首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The X-ray-luminous quasar GB 1428+4217 at redshift 4.72 has been observed with ASCA . The observed 0.5–10 keV flux is 3.2 Å– 10−12 erg cm−2 s−1. We report here on the intrinsic 4 − 57 keV X-ray spectrum, which is very flat (photon index 1.29). We find no evidence for flux variability within the ASCA data set or between it and ROSAT data. We show that the overall spectral energy distribution of GB 1428+4217 is similar to that of lower redshift MeV blazars, and present models that fit the available data. The Doppler beaming factor is likely to be at least 8. We speculate on the number density of such high-redshift blazars, which must contain rapidly formed massive black holes.  相似文献   

2.
BeppoSAX observations of the high-redshift ( z =4.72) blazar GB 1428+4217 confirm the presence of a complex soft X-ray spectrum first seen with the ROSAT PSPC. Flattening below a rest-frame energy of 5 keV can be accounted for by absorption from an equivalent column density of (cold) gas with N H∼8×1022 cm−2 . Below 2 keV a (variable) excess of a factor of ∼20 above the extrapolated absorbed spectrum is also detected. These findings are consistent with and extend to higher redshifts the correlation between increasing soft X-ray flattening and increasing z , previously pointed out for large samples of radio-loud quasars. We propose that such features, including X-ray absorption and soft excess emission as well as absorption in the optical spectra, can be satisfactorily accounted for by the presence of a highly ionized nuclear absorber with column N H∼1023 cm−2 , with properties possibly related to the conditions in the nuclear regions of the host galaxy. High-energy X-ray emission consistent with the extrapolation of the medium-energy spectrum is detected up to ∼300 keV (rest frame).  相似文献   

3.
We report on a ROSAT PSPC observation of the highly luminous z =4.72 radio-loud quasar GB 1428+4217 obtained between 1998 December 11 and 17, the final days of the ROSAT satellite. The low-energy sensitivity of the PSPC detector was employed to constrain the intrinsic X-ray absorption of the currently most distant X-ray detected object. Here we present the detection of significant soft X-ray absorption towards GB 1428+4217, making the absorbing material the most distant matter yet probed with X-ray spectroscopy. X-ray variability by 25±8 per cent is detected on a time-scale of 6500 s in the rest frame. The X-ray variation requires an unusually high radiative efficiency of at least 4.2, further supporting the blazar nature of the source.  相似文献   

4.
We have searched the archived, pointed ROSAT Position Sensitive Proportional Counter data for blazars by correlating the WGACAT X-ray data base with several publicly available radio catalogues, restricting our candidate list to serendipitous X-ray sources with a flat radio spectrum ( α r≤0.70, where S ν ∝ ν − α ). This makes up the Deep X-ray Radio Blazar Survey (DXRBS). Here we present new identifications and spectra for 106 sources, including 86 radio-loud quasars, 11 BL Lacertae objects, and nine narrow-line radio galaxies. Together with our previously published objects and already-known sources, our sample now contains 298 identified objects: 234 radio-loud quasars [181 flat-spectrum quasars: FSRQ ( α r≤0.50) and 53 steep-spectrum quasars: SSRQ], 36 BL Lacs and 28 narrow-line radio galaxies. Redshift information is available for 96 per cent of these. Thus our selection technique is ∼90 per cent efficient at finding radio-loud quasars and BL Lacs. Reaching 5-GHz radio fluxes ∼50 mJy and 0.1–2.0 keV X-ray fluxes a few ×10−14 erg cm−2 s−1, DXRBS is the faintest and largest flat-spectrum radio sample with nearly complete (∼85 per cent) identification. We review the properties of the DXRBS blazar sample, including redshift distribution and coverage of the X-ray-radio–power plane for quasars and BL Lacs. Additionally, we touch upon the expanded multiwavelength view of blazars provided by DXRBS. By sampling for the first time the faint end of the radio and X-ray luminosity functions, this sample will allow us to investigate the blazar phenomenon and the validity of unified schemes down to relatively low powers.  相似文献   

5.
We report on the discovery of a narrow-emission-line object at z  = 0.672 detected in a deep ASCA survey. The object, AXJ 0341.4–4453, has a flux in the 2–10 keV band of 1.1 ± 0.27 × 10−13 erg s−1 cm−2, corresponding to a luminosity of 1.8 × 1044 erg s−1 ( q 0 = 0.5, H 0 = 50 km s−1 Mpc−1). It is also marginally detected in the ROSAT 0.5–2 keV band with a flux 5.8 × 10−15 erg s−1 cm−2. Both the ASCA data alone and the combined ROSAT/ASCA data show a very hard X-ray spectrum, consistent with either a flat power law (α < 0.1) or photoelectric absorption with a column of n H > 4 × 1022 cm−2 (α = 1). The optical spectrum shows the high-ionization, narrow emission lines typical of a Seyfert 2 galaxy. We suggest that this object may be typical of the hard sources required to explain the remainder of the X-ray background at hard energies.  相似文献   

6.
We report on the search for distant radio-loud quasars in the Cosmic Lens All Sky Survey (CLASS) of flat spectrum radio sources with S 5GHz>30 mJy . Unresolved optical counterparts were selected from APM scans of POSS-I plates, with e <19.0 and red o − e >2.0 colours, in an effective area of ∼6400 deg2. Four sources were found to be quasars with z >4 , of which one was previously known. This sample bridges the gap between the strong radio surveys with S 5GHz>200 mJy and the samples of radio-weak quasars that can be generated via radio observations of optically selected quasars. In addition, four new quasars at z >3 have been found. The selection criteria result in a success-rate of ∼1:7 for radio-loud quasars at z >4 , which is a significant improvement over previous studies. This search yields a surface density of 1 per 1600 deg2, which is about a factor of ∼15 lower than that found in a similar search for radio-quiet quasars at z >4 . The study presented here is strongly biased against quasars beyond z >4.5 , since the e -passband of the POSS-I only samples the spectra shortward of 1200 Å at these redshifts.  相似文献   

7.
Using data from the Sloan Digital Sky Survey data release 3 (SDSS DR3), we investigate how narrow (<700 km s−1) C  iv and Mg  ii quasar absorption-line systems are distributed around quasars. The C  iv absorbers lie in the redshift range 1.6 < z < 4 and the Mg  ii absorbers in the range 0.4 < z < 2.2. By correlating absorbers with quasars on different but neighbouring lines of sight, we measure the clustering of absorbers around quasars on comoving scales between 4 and 30 Mpc. The observed comoving correlation lengths are   r o∼ 5 h −1Mpc  , similar to those observed for bright galaxies at these redshifts. Comparing correlations between absorbers and the quasars, in whose spectra they are identified, then implies: (i) that quasars destroy absorbers to comoving distances of ∼300 kpc (C  iv ) and ∼800 kpc (Mg  ii ) along their lines of sight; (ii) that ≳40 per cent of C  iv absorbers within 3000 km s−1 of the quasi-stellar object are not a result of large-scale clustering but rather are directly associated with the quasar itself; (iii) that this intrinsic absorber population extends to outflow velocities of the order of 12 000 km s−1; (iv) that this outflow component is present in both radio-loud and radio-quiet quasars and (v) that a small high-velocity outflow component is also observed in the Mg  ii population. We also find an indication that absorption systems within 3000 km s−1 are more abundant for radio-loud quasars than for radio-quiet quasars. This suggests either that radio-loud objects live in more massive haloes, or that their radio activity generates an additional low-velocity outflow, or both.  相似文献   

8.
We present the spectra, positions, and finding charts for 31 bright ( R <19.3) colour-selected quasars covering the redshift range z =3.85–4.78, with four having redshifts z >4.5. The majority are in the southern sky ( δ <−25°). The quasar candidates were selected for their red ( B J− R ≳2.5) colours from UK or POSSII Schmidt Plates scanned at the Automated Plate Measuring (APM) facility in Cambridge. Low-resolution (≳ 10 Å) spectra were obtained to identify the quasars, primarily at the Las Campanas Observatory. The highest redshift quasar in our survey is at z ≈4.8 ( R =18.7) and its spectrum shows a damped Ly α absorption system at z =4.46. This is currently the highest redshift damped Ly α absorber detected. Five of these quasars exhibit intrinsic broad absorption line features. Combined with the previously published results from the first part of the APM United Kingdom Schmidt Telescope (UKST) survey we have now surveyed a total of ∼8000 deg2 of sky i.e. 40 per cent of the high galactic latitude (| b |>30°) sky, resulting in 59 optically selected quasars in the redshift range 3.85 to 4.78; 49 of which have z ≥4.00.  相似文献   

9.
We have observed the galaxy environments around a sample of 21 radio-loud, steep-spectrum quasars at 0.5≤ z ≤0.82, spanning several orders of magnitude in radio luminosity. The observations also include background control fields used to obtain the excess number of galaxies in each quasar field. The galaxy excess was quantified using the spatial galaxy–quasar correlation amplitude, B gq, and an Abell-type measurement, N 0.5. A few quasars are found in relatively rich clusters, but on average, they seem to prefer galaxy groups or clusters of approximately Abell class 0. We have combined our sample with literature samples extending down to z ≈0.2 and covering the same range in radio luminosity. By using the Spearman statistic to disentangle redshift and luminosity dependences, we detect a weak, but significant, positive correlation between the richness of the quasar environment and the radio luminosity of the quasar. However, we do not find any epoch dependence in B gq, as has previously been reported for radio quasars and galaxies. We discuss the radio luminosity–cluster richness link and possible explanations for the weak correlation that is seen.  相似文献   

10.
We present results from a new XMM–Newton observation of the high-redshift quasar RX J1028.6 – 0844 at a redshift of 4.276. The soft X-ray spectral flattening, as reported by a previous study with ASCA , is confirmed to be present, with, however, a reduced column density when modelled by absorption. The inferred column density for absorption intrinsic to the quasar is  2.1(+0.4−0.3) × 1022  cm−2  for cold matter, and higher for ionized gas. The spectral flattening shows remarkable similarity with that of two similar object, namely GB 1428 + 4217 and PMN J0525 − 3343. The results improve upon those obtained from a previous short-exposure observation for RX J1028.6 – 0844 with XMM–Newton . A comparative study of the two XMM–Newton observations reveals a change in the power-law photon index from  Γ≃ 1.3  to 1.5 on time-scales of about one year. A tentative excess emission feature in the rest-frame 5–10 keV band is suggested, which is similar to that marginally suggested for GB 1428 + 4217.  相似文献   

11.
We have conducted ultra-deep optical and deep near-infrared observations of a field around the z =1.226 radio-quiet quasar 104420.8+055739 from the Clowes–Campusano LQG of 18 quasars at z ∼1.3, in search of associated galaxy clustering. Galaxies at these redshifts are distinguished by their extremely red colours, with I − K >3.75, and we find a factor ∼11 overdensity of such galaxies in a 2.25×2.25 arcmin2 field centred on the quasar. In particular, we find 15–18 galaxies that have colours consistent with being a population of passively evolving massive ellipticals at the quasar redshift. They form 'fingers' in the V − K K , I − K K colour–magnitude plots at V − K ≃6.9, I − K ≃4.3 comparable to the red sequences observed in other z ≃1.2 clusters. We find suggestive evidence for substructure among the red sequence galaxies in the K image, in the form of two compact groups, 40 arcsec to the north, and 60 arcsec to the south-east of the quasar. An examination of the wider optical images indicates that this substructure is significant, and that the clustering extends to form a large-scale structure 2–3  h −1 Mpc across. We find evidence for a high (≳50 per cent) fraction of blue galaxies in this system, in the form of 15–20 'red outlier' galaxies with I − K >3.75 and V − I <2.00, which we suggest are dusty, star-forming galaxies at the quasar redshift. Within 30 arcsec of the quasar we find a concentration of blue ( V − I <1) galaxies in a band that bisects the two groups of red sequence galaxies. This band of blue galaxies is presumed to correspond to a region of enhanced star formation. We explain this distribution of galaxies as the early stages of a cluster merger which has triggered both the star formation and the quasar.  相似文献   

12.
We extend our previous analysis which used generalized luminosity functions (GLFs) to predict the number of quasars and galaxies in low-radio-frequency-selected samples as a function of redshift, radio luminosity, narrow-emission-line luminosity and type of unified scheme. Our extended analysis incorporates the observed submillimetre (850-μm) flux densities of radio sources, employs a new method which allows us to deal with non-detections, and focuses on the high-luminosity population. First, we conclude that the submillimetre luminosity L 850 of low-frequency-selected radio sources is correlated with the bolometric luminosity L bol of their quasar nuclei via an approximate scaling relation   L 850∝ L 0.7±0.2bol  . Secondly, we conclude that there is quantitative evidence for a receding-torus-like physical process for the high-luminosity population within a two-population unified scheme for radio sources; this evidence comes from the fact that radio quasars are brighter in both narrow emission lines and submillimetre luminosity than radio galaxies matched in radio luminosity and redshift. Thirdly, we note that the combination of a receding-torus-like scheme and the assumption that the observed submillimetre emission is dominated by quasar-heated dust yields a scaling relation   L 850∝ L 1/2bol  which is within the errors of that determined here for radio-selected quasars, and consistent with that inferred for radio-quiet quasars.  相似文献   

13.
We have conducted observations of the environment around the z =2.15 radio-loud quasar 1550–269 in search of distant galaxies associated either with it or the z =2.09 C  iv absorber along its line of sight. Such objects will be distinguished by their red colours, R − K >4.5. We find five such objects in a 1.5 arcmin2 field around the quasar, with typical K ' magnitudes of ∼20.4 and no detected R -band emission. We also find a sixth object with K =19.6±0.3, and undetected at R , just two arcsec from the quasar. The nature of all these objects is currently unclear, and will remain so until we have determined their redshifts. We suggest that it is likely that they are associated with either the quasar or the C  iv absorber, in which case their properties might be similar to those of the z =2.38 red Ly α emitting galaxies discovered by Francis et al. The small separation between the quasar and the brightest of our objects suggests that it may be the galaxy responsible for the C  iv metal line absorption system. The closeness to the quasar and the red colour might have precluded similar objects from being uncovered in previous searches for emission from C  iv and damped absorbers.  相似文献   

14.
We present a new determination of the local volume-averaged star formation rate from the 1.4-GHz luminosity function of star forming galaxies. Our sample, taken from the   B ≤12  Revised Shapley–Ames catalogue (231 normal spiral galaxies over an effective area of 7.1 sr) has ≃100 per cent complete radio detections and is insensitive to dust obscuration and cirrus contamination. After removal of known active galaxies, the best-fitting Schechter function has a faint-end slope of  −1.27±0.07  in agreement with the local H α luminosity function, characteristic luminosity   L ∗=(2.6±0.7)×1022 W Hz−1  and density   φ ∗=(4.8±1.1)×10−4 Mpc−3.  The inferred local radio luminosity density of  (1.73±0.37±0.03)×1019 W Hz−1 Mpc−3  (Poisson noise, large-scale structure fluctuations) implies a volume-averaged star formation rate ∼2 times larger than the Gallego et al. H α estimate, i.e.   ρ 1.4 GHz=(2.10±0.45±0.04)×10−2 M yr−1 Mpc−3  for a Salpeter initial mass function from  0.1–125 M  and Hubble constant of 50 km s−1 Mpc−1. We demonstrate that the Balmer decrement is a highly unreliable extinction estimator, and argue that optical–ultraviolet (UV) star formation rates (SFRs) are easily underestimated, particularly at high redshift.  相似文献   

15.
We present near-infrared spectra of seven radio-loud quasars with a median redshift of 2.1, five of which were previously known to have Ly α nebulae. Extended [O  iii ] λ 5007 and H α emission are evident around six objects, at the level of a few times 10−16 erg cm−2 arcsec−2 s−1 within ≃2 arcsec of the nucleus (≡16 kpc in the adopted cosmology). Nuclear [O  ii ] λ 3727 is detected in three of the five quasars studied at this wavelength and clearly extended in one of them.
The extended [O  iii ] tends to be brighter on the side of the nucleus with the stronger, jet-like radio emission, indicating at least that the extranuclear gas is distributed anisotropically. It is also typically redshifted by several hundred km s−1 from the nuclear [O  iii ], perhaps because of the latter being blueshifted from the host galaxy's systemic velocity. Alternatively, the velocity shifts could be due to infall (which is suggested by linewidths ∼1000 km s−1 FWHM) in combination with a suitable dust geometry. Ly α /H α ratios well below the case B value suggest that some dust is present.
Photoionization modelling of the [O  iii ]/[O  ii ] ratios in the extended gas suggests that its pressure is around or less than a few times 107 cm−3 K; any confining intracluster medium is thus likely to host a strong cooling flow. A comparison with lower redshift work suggests that there has been little evolution in the nuclear emission-line properties of radio-loud quasars between redshifts 1 and 2.  相似文献   

16.
Using a sample of almost 7000 strong Mg  ii absorbers with   W 0 > 1 Å  and  0.4 < z < 2.2  detected in the SDSS DR4 data set, we investigate the gravitational lensing and dust extinction effects they induce on background quasars. After carefully quantifying several selection biases, we isolate the reddening effects as a function of redshift and absorber rest equivalent width, W 0. We find the amount of dust to increase with cosmic time as  τ( z ) ∝ (1 + z )−1.1±0.4  , following the evolution of cosmic star density or integrated star formation rate. We measure the reddening effects over a factor of 30 in E ( B − V ) and we find that  τ∝ ( W 0)1.9±0.1  , providing us with an important scaling for theoretical modelling of metal absorbers. We also measure the dust-to-metal ratio and find it similar to that of the Milky Way. In contrast to previous studies, we do not detect any gravitational magnification by Mg  ii systems. We measure the upper limit  μ < 1.10  and discuss the origin of the discrepancy. Finally, we estimate the fraction of absorbers missed due to extinction effects and show that it rises from 1 to 50 per cent in the range  1 < W 0 < 6 Å  . We parametrize this effect and provide a correction for recovering the intrinsic  ∂ N /∂ W 0  distribution.  相似文献   

17.
We quantify the galaxy environments around a sample of 0.5≤ z ≤0.8 radio-quiet quasars using the amplitude of the spatial galaxy–quasar correlation function, B gq. The quasars exist in a wide variety of environments; some sources are located in clusters as rich as Abell class 1–2 clusters, whereas others exist in environments comparable to the field. We find that, on average, the quasars prefer poorer clusters of ≈Abell class 0, which suggests that quasars are biased tracers of mass compared with galaxies. The mean B gq for the sample is found to be indistinguishable from the mean amplitude for a sample of radio-loud quasars matched in redshift and optical luminosity. These observations are consistent with recent studies of the hosts of radio-quiet quasars at low to intermediate redshifts, and suggest that the mechanism for the production of powerful radio jets in radio-loud quasars is controlled by processes deep within the active galactic nucleus itself, and is unrelated to the nature of the hosts or their environments.  相似文献   

18.
We report on the extreme behaviour of the high-redshift blazar GB B1428+4217 at   z = 4.72  . A continued programme of radio measurements has revealed an exceptional flare in the light curve, with the 15.2-GHz flux density rising by a factor of ∼3 from ∼140 to ∼430  mJy in a rest-frame time-scale of only ∼4 months – much larger than any previous flares observed in this source. In addition to new measurements of the 1.4–43  GHz radio spectrum, we also present the analysis and results of a target-of-opportunity X-ray observation using XMM–Newton , made close to the peak in radio flux. Although the X-ray data do not show a flare in the high-energy light curve, we are able to confirm the X-ray spectral variability hinted at in previous observations. GB B1428+4217 is one of several high-redshift radio-loud quasars that display a low-energy break in the X-ray spectrum, probably due to the presence of excess absorption in the source. X-ray spectral analysis of the latest XMM–Newton data is shown to be consistent with the warm-absorption scenario which we have hypothesized previously. Warm absorption is also consistent with the observed X-ray spectral variability of the source, in which the spectral changes can be successfully accounted-for with a fixed column density of material in which the ionization state is correlated with hardness of the underlying power-law emission.  相似文献   

19.
We describe the selection of candidate radio-loud quasars obtained by cross-matching radio source positions from the low-frequency (151-MHz) 7C survey with optical positions from five pairs of EO POSS-I plates scanned with the Cambridge Automatic Plate-measuring Machine (APM). The sky region studied is centred at RA 10h 28m, Dec.+41° and covers ≈0.057 sr. We present VLA observations of the quasar candidates, and tabulate various properties derived from the radio maps. We discuss the selection criteria of the resulting '7CQ' sample of radio-loud quasars. The 70 confirmed quasars, and some fraction of the 36 unconfirmed candidates, constitute a filtered sample with the following selection criteria: 151-MHz flux density S 151>100 mJy; POSS-I E -plate magnitude E ≈ R <20; POSS-I colour ( O E )<1.8; the effective area of the survey drops significantly below S 151≈200 mJy. We argue that the colour criterion excludes few if any quasars, but note, on the basis of recent work by Willott et al., that the E magnitude limit probably excludes more than 50 per cent of the radio-loud quasars.  相似文献   

20.
We report optical, radio and X-ray observations of a new distant blazar, PMN J0525−3343, at a redshift of 4.4. The X-ray spectrum measured from ASCA and BeppoSAX flattens below a few keV, in a manner similar to the spectra of two other z >4 blazars, GB 1428+4217 ( z =4.72) reported by Boller et al. and RX J1028.6−0844 ( z =4.28) reported by Yuan et al. The spectrum is well fitted by a power-law continuum which either is absorbed or breaks at a few keV. An intrinsic column density corresponding to 2×1023 H‐atoms cm−2 at solar abundance is required by the absorption model. This is however a million times greater than the neutral hydrogen, or dust, column density implied by the optical spectrum, which covers the rest-frame ultraviolet emission of the blazar nucleus. We discuss the problems raised and suggest that, unless there is intrinsic flattening in the spectral distribution of the particles/seed photons producing X-rays via inverse Compton scattering, the most plausible solution is a warm absorber close to the active nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号