adsorption capacity of Pb(II) on FRKF. The FRKF displayed an excellent adsorption rate for Pb(II) in single metal solution with the maximum adsorption capacity of 94.41?±?7.56 mg g?1 at pH 6.0. Moreover, the FRKE still maintained its adsorption advantage of Pb(II) in the mixed metal solution. The FRKF exhibited a considerable potential in removal of metal content in wastewater streams.  相似文献   

6.
A zinc oxide-coated nanoporous carbon sorbent was prepared by acid modification and ZnO functionalization of mesoporous carbon. The synthesized materials, such as mesoporous carbon, oxidized mesoporous carbon and zinc oxide-coated nanoporous carbon, were characterized by nitrogen adsorption–desorption analysis, Fourier transform infrared spectra, scanning electron microscopy, and transmission electron microscopy. ZnO on oxidized mesoporous carbon gradually increased with increase in the number of cycles. Furthermore, the effects of agitation time, initial metal ions concentration, adsorbent dose, temperature and pH on the efficiency of Pb(II) ion removal were investigated as the controllable factors by Taguchi method. The value of correlation coefficients showed that the equilibrium data fitted well to the Langmuir isotherm. Among the adsorbents, zinc oxide-coated nanoporous carbon showed the largest adsorption capacity of 522.8 mg/g (2.52 mmol/g) which was almost close to that of the zinc oxide-coated (2.38 mmol/g), indicating the monolayer spreading of ZnO onto the oxidized mesoporous carbon. The results of the present study suggest that ZnO-coated nanoporous carbon can be effectively used for Pb(II) adsorption from aqueous solution, whereas a part of acidic functional groups may be contributed to binding the Pb(II) for the oxidized mesoporous carbon and mesoporous carbon. Kinetic studies indicated that the overall adsorption process of Pb(II) followed the pseudo-second-order model. The ZnO-coated nanoporous carbon was regenerated and found to be suitable of reuse of the adsorbent for successive adsorption–desorption cycles without considerable loss of adsorption capacity.  相似文献   

7.
In this research, spent coffee grains were modified with citric acid solutions (0.1 and 0.6 M) to increase the quantity of carboxylic groups improving its metal adsorption capacity. Added functional groups on modified and non-modified spent coffee grains were identified and quantified by attenuated total reflection Fourier transform infrared analyses and potentiometric titrations, respectively. These adsorbents were used for the removal of lead (II) and copper (II) from aqueous solutions at 30 °C and different pH in batch systems. In addition, adsorption–desorption experiments were conducted to evaluate the possibility of re-using the modified adsorbent. Potentiometric titrations data reveal that the quantity of carboxylic groups was increased from 0.47 to 2.2 mmol/g when spent coffee grains were modified with 0.1 and 0.6 M citric acid. Spent coffee grains treated with 0.6 M citric acid, achieved a maximum adsorption capacity of 0.77 and 1.53 mmol/g for lead (II) and copper (II), respectively, whereas non-modified spent coffee grains only reached 0.24 and 0.19 mmol/g for lead (II) and copper (II), respectively. Desorption of lead (II) and copper (II) achieved around 70 % using 0.1 N HCl for non-modified and modified spent coffee grains with 0.6 M citric acid. It is suggested that lead (II) and copper (II) species were adsorbed mainly on the carboxylic groups of modified spent coffee grains and these metals may be exchanged for hydrogen and calcium (II) ions during adsorption on non-modified spent coffee grains. Finally, the adsorption equilibrium was reached after 400 min for modified spent coffee grains with 0.6 M citric acid. Modified spent coffee grains are a promising option for removing metal cations from aqueous solutions due to its low cost and high adsorption capacity (about 10 times higher than the activated carbons).  相似文献   

8.
Biofilms wasted from biotrickling filters was dried and used as biosorbent for Cd(II) removal from aqueous solutions. The adsorption condition and effect, adsorption isotherms and kinetics of Cd(II) removal were investigated, and the effects of competitive metal ions on Cd(II) removal were also examined. Results showed that the dry waste biofilms reached the maximum adsorption capacity of 42 mg/g of Cd(II) at 25 °C for 120 min when the initial concentration of Cd(II) and their pH were 50 mg/L and 6.0, respectively. Under these conditions, the removal efficiency of Cd(II) reached to 89.3% when the biosorbent dosage was 2.0 g/L. The Langmuir isotherm model correlated with the isotherm data better than the Freundlich isotherm model, and the pseudo-second-order model fitted the kinetic data better than the pseudo-first-order model. These results indicated that the adsorption was monolayer accompanied with chemical adsorption. In the presence of other metal ions, divalent metal ions of Ca and Zn inhibited the performance of Cd(II) biosorption significantly, while Na(I), K(I) and Fe(III) which had a higher or lower valence than Ca(II) affected slightly when containing 50 mg/L Cd(II), 0.5 g/L adsorbent dosage and pH 6.0. The analyses of scanning electron microscopy and Fourier transform infrared spectroscopy illuminated that the biosorbent had porous structures and the amide group was the majorly responsible for Cd(II) removal. Dry biofilms were novel sorbents for effective removal Cd(II), and it could be reused and recycled if necessary.  相似文献   

9.
Reducing heavy metal concentrations to allowable levels in landfill leachate before discharge is an extremely important process to prevent environmental pollution. Iron oxide-coated gravel was used in order to remove Cd(II), Cu(II), Pb(II), Fe(III) and Al(III) simultaneously in high-strength synthetic leachate samples. Batch and column studies were performed to determine the kinetics and mechanism of adsorption process. The experimental data obtained from batch study satisfactorily fitted to the Freundlich model indicating surface heterogeneity and multilayer adsorption process. The data obtained from kinetic studies followed the pseudo-second-order kinetics indicating adsorption governed by chemisorption. The metal adsorption order observed in the batch study was Pb(II)(99.72%) ≈ Cu(II)(99.61%) ≈ Cd(II)(99.51%) ≈ Fe(III)(99.3%) > Al(III)(93.3%) at pH 7. Average metal removals in the fixed-bed column were found to be 96.5% for Cu(II), 94.8% for Pb(II), 90% for Cd(II), 84% for Fe(III) and 67% for Al(III). Iron oxide-coated gravel column adsorption capacity ranged from 0.56 to 66.82 mg/g. Recovery efficiency of adsorbed metals via desorption was between 5–97.75% in first cycle and 2–80.3% in second cycle.  相似文献   

10.
The most appropriate method in designing the adsorption systems and assessing the performance of the adsorption systems is to have an idea on adsorption isotherms. Comparison analysis of linear least square method and nonlinear method for estimating the isotherm parameters was made using the experimental equilibrium data of Zn(II) and Cu(II) onto kaolinite. Equilibrium data were fitted to Freundlich, Langmuir, and Redlich–Peterson isotherm equations. In order to confirm the best-fit isotherms for the adsorption system, the data set using the chi-square (χ 2), combined with the values of the determined coefficient (r 2) was analyzed. Nonlinear method was found to be a more appropriate method for estimating the isotherm parameters. The best fitting isotherm was the Langmuir and Redlich–Peterson isotherm. The Redlich–Peterson is a special case of Langmuir when the Redlich–Peterson isotherm constant g was unity. The sorption capacity of kaolinite to uptake metal ions in the increasing order was given by Cu (4.2721 mg/g)?<?Zn (4.6710 mg/g).  相似文献   

11.
In recent years, the need for safe and economical methods to eliminate heavy metals from contaminated waters has necessitated research on the production of low-cost alternatives to commercially available activated carbon. In the present work, in order to enhance the removal of heavy metals from contaminated water, Zizyphus vulgaris wastes were modified chemically to produce an adsorbent rich in carboxylic groups to enhance the removal of heavy metals from contaminated water. Adsorption of Zn(II) ions on the produced adsorbent was then optimized. The optimal ratio for esterification involved the treatment of Z. vulgaris wastes (1 g) with 0.0037 mmol malic acid in the presence of a very small amount of water for 2 h at 140 °C. The maximum values for adsorption capacity, q max, were 28.7 and 164.6 mg/g on native and modified Z. vulgaris wastes, respectively, at pH 5 and 30 °C with a contact time 2 h and an initial metal ion concentration of 400 mg/L. The equilibrium data were well fitted by the Langmuir and Freundlich adsorption models and demonstrated the significant capacity for Z. vulgaris wastes in the removal of Zn(II) ions from aqueous solutions.  相似文献   

12.
The present article explores the ability of five different combinations of two adsorbents (Arachis hypogea shell powder and Eucalyptus cameldulensis saw dust) to remove Pb(II) from synthetic and lead acid batteries wastewater through batch and column mode. The effects of solution pH, adsorbent dose, initial Pb(II) concentration and contact time were investigated with synthetic solutions in batch mode. The Fourier transform infrared spectroscopy study revealed that carboxyl and hydroxyl functional groups were mostly responsible for the removal of Pb(II) ions from test solutions. The kinetic data were found to follow pseudo-second-order model with correlation coefficient of 0.99. Among Freundlich and Langmuir adsorption models, the Langmuir model provided the best fit to the equilibrium data with maximum adsorption capacity of 270.2 mg g?1. Column studies were carried out using lead battery wastewater at different flow rates and bed depths. Two kinetic models, viz. Thomas and Bed depth service time model, were applied to predict the breakthrough curves and breakthrough service time. The Pb(II) uptake capacity (q e = 540.41 mg g?1) was obtained using bed depth of 35 cm and a flow rate of 1.0 mL min?1 at 6.0 pH. The results from this study showed that adsorption capacity of agricultural residues in different combinations is much better than reported by other authors, authenticating that the prepared biosorbents have potential in remediation of Pb-contaminated waters.  相似文献   

13.
Leonardite, a by-product from coal mines, was applied to adsorb Cd(II) and Zn(II) from aqueous solutions. Individual and simultaneous adsorptions of the two metal ions were investigated. In a single-component adsorption system, Langmuir and Freundlich isotherms were fitted to the adsorption data. Linear and nonlinear regression methods were used for the assessment of the optimum adsorption isotherm. Error functions including root-mean-square error, sum of the squares of the errors, mean absolute percentage error, Marquardt’s percent standard deviation (MPSD), and Chi-square were applied in the nonlinear regression. The most suitable model for the adsorption of Cd(II) and Zn(II) in the single system is the Freundlich isotherm. The isotherm parameters calculated by MPSD provided the lowest sum of normalized error (SNE) value. The adsorption capacity was found to be 23.89 mg/g for Cd(II) and 16.86 mg/g for Zn(II). It was observed that the adsorption of Cd(II) on leonardite is greater than that of Zn(II). For binary component adsorption systems, Cd(II) and Zn(II) showed antagonistic behavior. The presence of the other metal ions could decrease the amount of metal adsorbed. Binary adsorption of Cd(II) and Zn(II) was tested with regard to four multi-component isotherms: Extended Langmuir, Modified Langmuir, Sheindorf–Rebuhn–Sheintuch, and Extended Freundlich. The Extended Freundlich isotherm proved to be a good fit for the experimental data.  相似文献   

14.
In this study, the imprinted aniline–formaldehyde was used as an adsorbent for removal of Iridium and Palladium ions from aqueous solutions through batch equilibrium. The sorbent was characterized by fourier transform infrared spectroscopy. The influence of pH, equilibrium time, temperature and initial concentration of metal ions on adsorbed amount of both ions were investigated. The maximum adsorption capacity in initial concentration of 100 mg/L was found to be 12.5 mg/g at pH 7.0 and 14.3 mg/g at pH 8.0 for Iridium and Palladium, respectively. In addition, the best desorption of the metal ions from resin was obtained by 0.5 mol/L nitric acid as eluting agent. The profile of both ions uptake on this sorbent reflects good accessibility of the chelating sites in the imprinted aniline–formaldehyde. Langmuir, Freundlich, Temkin and Redlich–Peterson isotherm models were applied to analyze the experimental data. Moreover, Langmuir linear method was used to obtain the isotherm parameters. However, Langmuir type II achieved the highest coefficient which led to the best fit for the palladium and the best fit for Iridium obtained from linear Redlich–Peterson. However, the thermodynamic parameters (ΔG°, ΔH°, and ΔS°) were also determined using the equilibrium constant values obtained at different temperatures. The results showed that the adsorption for Iridium and Palladium ions was spontaneous nature and endothermic. Moreover, the method was applied for the determination of both ions from tap water samples.  相似文献   

15.
Poly(amidoamine)-graft-poly(methyl acrylate) magnetic nanocomposite was synthesized via radical polymerization of methyl acrylate onto modified magnetic nanoparticles followed by the functionalization of the methyl ester groups with poly(amidoamine) dendrimer. The resulting poly(amidoamine)-graft-poly(methyl acrylate) magnetic nanocomposite was then characterized by infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, scanning electron microscope and X-ray diffraction analysis. Its application as an adsorbent for the removal of Pb(II) ions was studied. The removal capability of the adsorbent was investigated in different pH values, contact time (kinetics) and initial concentration of lead. Moreover, adsorption isotherms were investigated to describe the mechanistic feature of this nanocomposite for adsorption. Accordingly, its high adsorption capacity (310 mg/g) and efficient adsorption toward lead ions in aqueous solution were shown. To further study of the chemistry behind the adsorption process, a comprehensive density functional theory-based study was performed, and a relatively strong interaction between metal ions and adsorbent was observed based on the calculated adsorption free energies.  相似文献   

16.
A novel two-dimensional carbon material using phytic acid-functionalized graphene oxide was successfully synthesized by a simple hydrothermal method. Properties of the material were characterized by SEM, FT-IR, FITR-Rama and BET. Some factors like contact time, pH, and temperature were studied to investigate the adsorption characteristics on Cu(II) ions of the material. Experiment results showed that the material can reach equilibrium adsorption in 20 min and get maximum adsorption capacity (316.586 mg g) under the condition of pH 4.0, 304 K. The adsorption of Cu(II) ions was an exothermic and spontaneous process, and could be better simulated by the pseudo-second-order kinetics and Freundlich isotherm model.  相似文献   

17.
In the present research, the removal of lead(II) and copper(II) from aqueous solutions is studied, using SnO2 nanowires as new adsorbent on solid-phase extraction disk and compared with pine core and buttonwood as biosorbents. Batch adsorption experiments were performed as a function of pH, adsorption time, solute concentration and adsorbent dose for biosorbents. Also, the pH, transfer rate of solution and metal concentration were selected as experimental parameters for the removal of heavy metals by SnO2 nanowires. All of the parameters were optimized by experimental design method for sorbents. The experimental equilibrium adsorption data are tested for the Langmuir and Freundlich equations. Results indicate the following order to fit the isotherms: Langmuir > Freundlich, in case of lead and copper ions. The removal of Cu(II) and Pb(II) was performed by selected sorbents in the presence of interferences ions. This led to no remarkable decrease in the removal efficiency of SnO2 nanowires. Using the SnO2 nanowires in the wastewater treatment indicated 96.8 and 85.28% removal efficiency in only 7 min for Pb(II) and Cu(II), respectively. SnO2 nanowires were found as reusable sorbent. Therefore, SnO2 nanowires have a good potential for application in environmental protection.  相似文献   

18.
As, Hg and Pb are examples of heavy metals which are present in different types of industrial effluents responsible for environmental pollution. Their removal is traditionally made by chemical precipitation, ion-exchange and so on. However, this is expensive and not completely feasible to reduce their concentrations to the levels as low as required by the environmental legislation. Biosorption is a process in which solids of natural origin are employed for binding the heavy metal. It is a promising alternative method to treat industrial effluents, mainly because of its low cost and high metal binding capacity. The kinetics was studied for biosorption experiments using coconut fiber for As (III), Hg (II) and Pb (II) ions adsorption. The specific surface area and surface charge density of the coconut fiber are 1.186×1025 (m2/g) and 5.39 ×1024 (meq/m2), respectively. The maximum adsorption capacity was found to be the highest for Pb (II) followed by Hg (II) and As (III). The modification of the adsorbent by thiolation affected the adsorption capacity. Equilibrium sorption was reached for the metal ions at about 60 min. The equilibrium constant and free energy of the adsorption at 30 °C were calculated. The mechanism of sorption was found to obey the particle-diffusion model. The kinetic studies showed that the sorption rates could be described by both pseudo first-order and pseudo second-order models. The pseudo second-order model showed a better fit with a rate constant value of 1.16 × 10?4/min. for all three metal ions. Therefore, the results of this study show that coconut fiber, both modified and unmodified, is an efficient adsorbent for the removal of toxic and valuable metals from industrial effluents.  相似文献   

19.
The biosorption characteristics of Cd(II) and Cu(II) ions from aqueous solutions obtained using submerged aquatic plant (Myriophyllum spicatum) biomass were investigated in terms of equilibrium, kinetics, thermodynamics, and cation competition. Langmuir and Freundlich models were applied to describe the biosorption isotherm of metal ions by M. spicatum biomass and isotherm constants considering the most important parameter, pH. The variation of sorption isotherm constants showed pH dependence. The Langmuir and Freundlich models fitted the equilibrium data well. The maximum biosorption capacity (q m) of M. spicatum biomass was determined to be 29.07 mg/g for the Cd(II) ion at pH 5.0 and 12.12 mg/g for the Cu(II) ion at pH 6.0. Chi square analysis showed that the Freundlich model fitted the equilibrium data better than the Langmuir isotherm. Competition of Cd(II) and Cu(II) in a binary solution showed that the Langmuir monolayer capacity of Cd(II) decreased from 29.07 mg/g with only Cd(II) in solution to 12.02 mg/g in the presence of Cu(II). Kinetics results showed that the biosorption processes of both metal ions followed the pseudo-second-order kinetics well. The calculated thermodynamic parameters (?G 0, ?H 0, and ?S 0) showed that biosorption of Cd(II) and Cu(II) ions onto M. spicatum biomass was feasible, spontaneous, and endothermic in nature. Fourier transform infrared spectroscopy spectrum analysis revealed that Cd(II) and Cu(II) sorption was mainly ascribed to carboxyl, hydroxyl, amine, and C–N groups in M. spicatum.  相似文献   

20.
In the present experimental study, solid waste was used as an adsorbent and the effectiveness of the adsorbent was increased by novel treatment methods. Red mud, acid-treated activated red mud and iron oxide-coated acid-treated activated red mud were used for the removal of lead (II). The structural and functional groups were identified to confirm the removal of lead (II) by powder X-ray diffraction and Fourier transform infrared spectroscopy analyses. The enhancement of surface area was confirmed by Brunauer–Emmett–Teller analysis. Batch adsorption experiment was also conducted, and various parameters such as the effect of adsorbent dosage, pH, contact time and initial ion concentration were analyzed and reported. Adsorption equilibrium data were investigated using Langmuir, Freundlich and Dubinin–Radushkevich isotherm models with three parameters, and the rate of reaction was examined through kinetic models. The results indicate that in particular a novel modified form of red mud, namely iron oxide-coated acid-treated activated red mud was well fitted in lead (II) removal compared with reported adsorbents. The Langmuir isotherm shows that the maximum adsorption of adsorbate per gram was greater than other adsorbents (27.02 mg/g). In Freundlich isotherm, the Freundlich constant n values lie between 1 and 10 indicate the favorable adsorption. The calculated n values for normal red mud, acid-treated activated red mud and iron oxide-coated acid-treated activated red mud were found to be 1.9, 2.1 and 2.0 respectively. The correlation coefficient value was higher and the rate of reaction follows the pseudo-second-order kinetic model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号