首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We report the serendipitous discovery of a population of low-mass, pre-main-sequence (PMS) stars in the direction of the Wolf–Rayet/O-star binary system γ 2  Vel and the Vela OB2 association. We argue that γ 2  Vel and the low-mass stars are truly associated and approximately coeval, and that both are at distances between 360 and 490 pc, disagreeing at the 2 σ level with the recent Hipparcos parallax of γ 2  Vel, but consistent with older distance estimates. Our results clearly have implications for the physical parameters of the γ 2  Vel system, but also offer an exciting opportunity to investigate the influence of high-mass stars on the mass function and circumstellar disc lifetimes of their lower mass PMS siblings.  相似文献   

2.
We study the structure of a stationary and axisymmetric charge-deficient region (or potential gap) in the outer magnetosphere of a spinning neutron star. Assuming the existence of global current flow patterns in the magnetosphere, the charge depletion causes a large electric field along the magnetic field lines. This longitudinal electric field accelerates migratory electrons and/or positrons to ultrarelativistic energies. These relativistic electrons/positrons radiate γ -ray photons by curvature radiation. These γ -rays, in turn, produce yet more radiating particles by colliding with ambient X-ray photons, leading to a pair production cascade in the gap. The replenished charges partially screen the longitudinal electric field, which is self-consistently solved together with the distribution of e± and γ -ray photons. We find the voltage drop in the gap as a function of the soft photon luminosity. It is demonstrated that the voltage drop is less than 3×1013 V when the background X-ray radiation is as luminous as Vela . However, this value increases with decreasing X-ray luminosity and attains 3×1015 V when the X-ray luminosity is as low as L X=1031 erg s−1.  相似文献   

3.
We present a new analysis of an archived Chandra HETGS X-ray spectrum of the WR+O colliding wind binary γ2 Velorum. The spectrum is dominated by emission lines from astrophysically abundant elements: Ne, Mg, Si, S and Fe. From a combination of broad-band spectral analysis and an analysis of line flux ratios we infer a wide range of temperatures in the X-ray-emitting plasma (∼4–40 MK). As in the previously published analysis, we find the X-ray emission lines are essentially unshifted, with a mean FWHM of  1240 ± 30 km s−1  . Calculations of line profiles based on hydrodynamical simulations of the wind–wind collision predict lines that are blueshifted by a few hundred  km s−1  . The lack of any observed shift in the lines may be evidence of a large shock-cone opening half-angle (>85°), and we suggest this may be evidence of sudden radiative braking. From the R and G ratios measured from He-like forbidden-intercombination-resonance triplets we find evidence that the Mg  xi emission originates from hotter gas closer to the O star than the Si  xiii emission, which suggests that non-equilibrium ionization may be present.  相似文献   

4.
We present BeppoSAX observations of Nova Velorum 1999 (V382 Vel), carried out in a broad X-ray band covering 0.1–300 keV only 15 d after the discovery and again after 6 months. The nova was detected at day 15 with the BeppoSAX instruments which measured a flux F x≃1.8×10−11 erg cm−2 s−1 in the 0.1–10 keV range and a 2 σ upper limit F x<6.7×10−12 erg cm−2 s−1 in the 15–60 keV range. We attribute the emission to shocked nebular ejecta at a plasma temperature kT ≃6 keV . At six months no bright component emerged in the 15–60 keV range, but a bright central supersoft X-ray source appeared. The hot nebular component previously detected had cooled to a plasma temperature kT <1 keV . There was strong intrinsic absorption of the ejecta in the first observation and not in the second, because the column density of neutral hydrogen decreased from N (H)≃1.7×1023 to N (H)≃1021 cm−2 (close to the interstellar value). The unabsorbed X-ray flux also decreased from F x=4.3×10−11 to F x≃10−12 erg cm−2 s−1 .  相似文献   

5.
We report a Chandra observation of the   z =3.395  radio galaxy B2 0902+343. The unresolved X-ray source is centred on the active nucleus. The spectrum is well fitted by a flat power law of photon index of  Γ∼1.1  with intrinsic absorption of  8×1022 cm-2  , and an intrinsic  2–10 keV  luminosity of  3.3×1045 erg s-1  . More complex models that allow for a steeper spectral index cause the column density and intrinsic luminosity to increase. The data limit any thermal luminosity of the hot magnetized medium, assumed responsible for high Faraday rotation measures seen in the radio source, to less than ∼1045 erg s−1.  相似文献   

6.
We present the Chandra ACIS-S3 data of the old classical nova RR Pic (1925). The source has a count rate of 0.067 ± 0.002 count s−1 in the 0.3–5.0 keV energy range. We detect the orbital period of the underlying binary system in the X-ray wavelengths. We also find that the neutral hydrogen column density differs for orbital minimum and orbital maximum spectra with values  0.25+0.23−0.18× 1022  and  0.64+0.13−0.14× 1022 cm−2  at 3σ confidence level. The X-ray spectrum of RR Pic can be represented by a composite model of bremsstrahlung with a photoelectric absorption, two absorption lines centered around 1.1–1.4 keV and five Gaussian lines centered at emission lines around 0.3–1.1 keV corresponding to various transitions of S, N, O, C, Ne and Fe. The bremsstrahlung temperature derived from the fits ranges from 0.99 to 1.60 keV and the unabsorbed X-ray flux is found to be  2.5+0.4−1.2× 10−13 erg  cm−2 s−1  in the 0.3–5.0 keV range with a luminosity of 1.1 ± 0.2  1031 erg s−1  at 600 pc. We also detect excess emission in the spectrum possibly originating from the reverse shock in the ejecta. A fit with a cooling flow plasma emission model shows enhanced abundances of He, C, N, O and Ne in the X-ray emitting region indicating existence of diffusive mixing.  相似文献   

7.
We study the structure of a stationary and axisymmetric charge-deficient region (or a potential gap) in the outer magnetosphere of a spinning neutron star. A large electric field along the magnetic field lines is created in this potential gap and accelerates migratory electrons (e) and/or positrons (e+) to ultrarelativistic energies. Assuming that the gap is immersed in a dense soft photon field, these relativistic e± radiate γ -ray photons via inverse Compton (IC) scattering. These γ -rays, in turn, produce yet more radiating particles by colliding with ambient soft photons, leading to a pair-production cascade in the gap. The replenished charges partially screen the longitudinal electric field, which is self-consistently solved together with the distribution of e± and γ -ray photons. It is demonstrated that the voltage drop in the gap is not more than 1010 V when the background X-ray radiation is as luminous as 1037 erg s−1. However, this value increases with decreasing X-ray luminosity and attains 1012 V when the X-ray radiation is 1036 erg s−1. In addition, we find useful expressions of the spatial distribution of the particle fluxes and longitudinal electric field, together with the relationship between the voltage drop and the current density. Amazingly, these expressions are valid not only when IC scattering dominates but also when curvature radiation dominates.  相似文献   

8.
Active galactic nuclei can produce extremely powerful jets. While tightly collimated, the scale of these jets and the stellar density at galactic centres implies that there will be many jet/star interactions, which can mass load the jet through stellar winds. Previous work employed modest wind mass outflow rates, but this does not apply when mass loading is provided by a small number of high mass-loss stars. We construct a framework for jet mass loading by stellar winds for a broader spectrum of wind mass-loss rates than has previously been considered. Given the observed stellar mass distributions in galactic centres, we find that even highly efficient (0.1 Eddington luminosity) jets from supermassive black holes of masses M BH≲ 104 M are rapidly mass loaded and quenched by stellar winds. For  104 M < M BH < 108 M  , the quenching length of highly efficient jets is independent of the jet's mechanical luminosity. Stellar wind mass loading is unable to quench efficient jets from more massive engines, but can account for the observed truncation of the inefficient M87 jet, and implies a baryon-dominated composition on scales ≳2 kpc therein even if the jet is initially pair plasma dominated.  相似文献   

9.
In light of the recent suggestion that the nearby eclipsing binary star system V Puppis has a dark companion on a long orbit, we present the results of radio and X-ray observations of it. We find an upper limit on its radio flux of about 300 μJy and a detection of it in the X-rays with a luminosity of about  3 × 1031  erg s−1, a value much lower than what had been observed in some of the low angular resolution surveys of the past. These data are in good agreement with the idea that the X-ray emission from V Puppis comes from mass transfer between the two B stars in the system, but can still accommodate the idea that the X-ray emission comes from the black hole accreting stellar wind from one or both of the B stars.  相似文献   

10.
In the light of recent recalculations of the  19F(α, p)22Ne  reaction rate, we present results of the expected yield of 19F from Wolf–Rayet (WR) stars. In addition to using the recommended rate, we have computed models using the upper and lower limits for the rate, and hence we constrain the uncertainty in the yield with respect to this reaction. We find a yield of  3.1 × 10−4 M  of 19F with our recommended rate, and a difference of a factor of 2 between the yields computed with the upper and lower limits. In comparison with previous work we find a difference in the yield of a factor of approximately 4, connected with a different choice of mass loss. Model uncertainties must be carefully evaluated in order to obtain a reliable estimate of the yield, together with its uncertainties, of fluorine from WR stars.  相似文献   

11.
We solve for the structure of a hot accretion disc with unsaturated thermal Comptonization of soft photons and with advection, generalizing the classical model of Shapiro et al. The upper limit on the accretion rate due to advection constrains the luminosity to ≲ 0.15 y3/5 α7/5 of the Eddington limit, where y and α are the Compton and viscosity parameters, respectively. The characteristic electron temperature and Thomson optical depth of the inner flow at accretion rates within an order of magnitude of that upper limit are ∼ 109 K and ∼ 1, respectively. The resulting spectra are then in close agreement with the X-ray and soft γ-ray spectra from black hole binaries in the hard state and Seyferts. At low accretion rates, bremsstrahlung becomes the dominant radiative process.  相似文献   

12.
We present ROSAT High Resolution Imager (HRI) and ASCA observations of the well-known ultraluminous infrared galaxy (ULIRG) IRAS 19254−7245 (the 'Superantennae' ). The object is not detected by ROSAT , implying a 3 σ upper limit of X-ray luminosity L X∼8×1041 erg s−1 in the 0.1–2 keV band. However, we obtain a clear detection by ASCA , yielding a luminosity in the 2–10 keV band of 2×1042 erg s−1. The X-ray spectrum of IRAS 19254−7245 is very hard, equivalent to a photon index of Γ=1.0±0.35. We therefore attempt to model the X-ray data using a 'scatterer' model, in which the intrinsic X-ray emission along our line of sight is obscured by an absorbing screen while some fraction, f , is scattered into our line of sight by an ionized medium; this is the standard model for the X-ray emission in obscured (but non Compton-thick) Seyfert galaxies. We obtain an absorbing column density of N H=2×1023 cm−2 for a power-law photon index of Γ=1.9, an order of magnitude above the column estimated on the basis of optical observations; the percentage of the scattered emission is high (∼20 per cent). Alternatively, a model where most of the X-ray emission comes from reflection on a Compton-thick torus ( N H>1024 cm−2) cannot be ruled out. We do not detect an Fe line at 6.4 keV; however, the upper limit (90 per cent) to the equivalent width of the 6.4 keV line is high (∼3 keV). Overall , the results suggest that most of the X-ray emission originates in a highly obscured Seyfert 2 nucleus.  相似文献   

13.
We present new high spectral resolution X-ray observations of the colliding wind binary Vel taken with the ASCA satellite. We find two spectral components, one of which is post-shock emission from the colliding winds. Spectral variability is also seen, consistent with current notions of colliding wind phenomena.  相似文献   

14.
We derive the constraints on the mass ratio for a binary system to merge in a violent process. We find that the secondary-to-primary stellar mass ratio should be  0.003 ≲ ( M 2/ M 1) ≲ 0.15  . A more massive secondary star will keep the primary stellar envelope in synchronized rotation with the orbital motion until merger occurs. This implies a very small relative velocity between the secondary star and the primary stellar envelope at the moment of merger, and therefore very weak shock waves, and low-flash luminosity. A too low-mass secondary will release small amount of energy, and will expel small amount of mass, which is unable to form an inflated envelope. It can, however, produce a quite luminous but short flash when colliding with a low-mass main-sequence star.
Violent and luminous mergers, which we term mergebursts, can be observed as V838 Monocerotis-type events, where a star undergoes a fast brightening lasting days to months, with a peak luminosity of up to  ∼106 L  followed by a slow decline at very low effective temperatures.  相似文献   

15.
We present almost-simultaneous detections of Cygnus X-1 in the radio and mm regimes, obtained during the low/hard X-ray state. The source displays a flat spectrum between 2 and 220 GHz, with a spectral index | α |0.15 (3 σ ). There is no evidence for either a low- or high-frequency cut-off, but in the mid-infrared (∼30 μm) thermal emission from the OB-type companion star becomes dominant. The integrated luminosity of this flat-spectrum emission in quiescence is 2×1031 erg s−1 (2×1024 W). Assuming the emission originates in a jet for which non-radiative (e.g. adiabatic expansion) losses dominate, this is a very conservative lower limit on the power required to maintain the jet. A comparison with Cyg X-3 and GRS 1915+105, the other X-ray binaries for which a flat spectrum at shorter than cm wavelengths has been observed, shows that the jet in Cyg X-1 is significantly less luminous and less variable, and is probably our best example to date of a continuous, steady, outflow from an X-ray binary. The emissive mechanism responsible for such a flat spectral component remains uncertain. Specifically, we note that the radio–mm spectra observed from these X-ray binaries are much flatter than those of the 'flat-spectrum' AGN, and that existing models of synchrotron emission from partially self-absorbed radio cores, which predict a high-frequency cut-off in the mm regime, are not directly applicable.  相似文献   

16.
Galaxy merger simulations have explored the behaviour of gas within the galactic disc, yet the dynamics of hot gas within the galaxy halo have been neglected. We report on the results of high-resolution hydrodynamic simulations of colliding galaxies with metal-free hot halo gas. To isolate the effect of the halo gas, we simulate only the dark matter halo and the hot halo gas over a range of mass ratios, gas fractions and orbital configurations to constrain the shocks and gas dynamics within the progenitor haloes. We find that (i) a strong shock is produced in the galaxy haloes before the first passage, increasing the temperature of the gas by almost an order of magnitude to   T ∼ 106.3 K  . (ii) The X-ray luminosity of the shock is strongly dependent on the gas fraction; it is  ≳1039 erg s−1  for halo gas fractions larger than 10 per cent. (iii) The hot diffuse gas in the simulation produces X-ray luminosities as large as  1042 erg s−1  . This contributes to the total X-ray background in the Universe. (iv) We find an analytic fit to the maximum X-ray luminosity of the shock as a function of merger parameters. This fit can be used in semi-analytic recipes of galaxy formation to estimate the total X-ray emission from shocks in merging galaxies. (v) ∼10–20 per cent of the initial gas mass is unbound from the galaxies for equal-mass mergers, while 3–5 per cent of the gas mass is released for the 3:1 and 10:1 mergers. This unbound gas ends up far from the galaxy and can be a feasible mechanism to enrich the intergalactic medium with metals.  相似文献   

17.
We summarize all the reported detections of, and upper limits to, the radio emission from persistent (i.e. non-transient) X-ray binaries. A striking result is a common mean observed radio luminosity from the black hole candidates (BHCs) in the low/hard X-ray state and the neutron star Z sources on the horizontal X-ray branch. This implies a common mean intrinsic radio luminosity to within a factor of 25 (or less, if there is significant Doppler boosting of the radio emission). Unless coincidental, these results imply a physical mechanism for jet formation that requires neither a black hole event horizon nor a neutron star surface. As a whole the populations of Atoll and X-ray pulsar systems are less luminous by factors of ≳5 and ≳10 at radio wavelengths than the BHCs and Z sources (while some Atoll sources have been detected, no high-field X-ray pulsar has ever been reliably detected as a radio source). We suggest that all of the persistent BHCs and the Z sources generate, at least sporadically, an outflow with physical dimensions 1012 cm; that is, significantly larger than the binary separations of most of the systems. We compare the physical conditions of accretion in each of the types of persistent X-ray binary and conclude that a relatively low (1010 G) magnetic field associated with the accreting object, and a high (0.1 Eddington) accretion rate and/or dramatic physical change in the accretion flow, are required for formation of a radio-emitting outflow or jet.  相似文献   

18.
We present observations of Sakurai's Object obtained at 1–5 μm between 2003 and 2007. By fitting a radiative transfer model to an echelle spectrum of CO fundamental absorption features around  4.7 μm  , we determine the excitation conditions in the line-forming region. We find  12C/13C = 3.5+2.0−1.5  , consistent with CO originating in ejecta processed by the very late thermal pulse, rather than in the pre-existing planetary nebula. We demonstrate the existence of  2.2 × 10−6≤ M CO≤ 2.7 × 10−6 M  of CO ejecta outside the dust, forming a high-velocity wind of  500 ± 80 km s−1  . We find evidence for significant weakening of the CO band and cooling of the dust around the central star between 2003 and 2005. The gas and dust temperatures are implausibly high for stellar radiation to be the sole contributor.  相似文献   

19.
We present X-ray results on the ultraluminous infrared galaxy Arp 220 obtained with BeppoSAX . X-ray emission up to 10 keV is detected. No significant signal is detected with the PDS detector in the higher energy band. The 2–10 keV emission has a flat spectrum (Γ∼1.7) , similar to M82, and a luminosity of ∼ 1×1041 erg s−1 . A population of X-ray binaries may be a major source of this X-ray emission. The upper limit of an iron K line equivalent width at 6.4 keV is ≃600 eV. This observation imposes the tightest constraint so far on an active nucleus if present in Arp 220. We find that a column density of X-ray absorption must exceed 1025 cm−2 for an obscured active nucleus to be significant in the energetics, and the covering factor of the absorption should be almost unity. The underluminous soft X-ray starburst emission may need a good explanation, if the bolometric luminosity is primarily powered by a starburst.  相似文献   

20.
We calculate the X-ray emission from the shocked fast wind blown by the central stars of planetary nebulae (PNe) and compare with observations. Using spherically symmetric self-similar solutions, we calculate the flow structure and X-ray temperature for a fast wind slamming into a previously ejected slow wind. We find that the observed X-ray emission of six PNe can be accounted for by shocked wind segments that were expelled during the early-PN phase, if the fast wind speed is moderate,   v 2∼ 400–600 km s−1  , and the mass-loss rate is a few times  10−7 M yr−1  . We find, as proposed previously, that the morphology of the X-ray emission is in the form of a narrow ring inner to the optical bright part of the nebula. The bipolar X-ray morphology of several observed PNe, which indicates an important role of jets, rather than a spherical fast wind, cannot be explained by the flow studied here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号