首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenol is one of the aromatic hydrocarbons. Phenol and its derivatives are highly toxic. These pollutants can be observed in the effluents of many industries. This research investigates the removal of phenol by the use of activated sludge in a batch system. The effects of influencing factors on biodegradation efficiency have been evaluated. The main factors considered in this study were the volume of acclimatized activated sludge inoculation, pH, temperature, and initial concentration of phenol. The inoculation volumes of 1, 3, and 5 mL of acclimatized activated sludge were taken into account. Different pH values of 3, 5, 7, 9, and 11 were examined. The experiments were conducted for temperatures of 25, 30, 35, and 40 °C and initial phenol concentrations of 400, 800, 1,000, and 1,500 ppm. The results show that the acclimatized activated sludge has a high capacity for the removal of phenol. From a 100-mL aqueous solution was removed 1,500 ppm of phenol after 80 h. Furthermore, maximum phenol removal was observed for an inoculation volume of 5 mL for three different phenol concentrations of 100, 400, and 800 ppm. The best pH was 7 for the biodegradation process, and the optimum temperature was 30 °C. It was further found that an increase in the phenol concentration increased its removal time. Moreover, the activated sludge could effectively remove about 99.9 % of phenol from a synthetic aqueous solution in a batch system.  相似文献   

2.
Immobilized form of Serratia marcescens strain AQ07 was experimented for cyanide biodegradation. Cyanide degradation (200 ppm) was achieved after 24-h incubation. Three parameters were optimized which included gellan gum concentration, beads size, and number of beads. In accordance with one-factor-at-a-time method, cyanide removal was optimum at 0.6% w/v gellan gum gel, 0.3-cm-diameter beads, and 50 beads number. It was able to withstand cyanide toxicity of 800 ppm, which makes it very suitable candidate in cyanide remediation. Beads reusability indicates one-cycle ability. The first cycle removed 96.3%, while the second removed 78.5%. Effects of heavy metals at 1.0 ppm demonstrated that mercury has a considerable effect on bacteria, inhibiting degradation to 61.6%, while other heavy metals have less effect, removing 97–98%. Maximum specific degradation rate of 0.9997 h?1 was observed at 200 ppm cyanide concentration. Gellan gum was used as the encapsulation matrix. ?-picoline-barbituric acid spectrophotometric analytical method was used to optimize the condition in buffer medium integrated with potassium cyanide via one-factor-at-a-time and response surface method. The range of cyanide concentrations used in this research, specific biodegradation rate was obtained to model the substrate inhibition kinetics. This rate fits to the kinetic models of Teisser, Aiba and Yano, which are utilized to elucidate substrate inhibition on degradation. One-factor-at-a-time approach parameters were adopted because it removes more cyanide compared to response surface methodology modules. The predicted biokinetic constant from this model suggests suitability of the bacteria for use in cyanide treatment of industrial waste effluents.  相似文献   

3.
This study presents the results of chromate adsorption upon organically modified clinoptilolite obtained by the treatment of Bigadic clinoptilolite with surfactants in primary amine structure, namely 1-dodecylamine, 1-hexadecylamine and oleylamine. Natural and organo-clinoptilolites were characterized by X-ray diffraction, thermal gravimetry and Fourier transform infrared spectrometry which proved the integration of amine groups followed by the order oleylamine > 1-hexadecylamine > 1-dodecylamine. Organo-clinoptilolites were tested for their efficacy in chromate removal under base case conditions which implied 100 ppm initial concentration, pH 4.0, 10 g l?1 adsorbent dose and at 298 K. Results showed that amine loading induced chromate removal reaching up to 90 % for oleylamine-modified clinoptilolite. Experimentation was continued to determine the effects of pH, adsorbent dosage and initial concentration on chromate adsorption. Accordingly, maximum removal of 94.0 % was attained with 14 g l?1 of oleylamine-modified clinoptilolite, from Cr(VI) solution of 100 ppm initially at pH 3.0. Langmuir isotherm described the adsorption of chromate on oleylamine-modified clinoptilolite with 96.4 % consistency. Maximum theoretical uptake capacity was calculated as 6.72 mg g?1. Kinetic data were consistent with pseudo-second-order model with the controlling steps being film and pore diffusions.  相似文献   

4.
The present article explores the ability of five different combinations of two adsorbents (Arachis hypogea shell powder and Eucalyptus cameldulensis saw dust) to remove Pb(II) from synthetic and lead acid batteries wastewater through batch and column mode. The effects of solution pH, adsorbent dose, initial Pb(II) concentration and contact time were investigated with synthetic solutions in batch mode. The Fourier transform infrared spectroscopy study revealed that carboxyl and hydroxyl functional groups were mostly responsible for the removal of Pb(II) ions from test solutions. The kinetic data were found to follow pseudo-second-order model with correlation coefficient of 0.99. Among Freundlich and Langmuir adsorption models, the Langmuir model provided the best fit to the equilibrium data with maximum adsorption capacity of 270.2 mg g?1. Column studies were carried out using lead battery wastewater at different flow rates and bed depths. Two kinetic models, viz. Thomas and Bed depth service time model, were applied to predict the breakthrough curves and breakthrough service time. The Pb(II) uptake capacity (q e = 540.41 mg g?1) was obtained using bed depth of 35 cm and a flow rate of 1.0 mL min?1 at 6.0 pH. The results from this study showed that adsorption capacity of agricultural residues in different combinations is much better than reported by other authors, authenticating that the prepared biosorbents have potential in remediation of Pb-contaminated waters.  相似文献   

5.
Cr(Ⅵ)抗性菌株的筛选及其Cr(Ⅵ)去除特性研究   总被引:3,自引:0,他引:3  
采用微生物分离纯化方法,从制革厂含铬污泥中筛选分离Cr (Ⅵ)抗性菌株,并研究菌株对Cr(Ⅵ)的去除能力.共分离得到对50 mg/L Cr(Ⅵ)去除率大于50%的菌株20株,16S rRNA基因测序结果表明这些细菌主要属于Acinetobacter、 Microbacterium、Leucobacter、Ochrobactrum和Brachymonas属.对其中7株细菌,考察了菌株生长期、pH值和Cr(Ⅵ)浓度对菌株去除Cr(Ⅵ)效果的影响,结果表明,细胞在有较高代谢活性的条件下具较高的Cr(Ⅵ)去除能力;pH值对菌株去除Cr(Ⅵ)的能力具有显著影响,在50 mg/L Cr(Ⅵ)、pH值为7~8的条件下,Microbacterium属16号和21号菌株在36 h时对Cr (Ⅵ)的去除率达80%~95%;高浓度的Cr(Ⅵ)抑制菌株对Cr(Ⅵ)的去除能力,其中21号菌株在110 mg/L的Cr(Ⅵ)浓度下去除效果最佳,Cr(Ⅵ)去除率达80%.  相似文献   

6.
The ability of ochre to remove Pb(II) and Cu(II) from aqueous media has been studied by batch sorption studies varying the contact time, initial metal concentration, initial solution pH and temperature to understand the adsorption behaviour of these metals through adsorption kinetics and isotherms. The pH of the solution and the temperature controlled the adsorption of metal ions by ochre and rapid uptake occurred in the first 30 min of reaction. The kinetics of adsorption followed a pseudo-second-order rate equation (R 2 > 0.99) and the isotherms are well described by the Freundlich model. Adsorption of metals onto ochre is endothermic in nature. Between the two metals, Pb(II) showed more preference towards the exchangeable sites on ochre than Cu(II). This study indicates that ochre is a very effective adsorbent in removing Pb(II) and Cu(II) from the aqueous environment with an adsorptive capacity of 0.996 and 0.628 mg g?1 and removal efficiency of 99.68 and 62.80 %, respectively.  相似文献   

7.
Pb-contaminated water is a dangerous threat occurring near metallurgic and mining industries. This circumstance produces serious environment concern, due to Pb(II) high toxic effects. Several reactive materials have been reported for Pb(II) adsorption, but not all reached final Pb(II) suitable concentrations, or they are expensive and rejected in massive remediation technologies; hence, natural materials are good options. The adsorption behavior of a volcanic scoria (two sieved fractions 1425 and <425 µm) was studied toward synthetic Pb(II) water solutions in batch experiments (170.4–912.3 mg L?1) with high removal efficiencies (97%). The Langmuir model fits both fractions with high linear correlation coefficients (0.9988 and 0.9949) with high maximum capacity values (588.23 and 555.55 mg g?1). Separation factor R L parameter varies with initial concentration, and the empirical equation predicts the limits of the material usefulness, a criterion proposed in this paper for conditions’ selection. The Lagergren pseudo-second-order analysis demonstrates chemisorption; calculated rate constant (416.66 mg g?1 min?1). Weber–Morris intraparticle model proves that the adsorption phenomena occur fast on the material surface (k inst = 72 g mg?1 min?0.5). The characterization of the volcanic material afforded the elemental composition (X-ray fluorescence), and the empirical formula was proposed. X-ray diffraction patterns verify the material structure as basalt, with a plagioclase structure that matches anorthite and albite, mostly composed of quartz. The presence of oxides on the material surface explain the high Pb(II) adsorption capacity, observed on the surface by scanning electronic microscopy. The studied volcanic scoria has potential use as a Pb(II) adsorbent in water remediation technologies.  相似文献   

8.
Phytoremediation is a proven low-cost and sustainable method for the removal of toxic pollutants from water. This green technology has been practiced for the past several years all over the world. In the present study, the interaction of fluoride on the surface of the floating aquatic plant water lettuce (Pistia stratiotes) during fluoride removal was investigated. Batch kinetic studies were performed to examine the fluoride uptake capacity of the plant with different initial fluoride concentrations such as 3, 5, 10, and 20 mg/L. The effects of various process parameters on fluoride uptake dynamics such as pH, plant biomass, initial fluoride concentration, and time were examined. Freundlich’s isotherm model was found to (R 2 = 0.957) fit well to the experimental data. The nature of reaction order followed pseudo-first-order kinetics, when the initial fluoride level in the solution was 5 mg/L. The experimental findings showed that the removal mechanism was driven by biosorption phenomenon. High fluoride concentration in the solution reduced the growth ratio of P. stratiotes. The lowest growth ratio of this aquatic macrophyte was found to be 76.80 ± 3.73% at 20 mg/L fluoride concentration. At lower fluoride concentrations such as 3 and 5 mg/L, the growth ratio of the plant was not reduced significantly.  相似文献   

9.
Improvement of cadmium ion electrochemical removal from dilute aqueous solutions in a spouted bed reactor was investigated. Enlargement of cathode surface area from 1,000 to 1,500 cm2 resulted in a decrease of nearly 30 % in both of the process time and the specific energy consumption. Application of a three-stage electrolysis process for a solution containing initial concentration of 270 ppm cadmium ion, resulted in the removal of 99.9 % cadmium ion in 135 min with the specific energy consumption of 2.29 kWh/kg, 23 % less than the value of a single-stage process. For a solution with cadmium ion initial concentration of 180 ppm, 99.9 % of cadmium ion was removed in 135.5 min by application of a two-stage electrolysis process, while the specific energy consumption was 2.82 kWh/kg, 30 % less than that of a single-stage process. For a solution with cadmium ion initial concentration of 90 ppm, 99.5 % of cadmium ion was removed in 100.2 min with the specific energy consumption of 3.78 kWh/kg in a single-stage electrolysis process.  相似文献   

10.
The Pb(II) and Ni(II) biosorption of a fungal biomass isolated from mine drainage of metal-processing industries in Balya (Bal?kesir province, Turkey) was optimized using a response surface methodology by altering parameters such as pH, initial metal concentration, contact time and biosorbent dosage. This strain was shown to be highly similar to Penicillium sp. Furthermore, zeta potential measurements and Fourier transform infrared spectroscopy were performed to understand the adsorption mechanism. A Box–Behnken design with 29 experiments was used to evaluate the interactions between independent variables. The results showed that the fungal biomass isolated from the metal mine drainage could have a significant environmental impact through the biosorption of Pb(II) and Ni(II) in waters polluted with heavy metals, particularly in the drainage from metal mines. The maximum removal values were 76 and 47 % at pH 4.5 for both Pb(II) and Ni(II), with 123 and 33 mg/L initial metal concentrations, 65 and 89 min contact times and 0.2 and 1.6 g/L biosorbent, respectively.  相似文献   

11.
The removal efficiency of water hyacinth for Zn, Cu, Pb and Cd after their entry into an undisturbed fresh water body was studied using minicosms placed within a reservoir. Variable parameters were water pH (6 or 8), single or multi-metal additions, and the plant biomass. The initial concentrations of Zn, Cu, Pb and Cd in water (500, 250, 250 and 50 μg/L, respectively) quickly decreased in the order Pb ≈ Cu ? Cd ≈ Zn in the first days. Metal removal was more efficient at pH 8 than at pH 6, and it was only slightly higher for single metals compared to multi-metal additions. After 8 days the remaining amounts of metals relative to their initial concentrations for multi-metal pollution treatments were 8% and 24% (Cu), 11% and 26% (Pb), 24% and 50% (Cd), and 18% and 57% (Zn) at pH 8 and pH 6, respectively. Increasing plant biomass promoted faster metal removal. The bioconcentration factor (the ratio of the metal concentration in whole plants to the initial metal concentration in water) exceeds 2000 for all metals (with the exception of Zn and Cd at pH 6). It was concluded that the water hyacinth can be successfully used for fast removal of metals in the initial stage of water body remediation.  相似文献   

12.
In the present work, a continuous catalytic wet peroxide oxidation fixed bed reactor was employed to treat a simulated wastewater sample with malachite green dye, as a contaminant. Natural perlite particle-supported nano-Fe3O4 catalyst was used as a fixed bed inside a reactor, and it was immobilized by a persistent magnetic field. The range of (perlite) particle sizes was from 100 to 1000 nm. The effects of various operating parameters, including temperature of the reactor, pH, initial hydrogen peroxide concentration and initial dye concentration, were investigated on the percentage removal of malachite green dye. Load of catalyst of 2 g and volumetric flow rate of 1 L/h were selected for all the tests. Maximum malachite green degradation was 99.5 ± 0.3%. This removal percentage was attained at temperature of 80 °C, pH = 6, initial dye concentration of 6 mg/L and initial hydrogen peroxide concentration of 100 mg/L. The process was isotherm, and the catalyst showed high catalytic activity in the steady-state condition. The loss of catalyst was less than 0.3%.  相似文献   

13.
Microbial activity has the potential to alter all cultural heritage in mining and metallurgy, due to metal mobilization by leaching. This communication shows the consequences of the bioleaching ability of two natural enrichments on copper slag samples from a historic ore smelting site in Sangerhausen (Mansfeld, Südharz, Saxony-Anhalt, Germany). Enrichment cultures gained from mine drainage were dominated by either the iron and sulfur-oxidizing Acidithiobacillus ferrivorans, or by the iron-oxidizing Leptospirillum. During 35 days of bioleaching in media containing copper slag pulp, inoculated with these enrichments, the change in pH and solubilized metal concentrations of the systems were monitored. Both bacterial strains were completely different from each other in their pattern of pH variation and rates of metal solubilization. The maximum removal of Cu (1725 mg/l) and Zn (715 mg/l) from copper slag substrate was achieved with enrichment culture of A. ferrivorans SCUT-1. However, maximum Mn (207 mg/l), Pb (86 mg/l), and Ni (75 mg/l) removal was observed with enrichment culture of Leptospirillum strain YQP-1. Implications for metal mobilization along with alteration of artifacts from not only historic mining areas but also aspects of decontamination and remediation are discussed.  相似文献   

14.
Microbial remediation of methyl tert-butyl ether-contaminated aquifers has been widely studied since their cost/efficiency ratios are lower than other remediating techniques. Based on previous studies, simultaneous assessment of two inocula (Acinetobacter calcoaceticus M10 and a co-culture between strain M10 and Rhodococcus ruber E10) was performed for methyl tert-butyl ether bioremediation in a designed pilot-scale biofilter. A non-inoculated biofilter was included for comparison. Temporary bioremediation of methyl tert-butyl ether (up to 80 % removal) from the biofilter inoculated with the consortium was observed within 44 days. In addition, the taxonomic profile (temporal temperature gradient gel electrophoresis from RNA extracts) from the latter biofilter contained more active strains than in the other two systems. The presence of strains M10 and E10 in temporal temperature gradient gel electrophoresis analysis from RNA extracts and high presence of strain E10 in temporal temperature gradient gel electrophoresis analysis of DNA extracts, along with alkB amplification of both strains in the biofilter, suggest that the co-culture inoculum was responsible for the methyl tert-butyl ether removal.  相似文献   

15.
Adsorption characteristics of water hyacinth roots powder for the removal of Indosol Dark-blue GL dye were investigated in batch mode. Operating variables, such as initial solution pH, presence of detergent, adsorbent dosage, initial concentration and contact time, were studied. The results showed that the adsorption of dye increased with increasing the initial concentration and contact time. The adsorption is highly pH dependent and adsorption capacity increased with decrease in pH. Kinetic study revealed that the uptake of Indosol Dark-blue GL was very rapid within the first 15 min and equilibrium time was independent of initial concentration. Batch equilibrium experiments were carried out at different pH and found that equilibrium data fitted well to Langmuir isotherm model. The maximum sorption capacity of the adsorbent was found as 86 mg g?1 at pH 3 which reduced to 64 mg g?1 at pH 5. The presence of detergent reduced the sorption capacity of the adsorbent significantly. Using equilibrium and kinetic data, the forward and backward rate constants were determined from the unified approach model. Desorption study revealed that the dye can be recovered by swing the pH from low to high.  相似文献   

16.
A novel biosorbent synthesized from Ficus racemosa leaves based on the treatment using NaOH was applied for removal of Acid Blue 25 from aqueous solution. The synthesized biosorbent was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy and Brunauer–Emmett–Teller analysis. NaOH treatment was demonstrated to remove lignin content from the biomass and to induce the development of significant pores. Batch experiments were performed to evaluate the effect of important operating parameters such as pH (range of 2–10), biosorbent dose (range of 1–10 g/L), contact time (range of 0–5 h), initial dye concentration (range of 50–400 mg/L) and temperature (range of 293–323 K) on the extent of removal of Acid Blue 25. The established optimum conditions were pH of 2, biosorbent dose of 4 g/L, contact time of 3 h and temperature of 323 K, yielding maximum removal of dye. Pseudo-second-order model was found to best fit the kinetic data. Langmuir and Temkin isotherm models were found to best fit the equilibrium data. The obtained thermodynamic parameters confirmed endothermic and spontaneous nature of adsorption. The study established the utility of novel biosorbent for removal of Acid Blue 25 with higher adsorption capacities (83.33 mg/g) as compared to the more commonly used adsorbents. Desorption-adsorption  studies conducted for seven cycles indicated potential reusability of synthesized biosorbent for the treatment of dye effluents.  相似文献   

17.
In the present study the removal of nitrates from wastewater using Pseudomonas stutzeri microorganism in a Gas–Liquid–Solid bioreactor at the concentration of 200 ppm was studied for a period of 12 h. The response surface methodology with the help of central composite design and genetic algorithm were employed to optimize the process parameters such as airflow rate, biofilm carrier, carbon source, temperature and pH which are responsible for the removal of nitrates. The optimized values of parameters found from RSM are airflow rate 2.41 lpm, biofilm carrier 15.15 g/L, carbon source 85.0 mg/L, temperature 29.74 °C, pH 7.47 and nitrate removal 193.16. The optimized parameters obtained from genetic algorithm are airflow rate 2.42 lpm, biofilm carrier 15.25 g/L, carbon source 84.98 mg/L, temperature 29.61 °C, pH 7.51 and nitrate removal is 194.14. The value of R2 > 0.9831 obtained for the present mathematical model indicates the high correlation between observed and predicted values. The optimal values for nitrate removal at 200 ppm are suggested according to genetic algorithm and at these optimized parameters more than 96 % of nitrate removal was estimated, which meets the standards for drinking water.  相似文献   

18.
The functionalized nano-clay composite adsorbent was prepared, and its properties were characterized using FT-IR, XRD and SEM techniques. The synthesized nano-clay composite was studied with regard to its capacity to remove ibuprofen under different adsorption conditions such as varying pH levels (5–9), initial ibuprofen concentrations (3, 5 and 10 mg L?1), contact time, and the amount of adsorbent (0.125, 0.25, 0.5 and 1 g). In order to evaluate the nanocomposite adsorption capacity, the adsorption results were assessed using nine isotherm models. The results showed that the optimum adsorption pH was 6 and that an increase or decrease in the pH reduced the adsorption capacity. The adsorption process was fast and reached equilibrium after 120 min. The maximum efficacy of ibuprofen removal was approximately 95.2%, with 1 g of adsorbent, 10 mg L?1 initial concentration of ibuprofen, 120 min contact time and pH = 6. The optimal adsorption isotherm models were the Freundlich, Fritz–Schlunder, Redlich–Peterson, Radke–Prausnitz, Sip, Toth and Khan models. In addition, four adsorption kinetic models were employed for adsorption system evaluation under a variety of experimental conditions. The kinetic data illustrated that the process is very fast, and the reaction followed the Elovich kinetic model. Therefore, this nano-clay composite can be used as an effective adsorbent for the removal of ibuprofen from aqueous solutions, such as water and wastewater.  相似文献   

19.
Due to its harmful impact on human health, the presence of heavy metals, metalloids and other toxic pollutants in drinking or irrigation water is a major concern. Recent studies have proved that nanosized adsorbents are significantly more effective than their microsized counterparts. Particular attention has been given to nanocomposites with nanoadsorbents embedded in matrixes that could provide stability to the material and contribute to eliminating problems that may appear when using conventional granular systems. This study presents the preparation of a novel hybrid filter from a commercially available polypropylene (PP) non-woven fabric matrix modified with multiwall carbon nanotubes (MWCNT) and iron oxy(hydroxide) nanoparticles, and its use in the removal of As(III). A Box–Behnken statistical experimental design has been chosen to explore relevant variables affecting the filter performance: (1) As(III) concentration, (2) pH and (3) sorbent dose. From an As(III) concentration of 10 mg L?1, at pH 6.5 and with a sorbent dose of 5 g L?1, the PP filter modified with MWCNT removes 10% of the initial metalloid concentration, reaching a capacity of 0.27 mg g?1. After modification with iron oxy(hydroxide), the performance of the material is largely enhanced. The filter, under the same conditions, removes 90% of the initial As(III) concentration, reaching a capacity almost tenfold higher (2.54 mg g?1). This work demonstrates that the developed hybrid filter is effective toward the removal of As(III) in a wide range of pHs. A cubic regression model to compute the removal of the filter as a function of pH and sorbent dose is provided.  相似文献   

20.
A hydrophilic kapok fiber was prepared by a chemical process of the Fenton reaction and used as an adsorbent to remove Pb(II) from aqueous solution. The effects of experimental parameters including pH, contact time, Pb(II) concentration, and coexisting heavy metals were estimated as well as evaluated. The optimum concentrations of FeSO4 and H2O2 for the Fenton reaction-modified kapok fiber (FRKF) were 0.5 mol L?1 and 1 mol L?1, respectively. The adsorption kinetic models and isotherm equations of Langmuir and Freundlich were conducted to identify the most optimum adsorption rate and adsorption capacity of Pb(II) on FRKF. The FRKF displayed an excellent adsorption rate for Pb(II) in single metal solution with the maximum adsorption capacity of 94.41?±?7.56 mg g?1 at pH 6.0. Moreover, the FRKE still maintained its adsorption advantage of Pb(II) in the mixed metal solution. The FRKF exhibited a considerable potential in removal of metal content in wastewater streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号