首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
南黄海中部隆起自印支期以来经历显著的构造隆升及剥蚀过程.基于大陆架科学钻探CSDP-2井的钻井岩心,应用磷灰石裂变径迹技术研究了南黄海中部隆起晚白垩世以来的剥蚀过程及响应特征.所获得的8个磷灰石样品的裂变径迹年龄显示出两个年龄组,除单个样品为38±3 Ma外,其余样品都集中在(52±4)~(65±5)Ma范围内,基本反映了同一期构造热事件年龄,并且均远小于样品所处的二叠纪年龄,表明样品完全退火并记录了晚白垩世以来的热历史.样品热史模拟结果表明,基于泥岩镜质体反射率计算的最高古地温处于样品退火带温区范围内,各样品从晚白垩世早期(约100 Ma)以来经历持续的降温过程,在约80~75 Ma开始进入部分退火带.南黄海中部隆起第一期快速冷却降温过程出现在晚白垩世末期,并持续至古新世早期,随后进入古近纪表现为持续相对缓慢的降温过程,降温幅度约30 ℃,渐新世末期到中新世早期存在另一期快速冷却过程.热史模拟结果较好地指示了南黄海中部隆起晚白垩世以来的地层剥蚀响应特征.   相似文献   

2.
We reconstruct the history of denudation and landscape evolution of the northern East- Brazilian continental margin using apatite fission-track thermochronology and thermal history modeling. This part of the Brazilian Atlantic margin is morphologically characterized by inland and coastal plateaus surrounding a wide low-lying inland region, the Sertaneja Depression. The apatite fission track ages and mean track lengths vary from 39 ± 4 to 350 ± 57 Ma and from 10.0 ± 0.3 to 14.2 ± 0.2 μm, respectively, implying a protracted history of spatially variable denudation since the Permian at relatively low rates (<50 m My−1). The Sertaneja Depression and inland plateaus record Permian-Early Jurassic (300–180 Ma) denudation that precedes rifting of the margin by > 60 Myrs. In contrast, the coastal regions record up to 2.5 km of Late Jurassic-Early Cretaceous (150–120 Ma) denudation, coeval with rifting of the margin. The samples from elevated coastal regions, the Borborema Plateau and the Mantiqueira Range, record cooling from temperatures above 120 °C since the Late Cretaceous extending to the Cenozoic. We interpret this denudation as related to post-rift uplift of these parts of the margin, possibly resulting from compressional stresses transmitted from the Andes and/or magmatism at that time. Several samples from these areas also record accelerated Neogene (<30 Ma) cooling, which may record landscape response to a change from a tropical to a more erosive semi-arid climate during this time. The inferred denudation history is consistent with the offshore sedimentary record, but not with evolutionary scenarios inferred from the recognition of “planation surfaces” on the margin. The denudation history of the northeastern Brazilian margin implies a control of pre-, syn- and post-rift tectonic and climatic events on landscape evolution.  相似文献   

3.
Apatite fission-track (AFT) and (U+Th)/He (AHe) data, combined with time–temperature inverse modelling, reveal the cooling and exhumation history of the Iberian Massif in eastern Galicia since the Mesozoic. The continuous cooling at various rates correlates with variation of tectonic boundary conditions in the adjacent continental margins. The data provide constraints on the 107 timescale longevity of a relict paleolandscape. AFT ages range from 68 to 174 Ma with mean track lengths of 10.7 ± 2.6 to 12.6 ± 1.8 μm, and AHe ages range from 73 to 147 Ma. Fastest exhumation (≈0.25 km/Ma) occurred during the Late Jurassic to Early Cretaceous main episode of rifting in the adjacent western and northern margins. Exhumation rates have decreased since then and have been approximately one order of magnitude lower. Across inland Galicia, the AFT data are consistent with Early Cretaceous movement on post-Variscan NE trending faults. This is coeval with an extensional episode offshore. The AHe data in this region indicate less than 1.7 km of denudation in the last 100 Ma. This low exhumation suggests the attainment of a mature landscape during Late Cretaceous post-rift tectonic stability, whose remains are still preserved. The low and steady rate of denudation prevailed across inland Galicia despite minor N–S shortening in the northern margin since ≈45 Ma ago. In north Galicia, rock uplift in response to NW strike-slip faulting since Early Oligocene to Early Miocene has caused insufficient exhumation (<3 km) to remove the Mesozoic cooling signal recorded by the AFT data.  相似文献   

4.
Multi-method thermochronology applied to the Peake and Denison Inliers (northern South Australia) reveals multiple low-temperature thermal events. Apatite fission track (AFT) data suggest two main time periods of basement cooling and/or reheating into AFT closure temperatures (~60–120°C); at ca 470–440 Ma and ca 340–300 Ma. We interpret the Ordovician pulse of rapid basement cooling as a result of post-orogenic cooling after the Delamerian Orogeny, followed by deformation related to the start of the Alice Springs Orogeny and orocline formation relating to the Benambran Orogeny. This is supported by a titanite U/Pb age of 479 ± 7 Ma. Our thermal history models indicate that subsequent denudation and sedimentary burial during the Devonian brought the basement rocks back to zircon U–Th–Sm/He (ZHe) closure temperatures (~200–150°C). This period was followed by a renewal of rapid cooling during the Carboniferous, likely as the result of the final pulses of the Alice Springs Orogeny, which exhumed the inlier to ambient surface temperatures. This thermal event is supported by the presence of the Mount Margaret erosion surface, which indicates that the inlier was exposed at the surface during the early Permian. During the Late Triassic–Early Jurassic, the inlier was subjected to minor reheating to AFT closure temperatures; however, the exact timing cannot be deduced from our dataset. Cretaceous apatite U–Th–Sm/He (AHe) ages coupled with the presence of contemporaneous coarse-grained terrigenous rocks suggest a temporally thermal perturbation related with shallow burial during this time, before late Cretaceous exhumation cooled the inliers back to ambient surface temperatures.  相似文献   

5.
姜磊  邓宾  刘树根  王自剑  周政  罗强  何宇  赖冬 《地球科学》2018,43(6):1872-1886
中-新生代上扬子陆相盆地不仅是华南大陆的核心构造单元,也是大陆构造和盆地成因演化研究的天然实验室.基于楚雄盆地和四川盆地晚白垩世地层剖面中6件样品LA-ICP-MS磷灰石FT-U/Pb双法定年和热演化史模拟等研究,揭示上扬子盆地新生代差异抬升剥蚀及其分异过程.楚雄盆地大姚宜就剖面江底河组磷灰石裂变径迹(apatite fission track,AFT)年龄和径迹长度分别为43.2~33.9 Ma、10.06~11.30 μm,中新世以来快速抬升冷却速率达到约3~5 ℃/Ma;四川盆地宜宾柳嘉剖面三合组-高坎坝组AFT年龄和径迹长度分别为128.0~95.2 Ma、10.2~11.7 μm,为部分埋深退火样品.宜就剖面和柳嘉剖面上白垩统磷灰石U-Pb年龄峰值特征总体相似,共同揭示物源区古元古代(2 100~1 700 Ma)、新元古代(820~700 Ma)、早古生代(500~400 Ma)和早中生代(250~170 Ma)中高级别变质-岩浆构造热事件,其晚白垩世物源区主要为扬子板块西缘和北缘地区(即松潘-甘孜褶皱带、义敦岛弧、康滇古陆和秦岭造山带).尤其柳嘉剖面磷灰石FT-U/Pb对比年龄揭示三合组-高坎坝组中少量磷灰石矿物为物源区晚三叠世-晚白垩世快速岩浆侵位过程的初始旋回沉积产物.晚新生代上扬子盆地受控于青藏高原东南向扩展生长过程控制影响,最终发生肢解分异形成现今盆地格架.   相似文献   

6.
本文利用LA-ICP-MS磷灰石裂变径迹(FT)和U-Pb双定年技术,结合锆石原位U-Pb测年结果,对出露于东天山南部雅满苏-彩霞山地区的侵入岩样品进行了系统分析。结果显示,这些样品形成于357-309Ma和-252Ma,裂变径迹年龄变化于304-118Ma。根据裂变径迹年龄和径迹长度分布对其进行热史反演,得到晚石炭世-早二叠世(320-280Ma)、中-晚三叠世(240-210Ma)和早白垩世(120-100Ma)三个主要冷却时期。综合分析认为,研究区的石炭纪和三叠纪侵入体在晚石炭世-早二叠世、中-晚三叠世和早白垩世期间经历过构造隆升。其中,晚石炭世-早二叠世的抬升是由康古尔洋闭合后区域进入碰撞造山阶段导致,中-晚三叠世的抬升主要与古特提斯洋闭合后松潘-甘孜地体、羌塘地体先后与亚欧板块南缘的碰撞增生有关,早白垩世的抬升事件主要受到班公湖-怒江洋俯冲闭合以及拉萨地体与羌塘地体的碰撞增生影响。此外,东天山不同部位经历了显著的差异性隆升,这一现象与区内各构造单元的非均匀性、分块性及其地质演化历史的差异性密切相关,同时还受到外部驱动力以及早期先存断裂构造活化的制约。  相似文献   

7.
This work is based on apatite fission-track analysis of samples (mostly granites) from the basement of the Cretaceous-Tertiary Phosphate and Ganntour Plateaus, exposed in the Jebilet and Rehamna massifs (Western Meseta, Morocco). This basement belongs to the Carboniferous-Early Permian Variscan Belt, and the earlier marine onlap is Late Triassic in age. However, the AFT ages are post-Triassic and different in the Jebilet (186-203 Ma) and Rehamna (148-153 Ma). Track length modelling support the occurrence of moderate heating events during the Jurassic and the Eocene, respectively, with cooling during the Permian and Cretaceous intervals. These results are partly accounted for by considering a moderate subsidence during the Late Triassic-Liassic, which is a noticeable change in the regional paleogeographic concept of “West Moroccan Arch”. However, the discrepancies between the AFT results from the studied massifs make necessary to explore further explanation. We interpret the observed discrepancies by the difference in age and depth of crystallization of the sampled granites in the Variscan Orogen, i.e. 330 Ma, 5-6 km in the Jebilet versus ~ 300 Ma, 8-10 km in the Rehamna. The importance of the Late Jurassic-Early Cretaceous uplift and erosion of the entire Meseta and that of its Late Eocene burial are emphasized.  相似文献   

8.
The Precambrian Aksu blueschist is located in the northwestern margin of the Tarim Block, NW China. In recent decades, many studies were carried out with focus on the metamorphic age. However, a complete understanding of the evolution of the Tarim Block requires the cooling history of the Precambrian metamorphic rocks and the time–temperature paths as determined by low-temperature thermochronometry. Therefore, apatite fission track (AFT) technique was applied on the Precambrian Aksu blueschist to reveal the thermo–tectonic evolution of the north Tarim basement. All of the six blueschist samples analysed in this study yielded AFT ages spanning 107.5–62.5 Ma, much younger than the blueschist facies metamorphic age of Neoproterozoic, and confined track lengths are between 10.46 and 12.12 µm. Based on regional stratigraphic sequences, the AFT thermal history modeling as well as previous chronological results, the thermo–tectonic evolution of the Aksu blueschist can be roughly reconstructed with four stages: (1) the Precambrain Aksu blueschist exhumed to the surface soon after its formation. Erosion during the Early Sinian is indicated by the lack of sedimentation until the Late Sinian; (2) the Late Sinian strata are continuous, while the Middle–Upper Silurian and the Lower–Middle Carboniferous strata are absent. The total thickness of the Late Sinian and Paleozoic strata probably reached 10,000 m and resulted in the total annealing and thermal resetting of AFT ages; (3) the AFT ages in the Cretaceous are related with the widespread uplift in Tian Shan and its adjacent regions that restarted the AFT clock during the Late Mesozoic. These reflect a distant effect of the collision of the Lhasa terrane with Eurasia in the Late Jurassic–Early Cretaceous; and (4) sediments of Cenozoic are documented in the Aksu area. The Aksu blueschist was heated to partial annealing zone with the overlying Cenozoic sediments. During Miocene time, the Aksu blueschist was re-exhumed which was probably a distant response to the ongoing India–Eurasia convergence.  相似文献   

9.
The Kuruktag uplift is located directly northeast of the Tarim craton in northwestern China. Neoarchaean-to-Neoproterozoic metamorphic rocks and intrusive rocks crop out widely in the uplift; thus, it is especially suited for a more complete understanding of the thermal evolution of the Tarim craton. Apatite fission-track (AFT) methods were used to study the exhumation history and cooling of these Precambrian crystalline rocks. Nine apatite-bearing samples were collected from both sides of the Xingdi fault transecting the Kuruktag uplift. Pooled ages range from 146.0 ± 13.4 to 67.6 ± 6.7 Ma, with mean track lengths between 11.79 ± 0.14 and 12.48 ± 0.10 μm. These samples can be divided into three groups based on age and structural position. Group A consists of five samples with AFT apparent ages of about 100–110 Ma and is generally associated with undeformed areas. Group B comprises three specimens with AFT apparent ages lower than 80 Ma and is mostly associated with hanging wall environments close to faults. Group C is a single apatite sample with the oldest relative apparent age, 146.0 ± 13.4 Ma. The modelled thermal history indicates four periods of exhumation in the Kuruktag uplift: late-Early Jurassic (180 Ma); Late Jurassic–Early Cretaceous (144–118 Ma); early-Late Cretaceous (94–82 Ma); and late Cenozoic (about 10 Ma). These cooling events, identified by AFT data, are assumed to reflect far-field effects from multi-stage collisions and accretions of terranes along the south Asian continental margin.  相似文献   

10.
北大巴山凤凰山基底隆起晚中生代构造隆升历史   总被引:8,自引:0,他引:8  
对采自于北大巴山凤凰山基底隆起8个样品的磷灰石裂变径迹年代学分析和热历史模拟表明,凤凰山基底隆起陆内造山运动结束后的隆升历史大致可以划分为2个阶段:早白垩世中晚期(135±5~95±5 Ma)缓慢隆升,晚白垩世(95±5~65±5 Ma)快速隆升。大巴山北缘韧性剪切带黑云母40Ar/39Ar坪年龄证实大巴山北缘中晚侏罗世(165.7±1.9 Ma~161.2 Ma)存在快速隆升剥蚀,其与大巴山强烈陆内造山作用阶段有关; 早白垩世中晚期缓慢隆升代表了陆内造山结束后的稳定阶段; 晚白垩世快速隆升为一次区域性隆升事件,在秦岭、大别和武当等地区均有反映,隆升过程中伴随着强烈的伸展垮塌作用,沿秦岭造山带发育一系列伸展断陷盆地。区域对比分析表明,凤凰山基底隆起隆升历史与黄陵、汉南地块接近,但与武当地块存在明显区别,反映了秦岭造山带的不均一隆升过程。南大巴山前陆带1个样品的热史模拟结果显示,南大巴山前陆带自早白垩世以来与凤凰山基底隆起经历了一致的隆升过程。  相似文献   

11.
龙门山冲断隆升及其走向差异的裂变径迹证据   总被引:4,自引:1,他引:3  
大量的低温年代学研究用来讨论龙门山晚新生代的隆升,但很少涉及其走向差异和中生代隆升。本文分别沿龙门山北、中、南段3条剖面进行了锆石和磷灰石裂变径迹测试,结合已有的热年代学数据,以期揭示整个中-新生代期间龙门山隆升历史及其时空变化。中生代以来,龙门山主要有印支期(约200 Ma)、早白垩世末(约100 Ma)、早新生代(65~30 Ma)以及晚中新世(15~9 Ma)等或快或慢的冷却事件,总体上经历了中生代至早新生代的缓慢冷却和晚新生代快速冷却2个阶段,快速剥露开始于15~9 Ma,剥蚀速率由早期的0.1 mm/a增加到0.15~0.3 mm/a左右,局部可达0.9 mm/a左右。走向上,龙门山北段相对偏小的锆石裂变径迹年龄和相对偏大的磷灰石裂变径迹年龄反映其在中生代较中、南段隆升更快,而裂变径迹年龄总体上从北段向中、南段减小,表明中、南段在新生代发生了更快的隆升。倾向上,多种热年代学数据显示新生代期间在北川断裂和彭灌断裂两侧存在明显的差异剥露,这种差异在中、南段表现比北段更为突出。龙门山晚新生代快速隆升和剥露是青藏高原区域隆升背景上叠加的冲断活动所致,而非下地壳流动驱动。  相似文献   

12.
Low-temperature thermochronological data from two profiles across central Madagascar give apatite fission track and apatite (U–Th)/He ages ranging between 258 Ma and 176 Ma and from 239 Ma to 48 Ma, respectively. Thermal models derived from these data, as well as modelling of basement denudation and the sedimentary record, indicate that first order topography of central Madagascar developed mainly due to flexural uplift during Mesozoic times. This was in response to successive erosion and depositional loading associated with the sedimentation in the Morondava and Majunga basins, both of which are now exposed along the western margin of Madagascar. Our data suggest that the eastern margin of the island had a similar denudation history and was probably at a similar topographic level before the late Cretaceous break-up of Madagascar and the India/Seychelles block. Cretaceous normal faulting, without major amounts of denudation, led to the development of the present east coast topography defined by a tectonically juvenile escarpment. In the centre of the island Cenozoic tectonics and volcanism has had a minor and localised influence on the landscape of central Madagascar.  相似文献   

13.
The Rwenzori Mountains (Mtns) in west Uganda are the highest rift mountains on Earth and rise to more than 5,000 m. We apply low-temperature thermochronology (apatite fission-track (AFT) and apatite (U–Th–Sm)/He (AHe) analysis) for tracking the cooling history of the Rwenzori Mtns. Samples from the central and northern Rwenzoris reveal AFT ages between 195.0 (±8.4) Ma and 85.3 (±5.3) Ma, and AHe ages between 210.0 (±6.0) Ma to 24.9 (±0.5) Ma. Modelled time–temperature paths reflect a protracted cooling history with accelerated cooling in Permo-Triassic and Jurassic times, followed by a long period of constant and slow cooling, than succeeded by a renewed accelerated cooling in the Neogene. During the last 10 Ma, differentiated erosion and surface uplift affected the Rwenzori Mtns, with more pronounced uplift along the western flank. The final rock uplift of the Rwenzori Mtns that partly led to the formation of the recent topography must have been fast and in the near past (Pliocene to Pleistocene). Erosion could not compensate for the latest rock uplift, resulting in Oligocene to Miocene AHe ages.  相似文献   

14.
The apatite fission track dating of samples from the Dabashan(i.e., the Langshan in the northeastern Alxa Block) by the laser ablation method and their thermal history modeling of AFT ages are conducted in this study. The obtained results and lines of geological evidence in the study region indicate that the Langshan has experienced complicated tectonic-thermal events during the the Late Cretaceous-Cenozoic. Firstly, it experienced a tectonic-thermal event in the Late Cretaceous(~90–70 Ma). The event had little relation with the oblique subduction of the Izanagi Plate along the eastern Eurasian Plate, but was related to the Neo-Tethys subduction and compression between the Lhasa Block and Qiangtang Block. Secondly, it underwent the dextral slip faulting in the Eocene(~50–45 Ma). The strike slip fault may develop in the same tectonic setting as sinistral slip faults in southern Mongolia and thrusts in West Qinling to the southwest Ordos Block in the same period, which is the remote far-field response to the India-Eurasia collision. Thirdly, the tectonic thermal event existed in the late Cenozoic(since ~10 Ma), thermal modeling shows that several samples began their denudation from upper region of partial annealing zone(PAZ), and the denudation may have a great relationship with the growth of Qinghai-Tibetan Plateau to the northeast. In addition, the AFT ages of Langshan indicate that the main body of the Langshan may be an upper part of fossil PAZ of the Late Cretaceous(~70 Ma). The fossil PAZ were destroyed and deformed by tectonic events repeatedly in the Cenozoic along with the denudation.  相似文献   

15.
On the basis of apatite fission track (AFT) analyses,this article aims to provide a quantitative overview of Cenozoic morphotectonic evolution and sediment supply to the northern margin of the South China Sea (SCS).Seventeen granite samples were collected from the coast to the inland of the South China block.Plots of AFT age against sample location with respect to the coastline show a general trend of youngling age away from the coast,which implies more prolonged erosion and sediment contribution at the inland of the South China Sea during post break-up evolution.Two-stage fast erosion process,Early Tertiary and Middle Miocene,is deduced from simulated cooling histories.The first fast cooling and denudation during Early Tertiary are recorded by the samples along the coast (between 70 and 60 Ma) and the inland (between 50 and 30 Mu),respectively.This suggests initial local erosion and deposition in the northern margin of the SCS during Early Tertiary.Fast erosion along the coast ceased since ca.50 Ma,while it had lasted until ca.30 Ma inland,indicating that the erosion was transferred from the local coastal zone initially toward the continental interior with unified subsidence of the northern margin,which resulted in the formation of a south-dipping topography of the continental margin.The thermal stosis in the South China block since ca.30 Mu must det'me the time at which the northern margin became dynamically disconnected from the active rifting and stretching that was taking place to the south.The lower erosion rate is inconsistent with higher sedimentary rate in the Pearl River Mouth basin during Late Oligocene (ca.25 Ma).This indicates that the increased sedimentation in the basin is not due to the erosion of the granite belt of the South China block,but perhaps points to the westward propagation of the paleo-Pearl River drainage related to the uplift of the eastern margin of Tibet plateau and southward jumping of spreading axis of the South China Sea.The socond erosion acceleration rate of the Middle Miocene (ca.14 Ma) cooling could have been linked to the long-distance effect of uplift of the Tibet plateau or due to the enhanced East Asian monsoon.  相似文献   

16.
中新生代南北天山差异性抬升历史的磷灰石裂变径迹证据   总被引:1,自引:0,他引:1  
堆积于天山山前坳陷内部的巨厚新生代地层不仅记录所在沉积区的热历史信息,还记录了物源区的信息。本文选择天山南北两侧山前坳陷中3条地质剖面进行了大量的磷灰石裂变径迹测试和部分样品的热历史模拟分析,来揭示上新世以来天山在南北方向上隆升过程的差异性。采样剖面的选取较前人更加靠近前陆盆地方向,样品所在地层年代更新。结果显示,东秋里塔格背斜剖面中的样品记录了中天山、南天山和背斜区分别在55~65Ma、20~25Ma和5Ma经历了构造隆升。玛纳斯背斜剖面中的样品记录了北天山的三次构造隆升事件分别发生于55~65Ma、20~25Ma和5Ma,其中距今5Ma为玛纳斯背斜带起始隆升的时代。结合前人在相同区域的研究成果,分析得出天山的不同部分经历了不同的构造演化历史,自150Ma以来经历了三期差异性隆升。中生代时期(150~125Ma)表现为山体整体抬升,中生代晚期-新生代早期(100~50Ma)北天山明显早于南天山开始构造隆升,新生代以来(~50Ma)的构造运动以向前陆盆地方向扩展为特征,而隆升起始时间南北差异变小。虽然在南北方向上天山山体隆起时间上存在明显的差异,但是中新生代以来山体物源区的剥蚀速率大体相同。因此,隆升起始时间与隆升量之间并不存在必然的定量关系。天山的不同块体具有不同的构造演化历史的事实提示在研究大范围构造隆升作用时,应将构造作用作为一个过程来对待。变形在传递的过程中,在时间和空间上存在一定的滞后现象。  相似文献   

17.
Apatite fission track thermochronology reveals that uplift and erosion occurred during the mid‐Cretaceous within the Bathurst Batholith region of the eastern highlands, New South Wales. Apatite fission track ages from samples from the eastern flank of the highlands range between ca 73 and 139 Ma. The mean lengths of confined fission tracks for these samples are > 13 μm with standard deviations of the track length distributions between 1 and 2 μm. These data suggest that rocks exposed along the eastern flank of the highlands were nearly reset as the result of being subjected to palaeotemperatures in the range of approximately 100–110°C, prior to being cooled relatively quickly through to temperatures < 50°C in the mid‐Cretaceous at ca 90 Ma. In contrast, samples from the western flank of the highlands yield apparent apatite ages as old as 235 Ma and mean track lengths < 12.5 μm, with standard deviations between 1.8 and 3 μm. These old apatite ages and relatively short track lengths suggest that the rocks were exposed to maximum palaeotemperatures between approximately 80° and 100°C prior to the regional cooling episode. This cooling is interpreted to be the result of kilometre‐scale uplift and erosion of the eastern highlands in the mid‐Cretaceous, and the similarity in timing of uplift and erosion within the highlands and initial extension along the eastern Australian passive margin prior to breakup (ca 95 Ma) strongly suggests these two occurrences are related.  相似文献   

18.
The different tectonic stages that occurred at the end of the Proterozoic and during the Phanerozoic have an important bearing on the tectonothermal history of the South American Platform and its consolidation. Geochronological data (U/Pb monazite, 40Ar/39Ar whole rock) and apatite fission-track analysis, from Precambrian rocks of the southeastern Brazilian coastline, permit the modeling of a long-term thermal history of the crust and constrain variable denudation rates.Using these data, a temperature-time diagram reflects a period of accelerated exhumation during the end of the Brasiliano Orogeny, followed by long stability and reactivation of the platform during the Rifting Phase of the South Atlantic Ocean.U/Pb zircon and monazite (blocking temperature of ca. 650° C) data from a series of igneous bodies suggest that a tangential and transpressional tectonic regime occurred between 625 and 610 Ma. During the following escape tectonics, between 610 and 590 Ma the exhumation process indicates cooling rates of ca. 12°C/Ma. 40Ar/39Ar biotite ages between 540 and 510 Ma (ca. 300°C) and a corrected fission-track age on apatites (100°C) of 480 Ma indicate an exhumation event related to block tectonics with huge vertical displacement along shear zones.A long stabilization phase, with low exhumation, and cooling rate around 0.25°C/Ma was recorded from the Cambro/Ordovician to the Mesozoic. At 65 Ma an acceleration of the exhumation through denudation and reworking of the South American surface with cooling rate of 1.5°C/Ma is observed.The uplift of the Mantiqueira and Serra do Mar mountain ranges along the southeast Brazilian coastline works as a climatic barrier provoking lateral erosional processes causing long-term scarp retreat, combined with intense, but progressive denudation towards the continent. A denudation of 2.5 to 4 km was calculated for such processes. This lateral retreat of escarpments and flexural response can provide important insights regarding marginal isostatic uplift and the evolution of offshore sedimentary basins of southeast Brazil.  相似文献   

19.
New apatite (U-Th)/He (AHe) and apatite fission-track (AFT) data were acquired for cratonic basement samples from an 80 m span of drillcore in northeastern Kansas. The short depth interval over which the samples were collected indicates that they should have undergone thermal histories that would be indistinguishable using low temperature thermochronometry techniques. Individual AHe dates from four samples range from 99 to 464 Ma. Three samples yield dates <300 Ma that display a correlation with apatite eU (9-34 ppm) and a weaker correlation with grain size. eU concentration maps of apatites from these samples reveal low to moderate zonation in eU. Results for a fourth sample are characterized by dates >300 Ma, higher eU (39-113 ppm), and substantial data dispersion uncorrelated with eU and grain size. These apatites have strong and variable eU zonation. AFT dates for five samples range from 242 to 291 Ma. The sample with the highest eU apatites and oldest AHe dates yields the youngest AFT results. These results are “inverted”, with AHe dates distinctly older than the corresponding AFT date.We explore both the causes of data dispersion and the overall compatibility of this cratonic dataset. We find that geologically reasonable thermal histories can (1) explain the distribution of the moderate eU AHe data when accounting for the influence of radiation damage, grain size, and eU zonation on apatite He diffusivity, (2) reproduce the observed dispersion in the high eU AHe data when using a viable range of eU zonation and grain size, and (3) explain the AFT data for the same samples. The AHe and AFT data are mutually consistent, and viable thermal histories successfully predict the observed pattern of older AHe than AFT dates for the high eU apatites. Together these results suggest that appropriately accounting for the known controls on apatite He diffusivity can explain the observed dispersion and “inverted” AHe and AFT results in some thermochronometry datasets. A range of AHe dates should be especially common in cratonic data, because small differences in apatite He diffusivity are amplified by the thermal histories that typify cratonic settings. We use these results to develop some guidelines for interpreting dispersed AHe datasets. First, date-eU and date-grain size correlations should be evaluated, and if these patterns occur they can be used to better resolve the thermal history. Second, for samples that yield inexplicably large dispersion of AHe dates uncorrelated with eU and crystal size, the appropriate strategy is either to reject these samples from the suite used for thermal history interpretation or to acquire additional data to help decipher the significance of the age distribution.  相似文献   

20.
An integrated study of fission-track (FT) dating and structural geology revealed a complex tectono-thermal history preserved in basement rocks of central Madagascar since the amalgamation of Gondwana at the end of the Cambrian. A detailed study of five domains argues for several cooling steps with associated brittle deformations during the separation of Madagascar.Titanite and apatite FT ages range between 483 Ma and 266 Ma and between 460 Ma and 79 Ma, respectively. The titanite FT data indicate that the final cooling after the latest metamorphic overprint was terminated at c. 500 Ma (FC1). A 150 Myr phase of minor cooling (SC2), possibly related to a phase of tectonic quiescence and isostatic compensation, followed episode FC1. Between the Carboniferous and Early Jurassic, when an intracontinental rift developed between East Africa and Madagascar, complex brittle deformation effected the western margin of Madagascar and led to differential cooling of small basement blocks (FC3–FC5). During this period, ductile structural trends were reactivated at the western basement margin and in the centre of the island.A Late Cretaceous thermal event (T1) affected apatite FT data of samples from western–central and the eastern margin of Madagascar. These ages are related to the Madagascar–India/Seychelles break-up, whereby the thermal penetration along the eastern coast was restricted to the west by the Angavo shear zone (AGSZ). The Cretaceous evolution of the eastern margin was associated with minor erosion and was triggered by vertical displacements along brittle structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号