首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The aim of the present paper will be to detail the explicit form of the equations which govern first-order oscillations of fast-rotating globes of self-gravitating fluids; with due account taken of the effects arising from the centrifugal as well as Coriolis force. As such configurations oscillate in general about distorted figures of equilibrium, the equations governing them can be conveniently expressed in terms of the Clairaut coordinates, associated with distorted spheroidal figures, and introduced in our previous paper (Kopal, 1980) for this purpose.In Section 2 which follows a brief outline of our problem, the equilibrium properties of fast-rotating configurations or arbitrary structure will be formulated. In Section 3 we shall carry out a separation of the variables in the equations of motion, and reduce the partial differential equations of the problem to an equivalent system of ordinary differential equations, by an expansion of expressions for the velocity componentsU, V, W in terms of tesseral harmonicsY n m (, ). The explicit form of such a system, including the effects of all tesseral harmonics of orders up tom=n=4, will be specified in Section 3 for configurations whose equilibrium form is a sphere; while in Section 4 this latter condition will be relaxed to allow for the equilibrium configuration to become a rotational spheroid.In the concluding Section 5 we shall convert the complex form of our equations of motion into real terms, amenable to a solution-analytical or numerical-in terms of real variables; and shall establish the boundary conditions necessary for a specification of the characteristic frequencies of oscillation.  相似文献   

2.
The aim of the present paper will be to establish the explicit form of the equations which govern the internal structure of stars rotating with constant angular velocity formulated in terms of Clairaut coordinates (cf. Kopal, 1980) in which the radial coordinate is replaced by the total potential, which for equilibrium configurations remains constant over distorted level surfaces. The introductory Section 1 contains an account of previous work on rotating stars, commencing with Milne (1923), von Zeipel (1924) and Chandrasekhar (1933), who all employed orthogonal coordinates for their analysis. In Section 2 we shall apply to this end the curvilinear Clairaut coordinates introduced already in our previous work (cf. Kopal, 1980, 1981); and although these are not orthogonal, this disadvantage is more than offset by the fact that, in their terms, the fundamental equation of our problem will assume the form of ordinary differential equations, subject to very simple boundary conditions. The explicit form of these equations — exact to terms of fourth order in surficial distortion caused by centrifugal force—will be obtained in Section 3; while in the concluding Section 4 these will be particularized (for the sake of comparison with work of previous investigators) to stars of initially polytropic structure. These will prove to be much simpler in Clairaut coordinates than they were in any previously used frame of reference. Lastly, in Appendix A we shall present the explicit forms, in Clairaut coordinates, of the differential operators which were needed to establish the results given in Sections 3–4; while Appendix B will summarize other auxiliary algebraic relations of which use was made to formulate our fourth-order theory developed in Section 3.  相似文献   

3.
The aim of the present paper will be to set up, and solve, the equations governing transfer of radiation in semi-transparent envelopes of the stars; and, in order to do so, to employ a system of curvilinear (non-orthogonal) three-dimensional coordinates in which the radial coordinate has been identified with equipotential surfaces. Such coordinates are particularly suitable to a treatment of the problems arising in close binary systems, which render the outcome more than any other amenable to observable tests, but which has so far received but very scant attention.The introductory section of this paper will contain a statement of the problem; and its mathematical formulation in terms of Clairaut coordinates (cf. Kopal, 1980, 1989, Chapter V) will be outlined in Section 2; their methods in Section 3. Section 4 will then contain an application to the problem of distribution of surface brightness (limb-darkening) over the apparent discs of distorted components of close binary systems; while in Section 5 we shall do the same for radiative flux of distorted stars as a function of the phase (gravity darkening).The concluding Section 6 will then contain an outline of additional problems arising in this connection, to which we shall turn in successive parts of this series.  相似文献   

4.
In a previous paper of this series (Kopal, 1968a) the Eulerian equations have been set up which govern the precession and nutation of selfgravitating bodies of viscous fluid in inertial coordinates which are at rest in space. In order to facilitate their solution, in the present investigation we shall transform these equations to the rotating body-axes; and shall explicitly evaluate all their coefficients arising as a result of second-harmonic dynamical tides.Following the introductory Section 1 which contains a mathematical statement of the problem, the requisite transformation of coordinates will be outlined in Section 2, and applied to the equations of motion in Section 5. The corresponding moments and products of inertia appropriate for selfgravitating configurations of arbitrary internal structure will be formulated in Section 4; while the deformation terms arising from second-harmonic dynamical tides raised on centrally-condensed configurations will be evaluated in Sections 3 and 6. The concluding Section 7 will then contain a specification of the components of the disturbing force.The next stage of our investigation — namely, a construction of the actual solutions of the equations governing precession and nutation of fluid bodies in different cases of astrophysical interest — has been postponed for a separate paper.  相似文献   

5.
In a preceding paper (Kopal, 1969; in what follows referred to as Paper I) we introduced a new system of curvilinear coordinates-hereafter referred to as Roche Coordinates — in which spheres of constant radius in spherical polars have been replaced by surfaces of constant potential of a rotating gravitational dipole; while the angular coordinates are orthogonal to the equipotentials. In Paper I we established an explicit form of such a transformation, and related the Roche coordinates with polar coordinates (with which they coalesce in the immediate neighbourhood of each one of the two finite mass-points) in the plane case. The aim of the present investigation will be to generalize the definition of the Roche coordinates to three dimensions.The opening Section 1 of this paper will contain a general outline of the proposed three-dimensional transformation; and in Section 2 details of this transformation will be explicitly worked out correctly to quantities of first order in superficial distortion — an approximation which should prove adequate in regions surrounding the two finite masses; while in Section 3 we shall evaluate (to this degree of accuracy) the metric coefficients of the respective transformation, and its direction cosines, in both polar and curvilinear coordinates. Section 4 will then contain a formulation of the fundamental equations of hydrodynamics in terms of the three-dimensional Roche coordinates; and their advantages for a treatment of certain classes of dynamical problems encountered in doublestar astronomy will be illustrated in the concluding Section 5 by an investigation of the vibrational stability of the Roche model. We shall show that this model is capable of performing free radial oscillations which remain barotropic only if its equilibrium form is spherical (i.e., in the absence of any external mass in the neighbourhood); but not if it is distorted to any extent by rotation or tides.  相似文献   

6.
7.
The aim of the present investigation will be to determine the explicit forms of differential equations which govern secular perturbations of the orbital elements of close binary systems in the plane of the orbit (i.e., of the semi-major axisA, eccentricitye, and longitude of the periastron ), arising from the lag of dynamical tides due to viscosity of stellar material. The results obtained are exact for any value of orbital eccentricity comprised between 0e<1; and include the effects produced by the second, third and fourth-harmonic dynamical tides, as well as by axial rotation with arbitrary inclination of the equator to the orbital plane.In Section 2 following brief introductory remarks the variational equations of the problem of plane motion will be set up in terms of the rectangular componentsR, S, W of disturbing accelerations with respect to a revolving system of coordinates. The explicit form of these coefficients will be established in Section 3 to the degree of accuracy to which squares and higher powers of quantities of the order of superficial distortion can be ignored. Section 4 will be devoted to a derivation of the explicit form of the variational equations for the case of a perturbing function arising from axial rotation; and in Section 5 we shall derive variational equations which govern the perturbation of orbital elements caused by lagging dynamical tides.Numerical integrations of these equations, which govern the tidal evolution of close binary systems prompted by viscous friction at constant mass, are being postponed for subsequent investigations.Prepared at the Lunar Science Institute, Houston, Texas, under the joint support of the Universities Space Research Association, Charlottesville, Virginia, and the National Aeronautics and Space Administration Manned Spacecraft Center, Houston, Texas, under Contract No. NSR 09-051-001. This paper constitutes Lunar Science Institute Contribution no. 100.Normally at the Department of Astronomy, University of Manchester, England.  相似文献   

8.
The aim of the present paper will be to introduce a new system of curvilinear coordinateshereafter referred to as Roche coordinates-in which spheres of constant radius are replaced by equipotential surfaces of a rotating gravitational dipole (which consists of two discrete points of finite mass, revolving around their common center of gravity); while the remaining coordinates are orthogonal to the equipotentials. It will be shown that the use of such coordinates offers a new method of approach to the solution of certain problems of particle dynamics (such as, for instance, the construction of certain types of trajectories in the restricted problem of three bodies); as well as of the hydrodynamics of gas streams in close binary systems, in which the equipotential surfaces of their components distorted by axial rotation and mutual tidal interaction constitute essential boundary conditions.Following a general outline of the problem in Section 1, the Roche coordinates associated with the equipotentials of a rotating gravitational dipole will be constructed in the plane case (Section 2), and their geometrical properties discussed. In Section 3, we shall transform the fundamental equations of hydrodynamics to their forms appropriate in the curvilinear Roche coordinates. The metric coefficients of this transformation will be formulated in a closed form in Section 4 in terms of the respective partial derivatives of the potential; while in Section 5 analytic expressions for the Roche coordinates will be given in the orbital plane of the dipole, which are exact as far as the distortion of the equipotential curves from circular form can be described by the second, third and, fourth harmonics.The concluding Section 6 will be devoted to a formulation of the equations of a mass-point in the restricted problem of three bodies in the Roche coordinates. Three special cases will be considered: (a) motion in the neighborhood of the equipotential curves; (b) motion in the direction normal to such curves; and (c) motion in the neighbourhood of the Lagrangian points. It will be shown that motion in one coordinate is possible only in limiting cases which will be enumerated; but twodimensional motions in which one velocity component is very much smaller than the other invite further study.A generalization of the plane Roche coordinates to three dimensions, with application to additional classes of problems, is being postponed for a subsequent paper.  相似文献   

9.
The aim of the present paper will be to develop from the fundamental equations of hydrodynamics a theory of dynamical tides in close binary systems, the components of which are regarded to consist of heterogeneous viscous fluid, and to revolve around their common centre of gravity in eccentric orbits; moreover, the equatorial planes of their axial rotation and the orbital plane need not be co-planar, but all may be inclined to the invariable plane of the system of arbitrary amounts. The changes in the pressure or density invoked by time-dependent deformation will be regarded as adiabatic; but, in the equilibrium state, both the density and viscosity of the material of our components may be arbitrary functions of the radial distance.Following a brief exposition in Section 2 of the fundamental equations linearized to small oscillations — be these free or forced — in Section 3 we shall particularize them to describe spheroidal deformations; with due regard to all terms arising from viscosity. Section 4 will contain a specification of the boundary conditions to be imposed upon such oscillations; and in Section 5 we shall solve the problem of non-radial oscillations of self-gravitating inviscid configurations in terms of hypergeometric series. The remaining Sections 6–8 will be devoted to a discussion of the phenomena arising from viscosity: in particular, we shall solve in a closed form the problem of non-radial oscillations of incompressible viscous globes in the terms of Bessel functions. It will be shown that the effect of viscosity — like those of compressibility — tend to de-stabilize all non-radial oscillations of homogeneous configurations.At the other extreme, a similar treatment of a mass-point model — as well as of one exhibiting high but finite degree of central condensation — is being postponed for a subsequent communication.  相似文献   

10.
The aim of the present paper will be to develop a theory of the radial-velocity changes of the components of close binary systems, with special attention to phenomena arising from finite dimensions of such components and their mutual distortion as well as irradiation. It is particularly stressed that the deformability of fluid stars and gas motions in their atmospheres can give rise to systematic differences between the observed radial velocities of such stars and those of their mass centres.In Section 2 (which follows a brief statement of the problem outlined in Section 1) we shall introduce the coordinate systems subsequently employed to treat various aspects of our problem: Section 3 will be concerned with an extraction of information from the radial-velocity component of absolute motions of the mass-centres of such stars; and in Section 4 we shall generalize the classical work by an investigation of radial velocities at any point of the apparent disks of distorted components, and their relation to the motion of their centres of mass. Section 5 will contain an evaluation of the effects of distortion, on radial velocity, averaged over the entire visible disk of the respective star at different phases; and in Section 6 we shall extend the same treatment to stars undergoing eclipses.An investigation of the effects, on the observed radial velocities, of atmospheric streaming caused by mutual irradiation of the two stars is being postponed for a subsequent communication.  相似文献   

11.
The aim of the present note is to point out that observations of eclipsing variables within minima do not, in general, allow a separation of the quadratic terms of limb-darkening from the first-order effects of the gravity-darkening of distorted components undergoing eclipse. Only a difference of the two can be deduced from the observations, but — especially in close binaries — the net effect will be dominated by gravity-darkening.  相似文献   

12.
The aim of the present paper will be to investigate the effects, on the observed radial velocities of the components of close binary systems, of atmospheric motions caused by mutual irradiation of the two stars. Such motions can (and, in general, will) produce systematic differences between the observed radial velocity and that of the centre of mass of the respective star — differences varying with with the phase and thus giving rise to spurious deformations of the star's radial-velocity curves due to orbital motion. A failure to separate the two could (and in general, will) vitiate the physical elements deduced from these curves —such as the masses or absolute dimensions of the components and of the shape of their orbit; but in order to do so, an investigation of atmospheric motions invoked by irradiation becomes a necessary prerequisite.In the Introduction following this abstract, the problem at issue will be described in general terms, and phenomena outlined which should arise in this connection (together with the observations indicating their presence). In Section 2, general expressions for the radial velocity at any point of stellar surface arising from atmospheric motions will be formulated while Section 3 will isolate such velocities for components of close binary systems as are produced by mutual irradiation of their mates, in terms of hydrodynamical equations of radiative transfer describing the problem. In Sections 4 and 5, the effects of non-rotational motions on the observed radial velocities will be specified, and hydrodynamical equations formulated which specify atmospheric convection caused by irradiation of each component of a close binary by its mate. Linearized versions of such equations will be constructed in Section 6; while Section 7 contains an evaluation of the effects which such gas streams exert on the observed radial velocity of the stars.In the concluding Section 8 applications to practical cases are carried out. It will be shown that no reliable spectroscopic elements of close binary systems (including the masses and absolute dimensions of their components) can be obtained until the effects of atmospheric convection caused by mutual irradiation have been accounted for to permit us to convert the observed radial velocities (influenced as they are by the motion of as in which they originate) to those of the centre of mass of the respective stars.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

13.
The methods of analysis of the light changes of eclipsing variables in the frequency-domain, developed in our previous papers (Kopal 1975a, b, c, d) for an interpretation of mutual eclipses in systems consisting of spherical stars, have now been extended to analyse the light variations — between minima as well as within eclipses — ofclose binaries whose components are distorted by axial rotation and mutual tidal action. Following a brief introduction (Section 1) in which the need of this new approach will be expounded, in Sections 2 and 3 we shall deduce the theoretical changes of close eclipsing systems between minima (Section 2) as well as within eclipses (Section 3), which in Sections 4 and 5 will be analysed in the frequency-domain; and explicit formulae obtained which should enable us to separate the photometric proximity and eclipse effects directly from the observed data as they stand-without the need of any preliminary ‘rectification’. Section 6 will contain the explicit forms of the expressions for photometric perturbations in the frequency-domain, due to rotational and tidal distortion of both stars; and the concluding Section 7 will then be concerned with practical aspects of the application of these new methods to an analysis of the observed light changes of close eclipsing systems — in which the proximity and eclipse effects cannot be distinguished from each other by mere inspection.  相似文献   

14.
In preceding papers of this series (Kopal, 1968; 1969) the Eulerian equations have been set up which govern the precession and nutation of self-gravitating fluid globes of arbitrary structures in inertial coordinates (space-axes) as well as with respect to the rotating body axes; with due account being taken of the effects arising from equilibrium as well as dynamical tides.In Section 1 of the present paper, the explicit form of these equations is recapitulated for subsequent solations. Section 2 contains then a detailed discussion of the coplanar case (in which the equation of the rotating configuration and the plane of its orbit coincide with the invariable plane of the system); and small fluctuations in the angular velocity of axial rotation arising from the tidal breathing in eccentric binary systems are investigated.In Section 3, we consider the angular velocity of rotation about theZ-axis to be constant, but allow for finite inclination of the equator to the orbital plane. The differential equations governing such a problem are set up exactly in terms of the time-dependent Eulerian angles and , and their coefficients averaged over a cycle. In Section 4, these equations are linearized by the assumption that the inclinations of the equator and the orbit to the invariable plane of the system are small enough for their squares to be negligible; and the equations of motion reduced to their canonical form.The solution of these equations — giving the periods of precession and nutation of rotating components of close binary systems, as well as the rate of nodal regression which is synchronised with precession — are expressed in terms of the physical properties of the respective system and of its constituent components; while the concluding Section 6 contains a discussion of the results, in which the differences between the precession and nutation of rigid and fluid bodies are pointed out.  相似文献   

15.
In this paper we shall investigate the energy of close binary systems of constant momentum takng into consideration the first-order effects of rotation and tidal attraction of the components of finite size. The equations for the momentum and the energy of the system will be set up in Section 2, making use of terms including the effects of finite size of the components of finite degree of central condensation. In Section 3 perturbation theory is applied to these equations using the results of Kopal (1972b) as our initial values. In Section 4 we shall compare our results with the initial values and then discuss variations in our constants and the application to various real systems.  相似文献   

16.
The aim of the present paper will be to develop a theory which should make it possible to investigate secular stability of close binary systems, consisting of tidally-distorted components of arbitrary internal structure, by a minimization of the potential energy of the system as a whole. In the second section which follows brief introductory remarks, appropriate expressions for the total potential energy of a close binary will be formulated. Section 3 will be concerned mainly with the nature of the tide-generating potential, and its effects on the shape of each star. In Section 4, the amplitudes of partial tides raised by this potential will be specified, for stars of arbitrary structure, correctly to terms of second order in superficial distortion; and in Section 5 we shall investigate the effects of interaction between rotation and tides to the same degree of approximation. The concluding Section 6 will then contain an explicit formulation of different constituents adding up to the total potential energy of the system, which can be used as a basis for its secular stability by the methods outlined already in our previous investigation (Kopal, 1973).  相似文献   

17.
The aim of the first part of this investigation will be to establish the explicit form of the linearized systems of differential equations governing arbitrary oscillations (of amplitudes small enough for their squares and higher powers to be negligible) of the rotating Roche model in Clairaut's coordinates (in which their radial component is identified with the total potential). By solving these equations in a closed form we shall prove that this model is incapable of performing such oscillations (for any type of symmetry) about equipotential surfaces representing the figures of equilibrium, as soon as the centrifugal force will cause their equilibrium form to depart from a sphere.In the second part of this paper we shall set up the closed forms of the Laplace equation in Clairaut (non-orthogonal) as well as Roche (orthogonal) coordinates associated with the rotating Roche model; and by a construction of their solution establish successively the explicit forms of the respective harmonic functions associated with such figures (as a generalization of Legendre functions which are similarly associated with a sphere.  相似文献   

18.
The aim of the present paper will be to pioneer a new approach to the analysis of the light changes of eclipsing binary systems in the frequency domain, and to point out its merits in comparison with a conventional treatment of the same problem in the time-domain which has been developed so far. Following an introductory section in which the broad features of our problem will be set forth, Section 2 will contain an outline, and critique, of the time-domain approach. Section 3 will give an explicit treatment of the light changes arising from total and annular eclipses in the frequency domain — a problem which we succeeded in solving in close algebraic form. Section 4 will extend this treatment to the case of partial eclipses; and in the concluding Section 5 the relative merits of our new results will be discussed in broader perspective. Sections 3 and 4 contain explicit results pertaining to mutual eclipses of spherical stars exhibiting uniformly bright discs. An extension of these results to the case of arbitrary limb-darkening, and taking account of mutual distortion of both components, will be given in subsequent communications.  相似文献   

19.
The aim of the present paper has been to establish explicit expressions for the photometric perturbations in the light changes of close eclipsing systems, arising from the mutual distortion of the components, for any type of eclipses — be these occultations or transits; partial, total, or annular — and exhibiting arbitrary distribution of brightness (limb- or gravity-darkening) over the apparent disc of the eclipsed star.These perturbations have been expressed in terms of certain general types of series that can be easily programmed for automatic computation. They represent a generalization of results previously obtained by Kopal (1975) or Livaniou (1977, 1978) in so far as the expansions derived in this paper hold good for any real (not necessarily integral) value ofm>0. As such, they can be used to free from the photometric proximity effects within eclipses the empirical momentsA 2m of the light curves of non-integral orders, and the task performed within seconds of real time on high-speed automatic computers now available. Closed-form expressions for such perturbations, obtaining in the case of total eclipses, are given correctly to terms of first order in quantities which represent the distortion of each component.  相似文献   

20.
The aim of the present paper is to establish the explicit forms of the photometric perturbations, in the frequency-domain, of close binaries, whose components are distorted by axial rotation and mutual tidal action.Following a brief introduction, Section 2 describes the light changes and the photometric perturbations within eclipses in the frequency-domain. In Section 3 the explicit forms of the perturbations for occultation eclipses terminating in totality are given; while in Section 4 analogous results are established for transit eclipses terminating in annular phases. In this latter case the results can be expressed in terms of the photometric perturbations for total eclipses and in terms of some series. To facilitate applications to actual stars these series have been computed and their results are represented in Table I and by the Graphs. Finally, Section 5 gives a discussion of the results.An extension of the photometric perturbations to the case of partial eclipses will be given in a subsequent communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号