首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple one-step synthetic approach using rice husk has been developed to prepare magnetic Fe3O4-loaded porous carbons composite (MRH) for removal of arsenate (As(V)). The characteristics of adsorbent were evaluated by transmission electron microscope, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller analysis, and thermogravimetric analysis. On account of the combined advantages of rice husk carbons and Fe3O4 nanoparticles, the synthesized MRH composites showed excellent adsorption efficiency for aqueous As(V). The removal of As(V) by the MRH was studied as a function of contact time, initial concentration of As(V), and media pH. The adsorption kinetics of As(V) exhibited a rapid sorption dynamics by a pseudo-second-order kinetic model, implying the mechanism of chemisorption. The adsorption data of As(V) were fitted well to the Langmuir isotherm model, and the maximum uptake amount (q m ) was calculated as 4.33 mg g?1. The successive regeneration and reuse studies showed that the MRH kept the sorption efficiencies over five cycles. The obtained results demonstrate that the MRH can be utilized as an efficient and low-cost adsorbent for removal of As(V) from aqueous solutions.  相似文献   

2.
Mine residue and leachate were sampled from an acid mine drainage site near Arroyo San Pedro, which is one of the oldest abandoned mine districts in San Luis Potosi, Mexico, and characterized by X-ray diffraction and inductively coupled plasma-optical emission spectroscopy, confirming the presence of Fe, As, and SO4 2?. To address this problem, chitosan network (net-CS) and chitosan network-N-vinylcaprolactam/N–N-dimethylacrylamide (net-CS)-g-NVCL/DMAAm hydrogels were synthesized and used as adsorbents of the different ions present in the aforementioned leachate by batch equilibrium procedure. Kinetics, isotherms, and ions dissolved in leachate were evaluated. The gels showed the highest adsorption capacity for As and Fe ions. The adsorption capacity of the net-CS hydrogels for As (V) and Fe(III) was 0.786 and 76.85 mg/g, respectively, attained after 50 h. The surface of the hydrogels was investigated by scanning electron microscopy and Fourier transform infrared spectroscopy, before and after the adsorption process, where the presence of a bond between the hydrogels and heavy metals ions, which is commonly observed in organic groups, was observed. In addition, Freundlich and Langmuir adsorption isotherms constants were determined for the As and Fe ions, and it was found that the Freundlich isotherm, with a first-order pseudo model, better fitted the adsorption process, indicating heterogeneous sorption, and the retention process occurred by chemisorption. The results from the Geochemist´s Workbench (GWB) software program revealed that arsenates, such as H3AsO4, H2AsO4 ?, as well as Fe++, FeSO4(aq) and FeOH+ were the common aqueous species found in the leachate at pH = 2.9.  相似文献   

3.
Acacia nilotica was used for the adsorption of Reactive Black 5 (RB5) dye from an aqueous solution. Both the raw and activated (with H3PO4) carbon forms of Acacia nilotica (RAN and ANAC, respectively) were used for comparison. Various parameters (including dye concentration, contact time, temperature, and pH) were optimized to obtain the maximum adsorption capacity. RAN and ANAC were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The maximum experimental adsorption capacities for RAN and ANAC were 34.79 and 41.01 mg g?1, respectively, which agreed with the maximum adsorption capacities predicted by the Langmuir, Freundlich, and Dubinin–Radushkevich equilibrium isotherm models. The adsorption data of ANAC showed a good fit to the isotherm models based on the coefficient of determination (R 2): Langmuir type II (R 2 = 0.99) > Freundlich (R 2 = 0.9853) > Dubinin–Radushkevich (R 2 = 0.9659). This result suggested monolayer adsorption of RB5 dye. The adsorption of RB5 dye followed pseudo-second-order kinetics. The RAN adsorbent reflected an exothermic reaction (enthalpy change, ΔH = ?0.006 kJ mol?1) and increased randomness (standard entropy change, ΔS = 0.038 kJ mol?1) at the solid–solution interface. In contrast, ANAC reflected both exothermic [?0.011 kJ mol?1 (303–313 K)] and endothermic [0.003 kJ mol?1 (313–323 K)] reactions. However, the ΔS value of ANAC was lower when the RB5 adsorption increased from 313 to 323 K. The negative values for the Gibbs free energy change at all temperatures indicated that the adsorption of RB5 dye onto RAN and ANAC was spontaneous in the forward direction.  相似文献   

4.
Bimetallic Fe/Ni nanoparticles were synthesized and used for the removal of profenofos organophosphorus pesticide from aqueous solution. These novel bimetallic nanoparticles (Fe/Ni) were characterized by scanning electron microscopy, energy-dispersive X-ray analysis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The effect of the parameters of initial pesticide concentration, pH of the solution, adsorbent dosage, temperature, and contact time on adsorption was investigated. The adsorbent exhibited high efficiency for profenofos adsorption, and equilibrium was achieved in 8 min. The Langmuir, Freundlich, and Temkin isotherm models were used to determine equilibrium. The Langmuir model showed the best fit with the experimental data (R 2 = 0.9988). Pseudo-first-order, pseudo-second-order, and intra-particle diffusion models were tested to determine absorption kinetics. The pseudo-second-order model provided the best correlation with the results (R 2 = 0.99936). The changes in the thermodynamic parameters of Gibb’s free energy, enthalpy, and entropy of the adsorption process were also evaluated. Thermodynamic parameters indicate that profenofos adsorption using Fe/Ni nanoparticles is a spontaneous and endothermic process. The value of the activation energy (E a = 109.57 kJ/mol) confirms the nature of the chemisorption of profenofos onto Fe/Ni adsorbent.  相似文献   

5.
In this study, teff (Eragrostis tef) straw has been chemically treated and tested as an adsorbent for Cr(VI) removal. Chemically treatment of teff straw was done by NaOH, H3PO4 and ZnCl2 solutions. Scanning electron micrograph and X-ray diffraction were used for anatomical characterization, whereas Fourier transform infrared spectroscopy was used for surface change characterization of adsorbents. Effects of different experimental parameters like pH (2–12), initial Cr(VI) concentration (100–900 mg/L), adsorbent dose (2.5–20 g/L), contact time (15–360 min) and temperature (288–318 K) were studied. Temperature increment was found to stimulate the adsorption process. Langmuir isotherm was found to give better representation over wide range of temperature for untreated, H3PO4- as well as ZnCl2-treated teff straw, and Freundlich isotherm best represented the isotherm data for NaOH-treated teff straw. Maximum Cr(VI) adsorption capacity of untreated, NaOH-, H3PO4- and ZnCl2-treated teff straw was found to be 86.1, 73.8, 89.3 and 88.9 mg/g, respectively. Respective values of average effective diffusion coefficient (D e) were found to be 2.8 × 10?13, 2.59 × 10?14, 1.32 × 10?13 and 1.14 × 10?13 m2/s, respectively. The negative value of ΔG o for all the adsorbents indicates Cr(VI) spontaneous adsorption. Isosteric heat of adsorption (ΔH st,a) was found to vary with surface coverage (θ). ΔH st,a increased for untreated, H3PO4- and ZnCl2-treated teff straw, and decreased steadily with θ for NaOH-treated teff straw.  相似文献   

6.
The extensive use of Rhodamine B (RhB) for textile, paper, pigment, food, cosmetic, and drug manufacturing and its indiscriminate disposal leads to serious human, biological, and environmental hazards. A magnetic adsorbent with silicate and phenyl polymers (Ph/SiO2/Fe3O4) has been prepared to absorb RhB. The morphology and structure of the adsorbents have been characterized by TGA, XRD, FTIR, and adsorption–desorption measurement. The results revealed that Ph/SiO2/Fe3O4 exhibited a paramagnetic behavior and could easily and quickly be separated from a suspension. The RhB adsorption behavior was almost pH independent due to the adsorption between the phenyl ring of Ph/SiO2/Fe3O4 and RhB by π–π electron-donor–acceptor interactions. The adsorption behavior of RhB adsorption was in good agreement with the Langmuir adsorption isotherm, and the maximum adsorption capacity was 142.186 mg g?1. Good desorption performance of Ph/SiO2/Fe3O4 showed that this novel magnetic adsorbent cannot only be activated by ethanol extraction process but also reuse by the recovery of magnetic force.  相似文献   

7.
Vitis vinifera (grape) leaf litter, an abundant agricultural waste in South Africa was chemically modified with H3PO4 and carbonized for use as biosorbent. Characterization and the potential application of the adsorbent in simultaneous removal of 4-nitrophenol and 2-nitrophenol from aqueous solutions were investigated. The adsorbent was characterized using FTIR, SEM and EDX elemental microanalysis. The EDX and FTIR analysis revealed the presence of surface oxygen moieties capable of binding to adsorbate molecules while the SEM micrographs showed the development of pores and cavities in the adsorbent. Batch adsorption experiments were conducted at a varying contact time, adsorbent dosage, pH and initial adsorbate concentration to investigate optimal conditions. The maximum adsorption capacity of the adsorbent was 103.09 and 103.10 mg/g for 4-nitrophenol and 2-nitrophenol, respectively. The adsorption process was best fitted into Freundlich isotherm while the adsorption kinetics followed a pseudo-second-order model. Liquid film and intra-particle diffusion contributed to the adsorption process. Thermodynamic parameters of ΔG°, ΔH° and ΔS° were evaluated. The adsorption was exothermic, feasible and spontaneous. The results suggest a possible application of grape leaf litter as a precursor for activated carbon and for cheaper wastewater treatment technologies.  相似文献   

8.
The development of a fast, effective, simple and low-cost procedure for chromium speciation is an analytical challenge. In this work, a new and simple method for speciation and determination of chromium species in different matrices was developed. Sepia pharaonis endoskeleton nano-powder was used as an adsorbent for the dispersive micro-solid-phase extraction. Finally, the desorbed chromium was determined using a graphite furnace atomic absorption spectrometer. The experimental results showed that Cr(III) could be quantitatively extracted by the adsorbent, while Cr(VI) adsorption was negligible. Concentrated H2SO4 and ethanol reduced Cr(VI)–Cr(III), and total chromium content was assessed as Cr(III). Then, the Cr(VI) concentration in the sample was calculated as the difference. The optimum conditions were obtained in terms of pH, adsorbent amount, contact time, and type, concentration and volume of eluent. Under the optimum conditions that involved the speciation of chromium ions from 25 mL of the water samples at pH 7.0 using 0.025 g of the adsorbent with contact time of 5 min, the method was validated in terms of linearity, precision and accuracy. The calibration curve was linear over the concentration range of 0.01–25.00 μg L?1 for Cr(III). The obtained limit of detection for the proposed method was 0.003 µg L?1. The maximum adsorption capacity of the adsorbent was found to be 995.57 mg g?1. The proposed method was validated by the speciation of Cr(III) and Cr(VI) in different real water and wastewater samples with satisfactory results.  相似文献   

9.
The alumina impregnated by the di-2-ethyl hexyl phosphoric acid was introduced to make more adsorption of strontium as well as to determine the optimal conditions. The influence of various parameters such as pH, equilibrium time, adsorbent mass, interfering ions, and various eluant agents for the desorption of the strontium ions, initial concentration, and temperature was investigated to find out the adsorption behavior of the adsorbent under different conditions. The adsorbent was characterized by the Fourier transform infrared spectroscopy. The experimental data were fitted on the two-parameter and three-parameter adsorption isotherm models. The Freundlich and Redlich–Peterson models have suitable fitting on the experimental data (R 2 = 0.9307). The kinetic models of adsorption were analyzed by the pseudo-first- and pseudo-second-order models. The results have been indicated that the pseudo-second-order kinetic model is more appropriate than the others. Advantages of our method were simple operation, less time for preparation of adsorbent, rapid phase separation, and capability to combine with various detection techniques. The method has been utilized to extract and the recovery of strontium ions in environmental aqueous samples.  相似文献   

10.
Rapid increases in the amounts of fullerene C60 nanoparticles (nC60) being produced and used will inevitably lead to increases in the amounts released into the aquatic environment. This will have implications for human and ecosystem health. Wastewater treatment plants are key barriers to nC60 being released into aquatic systems, but little information is available on how adsorption processes in wastewater treatment plants affect the fates of nC60. We investigated the effects of the surface properties of activated sludge on the adsorption of nC60 and related mechanisms by modeling the adsorption kinetics and equilibrium process and performing correlation analyses. The adsorption of nC60 closely followed the pseudo-second-order kinetic model (R > 0.983), the Freundlich isotherm model (R > 0.990), and the linear partitioning isotherm model (R > 0.966). Different adsorption coefficients, 1.070–4.623 for the Freundlich partitioning model and 1.788–6.148 for the linear partitioning model, were found for different types of activated sludge. The adsorption coefficients significantly positively correlated with the zeta (ζ) potential (R = 0.877) and hydrophobicity (R = 0.661) and negatively correlated with particle size (R = ?0.750). The results show that nC60 adsorption is strongly affected by the surface properties of activated sludge because changes in surface properties cause changes in the electrostatic and hydrophobic interactions that occur.  相似文献   

11.
A novel polyurethane foam/organobentonite/iron oxide nanocomposite adsorbent was successfully prepared via in situ polymerization of toluene diisocyanate and polyol in presence of 5 wt% organobentonite/iron oxide. The obtained nanocomposite was characterized in detail, and the results revealed that the clay layers are exfoliated and/or intercalated in the polymer matrix forming a nanocomposite structure. The application of the prepared nanocomposite for adsorption of cadmium ions from aqueous solution was tested as a function of various experimental parameters using batch procedures. Adsorptive removal of Cd(II) onto the nanocomposite attained maximum at adsorbent content 1.5 g/L, pH 6, and the equilibrium was established within 60 min. Kinetic studies showed that the experimental data fit very well to pseudo-second-order model, and the adsorption process proceeds through three steps. It was found that external liquid film and intraparticle diffusion steps deeply affect the rate of Cd2+ ions adsorption onto the synthesized nanocomposite. Langmuir isotherm model fitted the adsorption data better than Freundlich with a maximum adsorption capacity (q m) for Cd(II) equal to 78 mg/g under the specified experimental conditions. The synthesized nanocomposite afforded effective extraction for Cd2+ ions from natural water samples and excellent reusability feature. This study declares the potential efficiency of a new clay/polymer nanocomposite as alternative for wastewater remediation.  相似文献   

12.
In this research, the stems of Onopordom Heteracanthom which is a kind of weed were converted to biochar particles, and their characteristics were investigated. The morphology and purity of these particles were examined by SEM and EDX techniques, respectively. Specific surface area was obtained as 5.73 m2 g?1 by BET method. The biochar particles obtained from Onopordom Heteracanthom were evaluated as an adsorbent to remove Cr(VI) from aqueous environments. The effect of some parameters such as initial concentration of Cr(VI), dosage of adsorbent, and pH were investigated on the adsorption capacity of Cr(VI) onto the adsorbent. The equilibrium data were analyzed by various isotherm models. The results revealed that in this process, the adsorption isotherm and kinetics have more conformity with Langmuir isotherm and pseudo-second-order kinetics, respectively. The multi-linearity of the Weber and Morris adsorption kinetic model indicates that the intra-particle diffusion is not merely the rate-controlling step for the whole adsorption process.  相似文献   

13.
In this study, magnetite–maghemite nanoparticles were used to treat arsenic-contaminated water. X-ray photoelectron spectroscopy (XPS) studies showed the presence of arsenic on the surface of magnetite–maghemite nanoparticles. Theoretical multiplet analysis of the magnetite–maghemite mixture (Fe3O4-γFe2O3) reported 30.8% of maghemite and 69.2% of magnetite. The results show that redox reaction occurred on magnetite–maghemite mixture surface when arsenic was introduced. The study showed that, apart from pH, the removal of arsenic from contaminated water also depends on contact time and initial concentration of arsenic. Equilibrium was achieved in 3 h in the case of 2 mg/L of As(V) and As(III) concentrations at pH 6.5. The results further suggest that arsenic adsorption involved the formation of weak arsenic-iron oxide complexes at the magnetite–maghemite surface. In groundwater, arsenic adsorption capacity of magnetite–maghemite nanoparticles at room temperature, calculated from the Langmuir isotherm, was 80 μmol/g and Gibbs free energy (∆G0, kJ/mol) for arsenic removal was −35 kJ/mol, indicating the spontaneous nature of adsorption on magnetite–maghemite nanoparticles.  相似文献   

14.
In the present experimental study, solid waste was used as an adsorbent and the effectiveness of the adsorbent was increased by novel treatment methods. Red mud, acid-treated activated red mud and iron oxide-coated acid-treated activated red mud were used for the removal of lead (II). The structural and functional groups were identified to confirm the removal of lead (II) by powder X-ray diffraction and Fourier transform infrared spectroscopy analyses. The enhancement of surface area was confirmed by Brunauer–Emmett–Teller analysis. Batch adsorption experiment was also conducted, and various parameters such as the effect of adsorbent dosage, pH, contact time and initial ion concentration were analyzed and reported. Adsorption equilibrium data were investigated using Langmuir, Freundlich and Dubinin–Radushkevich isotherm models with three parameters, and the rate of reaction was examined through kinetic models. The results indicate that in particular a novel modified form of red mud, namely iron oxide-coated acid-treated activated red mud was well fitted in lead (II) removal compared with reported adsorbents. The Langmuir isotherm shows that the maximum adsorption of adsorbate per gram was greater than other adsorbents (27.02 mg/g). In Freundlich isotherm, the Freundlich constant n values lie between 1 and 10 indicate the favorable adsorption. The calculated n values for normal red mud, acid-treated activated red mud and iron oxide-coated acid-treated activated red mud were found to be 1.9, 2.1 and 2.0 respectively. The correlation coefficient value was higher and the rate of reaction follows the pseudo-second-order kinetic model.  相似文献   

15.
The most appropriate method in designing the adsorption systems and assessing the performance of the adsorption systems is to have an idea on adsorption isotherms. Comparison analysis of linear least square method and nonlinear method for estimating the isotherm parameters was made using the experimental equilibrium data of Zn(II) and Cu(II) onto kaolinite. Equilibrium data were fitted to Freundlich, Langmuir, and Redlich–Peterson isotherm equations. In order to confirm the best-fit isotherms for the adsorption system, the data set using the chi-square (χ 2), combined with the values of the determined coefficient (r 2) was analyzed. Nonlinear method was found to be a more appropriate method for estimating the isotherm parameters. The best fitting isotherm was the Langmuir and Redlich–Peterson isotherm. The Redlich–Peterson is a special case of Langmuir when the Redlich–Peterson isotherm constant g was unity. The sorption capacity of kaolinite to uptake metal ions in the increasing order was given by Cu (4.2721 mg/g)?<?Zn (4.6710 mg/g).  相似文献   

16.
This study assesses the ability of two low-cost adsorbents made from waste of Rapanea ferruginea treated with ethanol (WRf) and its H2SO4-treated analog (WRf/H2SO4) for the removal of two cationic dyes methylene blue (MB) and crystal violet (CV) from aqueous solutions. The adsorbent was characterized by scanning electron microscopy, Fourier transform infrared spectrometry, thermogravimetric analysis, point of zero charge (pHpzc), specific surface, and functional groups. The adsorption of dye onto the adsorbents was studied as a function of pH solution (2–12), contact time (up to 120 min) and initial concentration (20–120 mg/L), and temperature (25, 35, and 55 °C). The influence of these parameters on adsorption capacity was studied using the batch process. The response surface methodology (RSM) was used in the experimental design, modeling of the process, and optimizing of the variables and was optimized by the response involving Box–Behnken factorial design (15 runs). The results show that the data correlated well with the Sips isotherm. The maximum adsorption capacities of MB and CV onto WRf were found to be 69 and 106 mg/g, and onto WRf/H2SO4, the adsorption capacities were 33 and 125 mg/g, respectively. The kinetic data revealed that adsorption of cationic dyes onto the adsorbents closely follows the pseudo-second-order kinetic model. Regression analysis showed good fit of the experimental data to the second-order polynomial model, with coefficient of determination (R2) values for MB (R2?=?0.9685) and MB (R2?=?0.9832) for WRf and CV (R2?=?0.9685) and CV (R2?=?0.9832) for WRf/H2SO4 indicated that regression analysis is able to give a good prediction of response for the adsorption process in the range studied. The results revealed that waste from R. ferruginea is potentially an efficient and low-cost adsorbent for adsorption of MB and CV.  相似文献   

17.
The adsorption behavior study of diethyl and dibutyl phthalates was investigated onto a new activated carbon prepared from an abundant biomass “Albizia julibrissin pods,” treated chemically by H3PO4. A series of experiments were conducted in a batch system to estimate the effect of operating conditions such as the adsorbent nature, the dose of adsorbent, the contact time, the initial concentration and the temperature on the adsorption efficiency. The optimum operating conditions were found to be 0.1 and 0.05 g of adsorbent for diethyl and dibutyl phthalates, respectively, at 30 min equilibrium time, 150 mg g?1 and 293 K. The adsorption isotherms for both phthalates were fit at different temperatures using the nonlinear regression of Langmuir, Freundlich, Dubinin–Radushkevich and Redlich–Peterson. The pseudo-first order, pseudo-second order by nonlinear regression and intraparticle diffusion models were used to describe the adsorption kinetic. The results show that the intraparticle diffusion model is not the limiting step governing the adsorption mechanism. The structural and textural characteristics of adsorbent surface were investigated. FTIR analysis of unloaded and phthalates-loaded adsorbent revealed that the aliphatic groups attached to phthalate esters are involved in adsorption mechanism.  相似文献   

18.
In this study, sepiolite-nano zero valent iron composite was synthesized and applied for its potential adsorption to remove phosphates from aqueous solution. This composite was characterized by different techniques. For optimization of independent parameters (pH = 3–9; initial phosphate concentration = 5–100 mg/L; adsorbent dosage = 0.2–1 g/L; and contact time = 5–100 min), response surface methodology based on central composite design was used. Adsorption isotherms and kinetic models were done under optimum conditions. The results indicated that maximum adsorption efficiency of 99.43 and 92% for synthetic solution and real surface water sample, respectively, were achieved at optimum conditions of pH 4.5, initial phosphate concentration of 25 mg/L, adsorbent dosage of 0.8 g/L, and 46.26 min contact time. The interaction between adsorbent and adsorbate is better described with the Freundlich isotherm (R 2 = 0.9537), and the kinetic of adsorption process followed pseudo-second-order model. Electrostatic interaction was the major mechanisms of the removal of phosphates from aqueous solution. The findings of this study showed that there is an effective adsorbent for removal of phosphates from aqueous solutions.  相似文献   

19.
In this study, nickel ions adsorption from zinc ingot factory wastewater by brown algae (Sargassum glaucescens) and chitosan/polyvinyl alcohol nano-fiber membrane at continuous system was studied. The continuous process included a biosorption reactor and fixed-bed reactor that were optimized by predicting two batch steps with response surface modeling, based on the Box–Behnken in the novel approach. Nano-biosorbent characterized by scanning electron microscopy, Brunauer–Emmett–Teller and Fourier transform infrared spectrometer analysis. Maximum biosorption in this continuous system was at pH 6, biosorbent doses 8 g L?1 S. glaucescens and 0.48 g L?1 nano-fiber. The study of the reaction rate showed kinetic data best fitted by pseudo-first-order model with R 2 > 0.95 than pseudo-second-order and intraparticle diffusion models. Biosorption equilibrium data were performed using Langmuir isotherm and Freundlich isotherm, Langmuir isotherm fit better with equilibrium data.  相似文献   

20.
Sludge samples taken from different sources and times may have different characteristics that could affect dewatering performance. In this study, 20 sludge samples from five wastewater treatment plants and different seasons in 1 year were characterized. Pearson correlation analysis indicated that solid content (SC), total suspended solid (TSS), polysaccharides and proteins contents had positive correlations with the capillary suction time (CST), whereas volatile suspended–solid/total suspended solid (VSS/TSS) exhibited negative correlations with CST. Moreover, no correlations between CST and specific resistance to filtration were found among these different sludge samples. The principal component analysis confirmed that only two group variables could represent most of the sludge characteristic parameters. The first set of variables represents the particulate nature of the biotic factors (SC, VSS/TSS, SCOD, TSS, polysaccharides and proteins), and the second set is the pH. CST could not be a reasonable indicator of dewaterability in sludge deep dewatering by Fe2+/S2O8 2?-phosphogypsum composite conditioning. Furthermore, the results of diaphragm filter press dewatering showed that initial SC and VSS/TSS were the most dominant sludge characteristics affecting the solid content of dewatered cake (R p = 0.610, p = 0.016; R p = ?0.838, p = 0.000, respectively) with Fe2+/S2O8 2?-phosphogypsum composite conditioning. Results from this study suggest that dewatering performance is predictable by sludge characteristics parameters for Fe2+/S2O8 2?-phosphogypsum conditioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号